clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
265 lines
9.5 KiB
C++
265 lines
9.5 KiB
C++
//===- llvm/ADT/PagedVector.h - 'Lazily allocated' vectors --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the PagedVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef LLVM_ADT_PAGEDVECTOR_H
|
|
#define LLVM_ADT_PAGEDVECTOR_H
|
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
/// A vector that allocates memory in pages.
|
|
///
|
|
/// Order is kept, but memory is allocated only when one element of the page is
|
|
/// accessed. This introduces a level of indirection, but it is useful when you
|
|
/// have a sparsely initialised vector where the full size is allocated upfront.
|
|
///
|
|
/// As a side effect the elements are initialised later than in a normal vector.
|
|
/// On the first access to one of the elements of a given page, all the elements
|
|
/// of the page are initialised. This also means that the elements of the page
|
|
/// are initialised beyond the size of the vector.
|
|
///
|
|
/// Similarly on destruction the elements are destroyed only when the page is
|
|
/// not needed anymore, delaying invoking the destructor of the elements.
|
|
///
|
|
/// Notice that this has iterators only on materialized elements. This
|
|
/// is deliberately done under the assumption you would dereference the elements
|
|
/// while iterating, therefore materialising them and losing the gains in terms
|
|
/// of memory usage this container provides. If you have such a use case, you
|
|
/// probably want to use a normal std::vector or a llvm::SmallVector.
|
|
template <typename T, size_t PageSize = 1024 / sizeof(T)> class PagedVector {
|
|
static_assert(PageSize > 1, "PageSize must be greater than 0. Most likely "
|
|
"you want it to be greater than 16.");
|
|
/// The actual number of elements in the vector which can be accessed.
|
|
size_t Size = 0;
|
|
|
|
/// The position of the initial element of the page in the Data vector.
|
|
/// Pages are allocated contiguously in the Data vector.
|
|
mutable SmallVector<T *, 0> PageToDataPtrs;
|
|
/// Actual page data. All the page elements are allocated on the
|
|
/// first access of any of the elements of the page. Elements are default
|
|
/// constructed and elements of the page are stored contiguously.
|
|
PointerIntPair<BumpPtrAllocator *, 1, bool> Allocator;
|
|
|
|
public:
|
|
using value_type = T;
|
|
|
|
/// Default constructor. We build our own allocator and mark it as such with
|
|
/// `true` in the second pair element.
|
|
PagedVector() : Allocator(new BumpPtrAllocator, true) {}
|
|
explicit PagedVector(BumpPtrAllocator *A) : Allocator(A, false) {
|
|
assert(A && "Allocator cannot be nullptr");
|
|
}
|
|
|
|
~PagedVector() {
|
|
clear();
|
|
// If we own the allocator, delete it.
|
|
if (Allocator.getInt())
|
|
delete Allocator.getPointer();
|
|
}
|
|
|
|
// Forbid copy and move as we do not need them for the current use case.
|
|
PagedVector(const PagedVector &) = delete;
|
|
PagedVector(PagedVector &&) = delete;
|
|
PagedVector &operator=(const PagedVector &) = delete;
|
|
PagedVector &operator=(PagedVector &&) = delete;
|
|
|
|
/// Look up an element at position `Index`.
|
|
/// If the associated page is not filled, it will be filled with default
|
|
/// constructed elements.
|
|
T &operator[](size_t Index) const {
|
|
assert(Index < Size);
|
|
assert(Index / PageSize < PageToDataPtrs.size());
|
|
T *&PagePtr = PageToDataPtrs[Index / PageSize];
|
|
// If the page was not yet allocated, allocate it.
|
|
if (!PagePtr) {
|
|
PagePtr = Allocator.getPointer()->template Allocate<T>(PageSize);
|
|
// We need to invoke the default constructor on all the elements of the
|
|
// page.
|
|
std::uninitialized_value_construct_n(PagePtr, PageSize);
|
|
}
|
|
// Dereference the element in the page.
|
|
return PagePtr[Index % PageSize];
|
|
}
|
|
|
|
/// Return the capacity of the vector. I.e. the maximum size it can be
|
|
/// expanded to with the resize method without allocating more pages.
|
|
[[nodiscard]] size_t capacity() const {
|
|
return PageToDataPtrs.size() * PageSize;
|
|
}
|
|
|
|
/// Return the size of the vector.
|
|
[[nodiscard]] size_t size() const { return Size; }
|
|
|
|
/// Resize the vector. Notice that the constructor of the elements will not
|
|
/// be invoked until an element of a given page is accessed, at which point
|
|
/// all the elements of the page will be constructed.
|
|
///
|
|
/// If the new size is smaller than the current size, the elements of the
|
|
/// pages that are not needed anymore will be destroyed, however, elements of
|
|
/// the last page will not be destroyed.
|
|
///
|
|
/// For these reason the usage of this vector is discouraged if you rely
|
|
/// on the construction / destructor of the elements to be invoked.
|
|
void resize(size_t NewSize) {
|
|
if (NewSize == 0) {
|
|
clear();
|
|
return;
|
|
}
|
|
// Handle shrink case: destroy the elements in the pages that are not
|
|
// needed any more and deallocate the pages.
|
|
//
|
|
// On the other hand, we do not destroy the extra elements in the last page,
|
|
// because we might need them later and the logic is simpler if we do not
|
|
// destroy them. This means that elements are only destroyed when the
|
|
// page they belong to is destroyed. This is similar to what happens on
|
|
// access of the elements of a page, where all the elements of the page are
|
|
// constructed not only the one effectively needed.
|
|
size_t NewLastPage = (NewSize - 1) / PageSize;
|
|
if (NewSize < Size) {
|
|
for (size_t I = NewLastPage + 1, N = PageToDataPtrs.size(); I < N; ++I) {
|
|
T *Page = PageToDataPtrs[I];
|
|
if (!Page)
|
|
continue;
|
|
// We need to invoke the destructor on all the elements of the page.
|
|
std::destroy_n(Page, PageSize);
|
|
Allocator.getPointer()->Deallocate(Page);
|
|
}
|
|
}
|
|
|
|
Size = NewSize;
|
|
PageToDataPtrs.resize(NewLastPage + 1);
|
|
}
|
|
|
|
[[nodiscard]] bool empty() const { return Size == 0; }
|
|
|
|
/// Clear the vector, i.e. clear the allocated pages, the whole page
|
|
/// lookup index and reset the size.
|
|
void clear() {
|
|
Size = 0;
|
|
for (T *Page : PageToDataPtrs) {
|
|
if (Page == nullptr)
|
|
continue;
|
|
std::destroy_n(Page, PageSize);
|
|
// If we do not own the allocator, deallocate the pages one by one.
|
|
if (!Allocator.getInt())
|
|
Allocator.getPointer()->Deallocate(Page);
|
|
}
|
|
// If we own the allocator, simply reset it.
|
|
if (Allocator.getInt())
|
|
Allocator.getPointer()->Reset();
|
|
PageToDataPtrs.clear();
|
|
}
|
|
|
|
/// Iterator on all the elements of the vector
|
|
/// which have actually being constructed.
|
|
class MaterializedIterator {
|
|
const PagedVector *PV;
|
|
size_t ElementIdx;
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = T;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = T *;
|
|
using reference = T &;
|
|
|
|
MaterializedIterator(PagedVector const *PV, size_t ElementIdx)
|
|
: PV(PV), ElementIdx(ElementIdx) {}
|
|
|
|
/// Pre-increment operator.
|
|
///
|
|
/// When incrementing the iterator, we skip the elements which have not
|
|
/// been materialized yet.
|
|
MaterializedIterator &operator++() {
|
|
++ElementIdx;
|
|
if (ElementIdx % PageSize == 0) {
|
|
while (ElementIdx < PV->Size &&
|
|
!PV->PageToDataPtrs[ElementIdx / PageSize])
|
|
ElementIdx += PageSize;
|
|
if (ElementIdx > PV->Size)
|
|
ElementIdx = PV->Size;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
MaterializedIterator operator++(int) {
|
|
MaterializedIterator Copy = *this;
|
|
++*this;
|
|
return Copy;
|
|
}
|
|
|
|
T const &operator*() const {
|
|
assert(ElementIdx < PV->Size);
|
|
assert(PV->PageToDataPtrs[ElementIdx / PageSize]);
|
|
T *PagePtr = PV->PageToDataPtrs[ElementIdx / PageSize];
|
|
return PagePtr[ElementIdx % PageSize];
|
|
}
|
|
|
|
/// Equality operator.
|
|
friend bool operator==(const MaterializedIterator &LHS,
|
|
const MaterializedIterator &RHS) {
|
|
return LHS.equals(RHS);
|
|
}
|
|
|
|
[[nodiscard]] size_t getIndex() const { return ElementIdx; }
|
|
|
|
friend bool operator!=(const MaterializedIterator &LHS,
|
|
const MaterializedIterator &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
private:
|
|
void verify() const {
|
|
assert(
|
|
ElementIdx == PV->Size ||
|
|
(ElementIdx < PV->Size && PV->PageToDataPtrs[ElementIdx / PageSize]));
|
|
}
|
|
|
|
bool equals(const MaterializedIterator &Other) const {
|
|
assert(PV == Other.PV);
|
|
verify();
|
|
Other.verify();
|
|
return ElementIdx == Other.ElementIdx;
|
|
}
|
|
};
|
|
|
|
/// Iterators over the materialized elements of the vector.
|
|
///
|
|
/// This includes all the elements belonging to allocated pages,
|
|
/// even if they have not been accessed yet. It's enough to access
|
|
/// one element of a page to materialize all the elements of the page.
|
|
MaterializedIterator materialized_begin() const {
|
|
// Look for the first valid page.
|
|
for (size_t ElementIdx = 0; ElementIdx < Size; ElementIdx += PageSize)
|
|
if (PageToDataPtrs[ElementIdx / PageSize])
|
|
return MaterializedIterator(this, ElementIdx);
|
|
|
|
return MaterializedIterator(this, Size);
|
|
}
|
|
|
|
MaterializedIterator materialized_end() const {
|
|
return MaterializedIterator(this, Size);
|
|
}
|
|
|
|
[[nodiscard]] llvm::iterator_range<MaterializedIterator>
|
|
materialized() const {
|
|
return {materialized_begin(), materialized_end()};
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
#endif // LLVM_ADT_PAGEDVECTOR_H
|