clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
534 lines
18 KiB
C++
534 lines
18 KiB
C++
//===- llvm/InlineAsm.h - Class to represent inline asm strings -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This class represents the inline asm strings, which are Value*'s that are
|
|
// used as the callee operand of call instructions. InlineAsm's are uniqued
|
|
// like constants, and created via InlineAsm::get(...).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_INLINEASM_H
|
|
#define LLVM_IR_INLINEASM_H
|
|
|
|
#include "llvm/ADT/Bitfields.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class Error;
|
|
class FunctionType;
|
|
class PointerType;
|
|
template <class ConstantClass> class ConstantUniqueMap;
|
|
|
|
class InlineAsm final : public Value {
|
|
public:
|
|
enum AsmDialect {
|
|
AD_ATT,
|
|
AD_Intel
|
|
};
|
|
|
|
private:
|
|
friend struct InlineAsmKeyType;
|
|
friend class ConstantUniqueMap<InlineAsm>;
|
|
|
|
std::string AsmString, Constraints;
|
|
FunctionType *FTy;
|
|
bool HasSideEffects;
|
|
bool IsAlignStack;
|
|
AsmDialect Dialect;
|
|
bool CanThrow;
|
|
|
|
InlineAsm(FunctionType *Ty, const std::string &AsmString,
|
|
const std::string &Constraints, bool hasSideEffects,
|
|
bool isAlignStack, AsmDialect asmDialect, bool canThrow);
|
|
|
|
/// When the ConstantUniqueMap merges two types and makes two InlineAsms
|
|
/// identical, it destroys one of them with this method.
|
|
void destroyConstant();
|
|
|
|
public:
|
|
InlineAsm(const InlineAsm &) = delete;
|
|
InlineAsm &operator=(const InlineAsm &) = delete;
|
|
|
|
/// InlineAsm::get - Return the specified uniqued inline asm string.
|
|
///
|
|
static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
|
|
StringRef Constraints, bool hasSideEffects,
|
|
bool isAlignStack = false,
|
|
AsmDialect asmDialect = AD_ATT, bool canThrow = false);
|
|
|
|
bool hasSideEffects() const { return HasSideEffects; }
|
|
bool isAlignStack() const { return IsAlignStack; }
|
|
AsmDialect getDialect() const { return Dialect; }
|
|
bool canThrow() const { return CanThrow; }
|
|
|
|
/// getType - InlineAsm's are always pointers.
|
|
///
|
|
PointerType *getType() const {
|
|
return reinterpret_cast<PointerType*>(Value::getType());
|
|
}
|
|
|
|
/// getFunctionType - InlineAsm's are always pointers to functions.
|
|
///
|
|
FunctionType *getFunctionType() const;
|
|
|
|
const std::string &getAsmString() const { return AsmString; }
|
|
const std::string &getConstraintString() const { return Constraints; }
|
|
void collectAsmStrs(SmallVectorImpl<StringRef> &AsmStrs) const;
|
|
|
|
/// This static method can be used by the parser to check to see if the
|
|
/// specified constraint string is legal for the type.
|
|
static Error verify(FunctionType *Ty, StringRef Constraints);
|
|
|
|
// Constraint String Parsing
|
|
enum ConstraintPrefix {
|
|
isInput, // 'x'
|
|
isOutput, // '=x'
|
|
isClobber, // '~x'
|
|
isLabel, // '!x'
|
|
};
|
|
|
|
using ConstraintCodeVector = std::vector<std::string>;
|
|
|
|
struct SubConstraintInfo {
|
|
/// MatchingInput - If this is not -1, this is an output constraint where an
|
|
/// input constraint is required to match it (e.g. "0"). The value is the
|
|
/// constraint number that matches this one (for example, if this is
|
|
/// constraint #0 and constraint #4 has the value "0", this will be 4).
|
|
int MatchingInput = -1;
|
|
|
|
/// Code - The constraint code, either the register name (in braces) or the
|
|
/// constraint letter/number.
|
|
ConstraintCodeVector Codes;
|
|
|
|
/// Default constructor.
|
|
SubConstraintInfo() = default;
|
|
};
|
|
|
|
using SubConstraintInfoVector = std::vector<SubConstraintInfo>;
|
|
struct ConstraintInfo;
|
|
using ConstraintInfoVector = std::vector<ConstraintInfo>;
|
|
|
|
struct ConstraintInfo {
|
|
/// Type - The basic type of the constraint: input/output/clobber/label
|
|
///
|
|
ConstraintPrefix Type = isInput;
|
|
|
|
/// isEarlyClobber - "&": output operand writes result before inputs are all
|
|
/// read. This is only ever set for an output operand.
|
|
bool isEarlyClobber = false;
|
|
|
|
/// MatchingInput - If this is not -1, this is an output constraint where an
|
|
/// input constraint is required to match it (e.g. "0"). The value is the
|
|
/// constraint number that matches this one (for example, if this is
|
|
/// constraint #0 and constraint #4 has the value "0", this will be 4).
|
|
int MatchingInput = -1;
|
|
|
|
/// hasMatchingInput - Return true if this is an output constraint that has
|
|
/// a matching input constraint.
|
|
bool hasMatchingInput() const { return MatchingInput != -1; }
|
|
|
|
/// isCommutative - This is set to true for a constraint that is commutative
|
|
/// with the next operand.
|
|
bool isCommutative = false;
|
|
|
|
/// isIndirect - True if this operand is an indirect operand. This means
|
|
/// that the address of the source or destination is present in the call
|
|
/// instruction, instead of it being returned or passed in explicitly. This
|
|
/// is represented with a '*' in the asm string.
|
|
bool isIndirect = false;
|
|
|
|
/// Code - The constraint code, either the register name (in braces) or the
|
|
/// constraint letter/number.
|
|
ConstraintCodeVector Codes;
|
|
|
|
/// isMultipleAlternative - '|': has multiple-alternative constraints.
|
|
bool isMultipleAlternative = false;
|
|
|
|
/// multipleAlternatives - If there are multiple alternative constraints,
|
|
/// this array will contain them. Otherwise it will be empty.
|
|
SubConstraintInfoVector multipleAlternatives;
|
|
|
|
/// The currently selected alternative constraint index.
|
|
unsigned currentAlternativeIndex = 0;
|
|
|
|
/// Default constructor.
|
|
ConstraintInfo() = default;
|
|
|
|
/// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
|
|
/// fields in this structure. If the constraint string is not understood,
|
|
/// return true, otherwise return false.
|
|
bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
|
|
|
|
/// selectAlternative - Point this constraint to the alternative constraint
|
|
/// indicated by the index.
|
|
void selectAlternative(unsigned index);
|
|
|
|
/// Whether this constraint corresponds to an argument.
|
|
bool hasArg() const {
|
|
return Type == isInput || (Type == isOutput && isIndirect);
|
|
}
|
|
};
|
|
|
|
/// ParseConstraints - Split up the constraint string into the specific
|
|
/// constraints and their prefixes. If this returns an empty vector, and if
|
|
/// the constraint string itself isn't empty, there was an error parsing.
|
|
static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
|
|
|
|
/// ParseConstraints - Parse the constraints of this inlineasm object,
|
|
/// returning them the same way that ParseConstraints(str) does.
|
|
ConstraintInfoVector ParseConstraints() const {
|
|
return ParseConstraints(Constraints);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == Value::InlineAsmVal;
|
|
}
|
|
|
|
enum : uint32_t {
|
|
// Fixed operands on an INLINEASM SDNode.
|
|
Op_InputChain = 0,
|
|
Op_AsmString = 1,
|
|
Op_MDNode = 2,
|
|
Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack, AsmDialect.
|
|
Op_FirstOperand = 4,
|
|
|
|
// Fixed operands on an INLINEASM MachineInstr.
|
|
MIOp_AsmString = 0,
|
|
MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack, AsmDialect.
|
|
MIOp_FirstOperand = 2,
|
|
|
|
// Interpretation of the MIOp_ExtraInfo bit field.
|
|
Extra_HasSideEffects = 1,
|
|
Extra_IsAlignStack = 2,
|
|
Extra_AsmDialect = 4,
|
|
Extra_MayLoad = 8,
|
|
Extra_MayStore = 16,
|
|
Extra_IsConvergent = 32,
|
|
};
|
|
|
|
// Inline asm operands map to multiple SDNode / MachineInstr operands.
|
|
// The first operand is an immediate describing the asm operand, the low
|
|
// bits is the kind:
|
|
enum class Kind : uint8_t {
|
|
RegUse = 1, // Input register, "r".
|
|
RegDef = 2, // Output register, "=r".
|
|
RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
|
|
Clobber = 4, // Clobbered register, "~r".
|
|
Imm = 5, // Immediate.
|
|
Mem = 6, // Memory operand, "m", or an address, "p".
|
|
Func = 7, // Address operand of function call
|
|
};
|
|
|
|
// Memory constraint codes.
|
|
// Addresses are included here as they need to be treated the same by the
|
|
// backend, the only difference is that they are not used to actaully
|
|
// access memory by the instruction.
|
|
enum class ConstraintCode : uint32_t {
|
|
Unknown = 0,
|
|
es,
|
|
i,
|
|
k,
|
|
m,
|
|
o,
|
|
v,
|
|
A,
|
|
Q,
|
|
R,
|
|
S,
|
|
T,
|
|
Um,
|
|
Un,
|
|
Uq,
|
|
Us,
|
|
Ut,
|
|
Uv,
|
|
Uy,
|
|
X,
|
|
Z,
|
|
ZB,
|
|
ZC,
|
|
Zy,
|
|
|
|
// Address constraints
|
|
p,
|
|
ZQ,
|
|
ZR,
|
|
ZS,
|
|
ZT,
|
|
|
|
Max = ZT,
|
|
};
|
|
|
|
// This class is intentionally packed into a 32b value as it is used as a
|
|
// MVT::i32 ConstantSDNode SDValue for SelectionDAG and as immediate operands
|
|
// on INLINEASM and INLINEASM_BR MachineInstr's.
|
|
//
|
|
// The encoding of Flag is currently:
|
|
// Bits 2-0 - A Kind::* value indicating the kind of the operand.
|
|
// (KindField)
|
|
// Bits 15-3 - The number of SDNode operands associated with this inline
|
|
// assembly operand. Once lowered to MIR, this represents the
|
|
// number of MachineOperands necessary to refer to a
|
|
// MachineOperandType::MO_FrameIndex. (NumOperands)
|
|
// Bit 31 - Determines if this is a matched operand. (IsMatched)
|
|
// If bit 31 is set:
|
|
// Bits 30-16 - The operand number that this operand must match.
|
|
// (MatchedOperandNo)
|
|
// Else if bits 2-0 are Kind::Mem:
|
|
// Bits 30-16 - A ConstraintCode:: value indicating the original
|
|
// constraint code. (MemConstraintCode)
|
|
// Else:
|
|
// Bits 29-16 - The register class ID to use for the operand. (RegClass)
|
|
// Bit 30 - If the register is permitted to be spilled.
|
|
// (RegMayBeFolded)
|
|
// Defaults to false "r", may be set for constraints like
|
|
// "rm" (or "g").
|
|
//
|
|
// As such, MatchedOperandNo, MemConstraintCode, and
|
|
// (RegClass+RegMayBeFolded) are views of the same slice of bits, but are
|
|
// mutually exclusive depending on the fields IsMatched then KindField.
|
|
class Flag {
|
|
uint32_t Storage;
|
|
using KindField = Bitfield::Element<Kind, 0, 3, Kind::Func>;
|
|
using NumOperands = Bitfield::Element<unsigned, 3, 13>;
|
|
using MatchedOperandNo = Bitfield::Element<unsigned, 16, 15>;
|
|
using MemConstraintCode = Bitfield::Element<ConstraintCode, 16, 15, ConstraintCode::Max>;
|
|
using RegClass = Bitfield::Element<unsigned, 16, 14>;
|
|
using RegMayBeFolded = Bitfield::Element<bool, 30, 1>;
|
|
using IsMatched = Bitfield::Element<bool, 31, 1>;
|
|
|
|
|
|
unsigned getMatchedOperandNo() const { return Bitfield::get<MatchedOperandNo>(Storage); }
|
|
unsigned getRegClass() const { return Bitfield::get<RegClass>(Storage); }
|
|
bool isMatched() const { return Bitfield::get<IsMatched>(Storage); }
|
|
|
|
public:
|
|
Flag() : Storage(0) {}
|
|
explicit Flag(uint32_t F) : Storage(F) {}
|
|
Flag(enum Kind K, unsigned NumOps) : Storage(0) {
|
|
Bitfield::set<KindField>(Storage, K);
|
|
Bitfield::set<NumOperands>(Storage, NumOps);
|
|
}
|
|
operator uint32_t() { return Storage; }
|
|
Kind getKind() const { return Bitfield::get<KindField>(Storage); }
|
|
bool isRegUseKind() const { return getKind() == Kind::RegUse; }
|
|
bool isRegDefKind() const { return getKind() == Kind::RegDef; }
|
|
bool isRegDefEarlyClobberKind() const {
|
|
return getKind() == Kind::RegDefEarlyClobber;
|
|
}
|
|
bool isClobberKind() const { return getKind() == Kind::Clobber; }
|
|
bool isImmKind() const { return getKind() == Kind::Imm; }
|
|
bool isMemKind() const { return getKind() == Kind::Mem; }
|
|
bool isFuncKind() const { return getKind() == Kind::Func; }
|
|
StringRef getKindName() const {
|
|
switch (getKind()) {
|
|
case Kind::RegUse:
|
|
return "reguse";
|
|
case Kind::RegDef:
|
|
return "regdef";
|
|
case Kind::RegDefEarlyClobber:
|
|
return "regdef-ec";
|
|
case Kind::Clobber:
|
|
return "clobber";
|
|
case Kind::Imm:
|
|
return "imm";
|
|
case Kind::Mem:
|
|
case Kind::Func:
|
|
return "mem";
|
|
}
|
|
llvm_unreachable("impossible kind");
|
|
}
|
|
|
|
/// getNumOperandRegisters - Extract the number of registers field from the
|
|
/// inline asm operand flag.
|
|
unsigned getNumOperandRegisters() const {
|
|
return Bitfield::get<NumOperands>(Storage);
|
|
}
|
|
|
|
/// isUseOperandTiedToDef - Return true if the flag of the inline asm
|
|
/// operand indicates it is an use operand that's matched to a def operand.
|
|
bool isUseOperandTiedToDef(unsigned &Idx) const {
|
|
if (!isMatched())
|
|
return false;
|
|
Idx = getMatchedOperandNo();
|
|
return true;
|
|
}
|
|
|
|
/// hasRegClassConstraint - Returns true if the flag contains a register
|
|
/// class constraint. Sets RC to the register class ID.
|
|
bool hasRegClassConstraint(unsigned &RC) const {
|
|
if (isMatched())
|
|
return false;
|
|
// setRegClass() uses 0 to mean no register class, and otherwise stores
|
|
// RC + 1.
|
|
if (!getRegClass())
|
|
return false;
|
|
RC = getRegClass() - 1;
|
|
return true;
|
|
}
|
|
|
|
ConstraintCode getMemoryConstraintID() const {
|
|
assert((isMemKind() || isFuncKind()) &&
|
|
"Not expected mem or function flag!");
|
|
return Bitfield::get<MemConstraintCode>(Storage);
|
|
}
|
|
|
|
/// setMatchingOp - Augment an existing flag with information indicating
|
|
/// that this input operand is tied to a previous output operand.
|
|
void setMatchingOp(unsigned OperandNo) {
|
|
assert(getMatchedOperandNo() == 0 && "Matching operand already set");
|
|
Bitfield::set<MatchedOperandNo>(Storage, OperandNo);
|
|
Bitfield::set<IsMatched>(Storage, true);
|
|
}
|
|
|
|
/// setRegClass - Augment an existing flag with the required register class
|
|
/// for the following register operands. A tied use operand cannot have a
|
|
/// register class, use the register class from the def operand instead.
|
|
void setRegClass(unsigned RC) {
|
|
assert(!isImmKind() && "Immediates cannot have a register class");
|
|
assert(!isMemKind() && "Memory operand cannot have a register class");
|
|
assert(getRegClass() == 0 && "Register class already set");
|
|
// Store RC + 1, reserve the value 0 to mean 'no register class'.
|
|
Bitfield::set<RegClass>(Storage, RC + 1);
|
|
}
|
|
|
|
/// setMemConstraint - Augment an existing flag with the constraint code for
|
|
/// a memory constraint.
|
|
void setMemConstraint(ConstraintCode C) {
|
|
assert(getMemoryConstraintID() == ConstraintCode::Unknown && "Mem constraint already set");
|
|
Bitfield::set<MemConstraintCode>(Storage, C);
|
|
}
|
|
/// clearMemConstraint - Similar to setMemConstraint(0), but without the
|
|
/// assertion checking that the constraint has not been set previously.
|
|
void clearMemConstraint() {
|
|
assert((isMemKind() || isFuncKind()) &&
|
|
"Flag is not a memory or function constraint!");
|
|
Bitfield::set<MemConstraintCode>(Storage, ConstraintCode::Unknown);
|
|
}
|
|
|
|
/// Set a bit to denote that while this operand is some kind of register
|
|
/// (use, def, ...), a memory flag did appear in the original constraint
|
|
/// list. This is set by the instruction selection framework, and consumed
|
|
/// by the register allocator. While the register allocator is generally
|
|
/// responsible for spilling registers, we need to be able to distinguish
|
|
/// between registers that the register allocator has permission to fold
|
|
/// ("rm") vs ones it does not ("r"). This is because the inline asm may use
|
|
/// instructions which don't support memory addressing modes for that
|
|
/// operand.
|
|
void setRegMayBeFolded(bool B) {
|
|
assert((isRegDefKind() || isRegDefEarlyClobberKind() || isRegUseKind()) &&
|
|
"Must be reg");
|
|
Bitfield::set<RegMayBeFolded>(Storage, B);
|
|
}
|
|
bool getRegMayBeFolded() const {
|
|
assert((isRegDefKind() || isRegDefEarlyClobberKind() || isRegUseKind()) &&
|
|
"Must be reg");
|
|
return Bitfield::get<RegMayBeFolded>(Storage);
|
|
}
|
|
};
|
|
|
|
static std::vector<StringRef> getExtraInfoNames(unsigned ExtraInfo) {
|
|
std::vector<StringRef> Result;
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
Result.push_back("sideeffect");
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
Result.push_back("mayload");
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
Result.push_back("maystore");
|
|
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
|
|
Result.push_back("isconvergent");
|
|
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
|
|
Result.push_back("alignstack");
|
|
|
|
AsmDialect Dialect =
|
|
InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect));
|
|
|
|
if (Dialect == InlineAsm::AD_ATT)
|
|
Result.push_back("attdialect");
|
|
if (Dialect == InlineAsm::AD_Intel)
|
|
Result.push_back("inteldialect");
|
|
|
|
return Result;
|
|
}
|
|
|
|
static StringRef getMemConstraintName(ConstraintCode C) {
|
|
switch (C) {
|
|
case ConstraintCode::es:
|
|
return "es";
|
|
case ConstraintCode::i:
|
|
return "i";
|
|
case ConstraintCode::k:
|
|
return "k";
|
|
case ConstraintCode::m:
|
|
return "m";
|
|
case ConstraintCode::o:
|
|
return "o";
|
|
case ConstraintCode::v:
|
|
return "v";
|
|
case ConstraintCode::A:
|
|
return "A";
|
|
case ConstraintCode::Q:
|
|
return "Q";
|
|
case ConstraintCode::R:
|
|
return "R";
|
|
case ConstraintCode::S:
|
|
return "S";
|
|
case ConstraintCode::T:
|
|
return "T";
|
|
case ConstraintCode::Um:
|
|
return "Um";
|
|
case ConstraintCode::Un:
|
|
return "Un";
|
|
case ConstraintCode::Uq:
|
|
return "Uq";
|
|
case ConstraintCode::Us:
|
|
return "Us";
|
|
case ConstraintCode::Ut:
|
|
return "Ut";
|
|
case ConstraintCode::Uv:
|
|
return "Uv";
|
|
case ConstraintCode::Uy:
|
|
return "Uy";
|
|
case ConstraintCode::X:
|
|
return "X";
|
|
case ConstraintCode::Z:
|
|
return "Z";
|
|
case ConstraintCode::ZB:
|
|
return "ZB";
|
|
case ConstraintCode::ZC:
|
|
return "ZC";
|
|
case ConstraintCode::Zy:
|
|
return "Zy";
|
|
case ConstraintCode::p:
|
|
return "p";
|
|
case ConstraintCode::ZQ:
|
|
return "ZQ";
|
|
case ConstraintCode::ZR:
|
|
return "ZR";
|
|
case ConstraintCode::ZS:
|
|
return "ZS";
|
|
case ConstraintCode::ZT:
|
|
return "ZT";
|
|
default:
|
|
llvm_unreachable("Unknown memory constraint");
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_INLINEASM_H
|