clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
402 lines
12 KiB
C++
402 lines
12 KiB
C++
//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements a set that has insertion order iteration
|
|
/// characteristics. This is useful for keeping a set of things that need to be
|
|
/// visited later but in a deterministic order (insertion order). The interface
|
|
/// is purposefully minimal.
|
|
///
|
|
/// This file defines SetVector and SmallSetVector, which performs no
|
|
/// allocations if the SetVector has less than a certain number of elements.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SETVECTOR_H
|
|
#define LLVM_ADT_SETVECTOR_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
/// A vector that has set insertion semantics.
|
|
///
|
|
/// This adapter class provides a way to keep a set of things that also has the
|
|
/// property of a deterministic iteration order. The order of iteration is the
|
|
/// order of insertion.
|
|
///
|
|
/// The key and value types are derived from the Set and Vector types
|
|
/// respectively. This allows the vector-type operations and set-type operations
|
|
/// to have different types. In particular, this is useful when storing pointers
|
|
/// as "Foo *" values but looking them up as "const Foo *" keys.
|
|
///
|
|
/// No constraint is placed on the key and value types, although it is assumed
|
|
/// that value_type can be converted into key_type for insertion. Users must be
|
|
/// aware of any loss of information in this conversion. For example, setting
|
|
/// value_type to float and key_type to int can produce very surprising results,
|
|
/// but it is not explicitly disallowed.
|
|
///
|
|
/// The parameter N specifies the "small" size of the container, which is the
|
|
/// number of elements upto which a linear scan over the Vector will be used
|
|
/// when searching for elements instead of checking Set, due to it being better
|
|
/// for performance. A value of 0 means that this mode of operation is not used,
|
|
/// and is the default value.
|
|
template <typename T, typename Vector = SmallVector<T, 0>,
|
|
typename Set = DenseSet<T>, unsigned N = 0>
|
|
class SetVector {
|
|
// Much like in SmallPtrSet, this value should not be too high to prevent
|
|
// excessively long linear scans from occuring.
|
|
static_assert(N <= 32, "Small size should be less than or equal to 32!");
|
|
|
|
public:
|
|
using value_type = typename Vector::value_type;
|
|
using key_type = typename Set::key_type;
|
|
using reference = value_type &;
|
|
using const_reference = const value_type &;
|
|
using set_type = Set;
|
|
using vector_type = Vector;
|
|
using iterator = typename vector_type::const_iterator;
|
|
using const_iterator = typename vector_type::const_iterator;
|
|
using reverse_iterator = typename vector_type::const_reverse_iterator;
|
|
using const_reverse_iterator = typename vector_type::const_reverse_iterator;
|
|
using size_type = typename vector_type::size_type;
|
|
|
|
/// Construct an empty SetVector
|
|
SetVector() = default;
|
|
|
|
/// Initialize a SetVector with a range of elements
|
|
template<typename It>
|
|
SetVector(It Start, It End) {
|
|
insert(Start, End);
|
|
}
|
|
|
|
ArrayRef<value_type> getArrayRef() const { return vector_; }
|
|
|
|
/// Clear the SetVector and return the underlying vector.
|
|
Vector takeVector() {
|
|
set_.clear();
|
|
return std::move(vector_);
|
|
}
|
|
|
|
/// Determine if the SetVector is empty or not.
|
|
bool empty() const {
|
|
return vector_.empty();
|
|
}
|
|
|
|
/// Determine the number of elements in the SetVector.
|
|
size_type size() const {
|
|
return vector_.size();
|
|
}
|
|
|
|
/// Get an iterator to the beginning of the SetVector.
|
|
iterator begin() {
|
|
return vector_.begin();
|
|
}
|
|
|
|
/// Get a const_iterator to the beginning of the SetVector.
|
|
const_iterator begin() const {
|
|
return vector_.begin();
|
|
}
|
|
|
|
/// Get an iterator to the end of the SetVector.
|
|
iterator end() {
|
|
return vector_.end();
|
|
}
|
|
|
|
/// Get a const_iterator to the end of the SetVector.
|
|
const_iterator end() const {
|
|
return vector_.end();
|
|
}
|
|
|
|
/// Get an reverse_iterator to the end of the SetVector.
|
|
reverse_iterator rbegin() {
|
|
return vector_.rbegin();
|
|
}
|
|
|
|
/// Get a const_reverse_iterator to the end of the SetVector.
|
|
const_reverse_iterator rbegin() const {
|
|
return vector_.rbegin();
|
|
}
|
|
|
|
/// Get a reverse_iterator to the beginning of the SetVector.
|
|
reverse_iterator rend() {
|
|
return vector_.rend();
|
|
}
|
|
|
|
/// Get a const_reverse_iterator to the beginning of the SetVector.
|
|
const_reverse_iterator rend() const {
|
|
return vector_.rend();
|
|
}
|
|
|
|
/// Return the first element of the SetVector.
|
|
const value_type &front() const {
|
|
assert(!empty() && "Cannot call front() on empty SetVector!");
|
|
return vector_.front();
|
|
}
|
|
|
|
/// Return the last element of the SetVector.
|
|
const value_type &back() const {
|
|
assert(!empty() && "Cannot call back() on empty SetVector!");
|
|
return vector_.back();
|
|
}
|
|
|
|
/// Index into the SetVector.
|
|
const_reference operator[](size_type n) const {
|
|
assert(n < vector_.size() && "SetVector access out of range!");
|
|
return vector_[n];
|
|
}
|
|
|
|
/// Insert a new element into the SetVector.
|
|
/// \returns true if the element was inserted into the SetVector.
|
|
bool insert(const value_type &X) {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall()) {
|
|
if (!llvm::is_contained(vector_, X)) {
|
|
vector_.push_back(X);
|
|
if (vector_.size() > N)
|
|
makeBig();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool result = set_.insert(X).second;
|
|
if (result)
|
|
vector_.push_back(X);
|
|
return result;
|
|
}
|
|
|
|
/// Insert a range of elements into the SetVector.
|
|
template<typename It>
|
|
void insert(It Start, It End) {
|
|
for (; Start != End; ++Start)
|
|
insert(*Start);
|
|
}
|
|
|
|
/// Remove an item from the set vector.
|
|
bool remove(const value_type& X) {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall()) {
|
|
typename vector_type::iterator I = find(vector_, X);
|
|
if (I != vector_.end()) {
|
|
vector_.erase(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (set_.erase(X)) {
|
|
typename vector_type::iterator I = find(vector_, X);
|
|
assert(I != vector_.end() && "Corrupted SetVector instances!");
|
|
vector_.erase(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Erase a single element from the set vector.
|
|
/// \returns an iterator pointing to the next element that followed the
|
|
/// element erased. This is the end of the SetVector if the last element is
|
|
/// erased.
|
|
iterator erase(const_iterator I) {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall())
|
|
return vector_.erase(I);
|
|
|
|
const key_type &V = *I;
|
|
assert(set_.count(V) && "Corrupted SetVector instances!");
|
|
set_.erase(V);
|
|
return vector_.erase(I);
|
|
}
|
|
|
|
/// Remove items from the set vector based on a predicate function.
|
|
///
|
|
/// This is intended to be equivalent to the following code, if we could
|
|
/// write it:
|
|
///
|
|
/// \code
|
|
/// V.erase(remove_if(V, P), V.end());
|
|
/// \endcode
|
|
///
|
|
/// However, SetVector doesn't expose non-const iterators, making any
|
|
/// algorithm like remove_if impossible to use.
|
|
///
|
|
/// \returns true if any element is removed.
|
|
template <typename UnaryPredicate>
|
|
bool remove_if(UnaryPredicate P) {
|
|
typename vector_type::iterator I = [this, P] {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall())
|
|
return llvm::remove_if(vector_, P);
|
|
|
|
return llvm::remove_if(vector_,
|
|
TestAndEraseFromSet<UnaryPredicate>(P, set_));
|
|
}();
|
|
|
|
if (I == vector_.end())
|
|
return false;
|
|
vector_.erase(I, vector_.end());
|
|
return true;
|
|
}
|
|
|
|
/// Check if the SetVector contains the given key.
|
|
bool contains(const key_type &key) const {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall())
|
|
return is_contained(vector_, key);
|
|
|
|
return set_.find(key) != set_.end();
|
|
}
|
|
|
|
/// Count the number of elements of a given key in the SetVector.
|
|
/// \returns 0 if the element is not in the SetVector, 1 if it is.
|
|
size_type count(const key_type &key) const {
|
|
if constexpr (canBeSmall())
|
|
if (isSmall())
|
|
return is_contained(vector_, key);
|
|
|
|
return set_.count(key);
|
|
}
|
|
|
|
/// Completely clear the SetVector
|
|
void clear() {
|
|
set_.clear();
|
|
vector_.clear();
|
|
}
|
|
|
|
/// Remove the last element of the SetVector.
|
|
void pop_back() {
|
|
assert(!empty() && "Cannot remove an element from an empty SetVector!");
|
|
set_.erase(back());
|
|
vector_.pop_back();
|
|
}
|
|
|
|
[[nodiscard]] value_type pop_back_val() {
|
|
value_type Ret = back();
|
|
pop_back();
|
|
return Ret;
|
|
}
|
|
|
|
bool operator==(const SetVector &that) const {
|
|
return vector_ == that.vector_;
|
|
}
|
|
|
|
bool operator!=(const SetVector &that) const {
|
|
return vector_ != that.vector_;
|
|
}
|
|
|
|
/// Compute This := This u S, return whether 'This' changed.
|
|
/// TODO: We should be able to use set_union from SetOperations.h, but
|
|
/// SetVector interface is inconsistent with DenseSet.
|
|
template <class STy>
|
|
bool set_union(const STy &S) {
|
|
bool Changed = false;
|
|
|
|
for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
|
|
++SI)
|
|
if (insert(*SI))
|
|
Changed = true;
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Compute This := This - B
|
|
/// TODO: We should be able to use set_subtract from SetOperations.h, but
|
|
/// SetVector interface is inconsistent with DenseSet.
|
|
template <class STy>
|
|
void set_subtract(const STy &S) {
|
|
for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
|
|
++SI)
|
|
remove(*SI);
|
|
}
|
|
|
|
void swap(SetVector<T, Vector, Set, N> &RHS) {
|
|
set_.swap(RHS.set_);
|
|
vector_.swap(RHS.vector_);
|
|
}
|
|
|
|
private:
|
|
/// A wrapper predicate designed for use with std::remove_if.
|
|
///
|
|
/// This predicate wraps a predicate suitable for use with std::remove_if to
|
|
/// call set_.erase(x) on each element which is slated for removal.
|
|
template <typename UnaryPredicate>
|
|
class TestAndEraseFromSet {
|
|
UnaryPredicate P;
|
|
set_type &set_;
|
|
|
|
public:
|
|
TestAndEraseFromSet(UnaryPredicate P, set_type &set_)
|
|
: P(std::move(P)), set_(set_) {}
|
|
|
|
template <typename ArgumentT>
|
|
bool operator()(const ArgumentT &Arg) {
|
|
if (P(Arg)) {
|
|
set_.erase(Arg);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
[[nodiscard]] static constexpr bool canBeSmall() { return N != 0; }
|
|
|
|
[[nodiscard]] bool isSmall() const { return set_.empty(); }
|
|
|
|
void makeBig() {
|
|
if constexpr (canBeSmall())
|
|
for (const auto &entry : vector_)
|
|
set_.insert(entry);
|
|
}
|
|
|
|
set_type set_; ///< The set.
|
|
vector_type vector_; ///< The vector.
|
|
};
|
|
|
|
/// A SetVector that performs no allocations if smaller than
|
|
/// a certain size.
|
|
template <typename T, unsigned N>
|
|
class SmallSetVector : public SetVector<T, SmallVector<T, N>, DenseSet<T>, N> {
|
|
public:
|
|
SmallSetVector() = default;
|
|
|
|
/// Initialize a SmallSetVector with a range of elements
|
|
template<typename It>
|
|
SmallSetVector(It Start, It End) {
|
|
this->insert(Start, End);
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
|
|
/// Implement std::swap in terms of SetVector swap.
|
|
template <typename T, typename V, typename S, unsigned N>
|
|
inline void swap(llvm::SetVector<T, V, S, N> &LHS,
|
|
llvm::SetVector<T, V, S, N> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
/// Implement std::swap in terms of SmallSetVector swap.
|
|
template<typename T, unsigned N>
|
|
inline void
|
|
swap(llvm::SmallSetVector<T, N> &LHS, llvm::SmallSetVector<T, N> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
} // end namespace std
|
|
|
|
#endif // LLVM_ADT_SETVECTOR_H
|