clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
79 lines
2.8 KiB
C++
79 lines
2.8 KiB
C++
//===- ModelUnderTrainingRunner.h -- 'development' mode runner --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#ifndef LLVM_ANALYSIS_MODELUNDERTRAININGRUNNER_H
|
|
#define LLVM_ANALYSIS_MODELUNDERTRAININGRUNNER_H
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/TensorSpec.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
|
|
#ifdef LLVM_HAVE_TFLITE
|
|
#include "llvm/Analysis/MLModelRunner.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// ModelUnderTrainingRunner - training mode implementation. It uses TFLite
|
|
/// to dynamically load and evaluate a TF SavedModel
|
|
/// (https://www.tensorflow.org/guide/saved_model) converted to TFLite. see
|
|
/// lib/Analysis/models/saved-model-to-tflite.py. Runtime performance is
|
|
/// sacrificed for ease of use while training.
|
|
class ModelUnderTrainingRunner final : public MLModelRunner {
|
|
public:
|
|
// Disallows copy and assign.
|
|
ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete;
|
|
ModelUnderTrainingRunner &
|
|
operator=(const ModelUnderTrainingRunner &) = delete;
|
|
|
|
const std::vector<TensorSpec> &extraOutputsForLoggingSpecs() const {
|
|
return ExtraOutputsForLogging;
|
|
}
|
|
|
|
const void *getUntypedExtraOutputValue(size_t ExtraOutputIndex) const {
|
|
return lastEvaluationResult()->getUntypedTensorValue(ExtraOutputIndex + 1);
|
|
}
|
|
|
|
const std::optional<TFModelEvaluator::EvaluationResult> &
|
|
lastEvaluationResult() const {
|
|
return LastEvaluationResult;
|
|
}
|
|
static bool classof(const MLModelRunner *R) {
|
|
return R->getKind() == MLModelRunner::Kind::Development;
|
|
}
|
|
|
|
static std::unique_ptr<ModelUnderTrainingRunner>
|
|
createAndEnsureValid(LLVMContext &Ctx, const std::string &ModelPath,
|
|
StringRef DecisionName,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
StringRef OutputSpecsPathOverride = "");
|
|
|
|
ModelUnderTrainingRunner(
|
|
LLVMContext &Ctx, const std::string &ModelPath,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
const std::vector<TensorSpec> &OutputSpecs,
|
|
const std::vector<TensorSpec> &ExtraOutputsForLogging = {});
|
|
|
|
bool isValid() const { return !!Evaluator; }
|
|
|
|
private:
|
|
std::unique_ptr<TFModelEvaluator> Evaluator;
|
|
const std::vector<TensorSpec> OutputSpecs;
|
|
const std::vector<TensorSpec> ExtraOutputsForLogging;
|
|
std::optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult;
|
|
void *evaluateUntyped() override;
|
|
};
|
|
|
|
} // namespace llvm
|
|
#endif // define(LLVM_HAVE_TFLITE)
|
|
#endif // LLVM_ANALYSIS_MODELUNDERTRAININGRUNNER_H
|