clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1107 lines
39 KiB
C++
1107 lines
39 KiB
C++
//===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines FunctionScopeInfo and its subclasses, which contain
|
|
// information about a single function, block, lambda, or method body.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
|
|
#define LLVM_CLANG_SEMA_SCOPEINFO_H
|
|
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/CapturedStmt.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Sema/CleanupInfo.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
namespace clang {
|
|
|
|
class BlockDecl;
|
|
class CapturedDecl;
|
|
class CXXMethodDecl;
|
|
class CXXRecordDecl;
|
|
class ImplicitParamDecl;
|
|
class NamedDecl;
|
|
class ObjCIvarRefExpr;
|
|
class ObjCMessageExpr;
|
|
class ObjCPropertyDecl;
|
|
class ObjCPropertyRefExpr;
|
|
class ParmVarDecl;
|
|
class RecordDecl;
|
|
class ReturnStmt;
|
|
class Scope;
|
|
class Stmt;
|
|
class SwitchStmt;
|
|
class TemplateParameterList;
|
|
class VarDecl;
|
|
|
|
namespace sema {
|
|
|
|
/// Contains information about the compound statement currently being
|
|
/// parsed.
|
|
class CompoundScopeInfo {
|
|
public:
|
|
/// Whether this compound statement contains `for' or `while' loops
|
|
/// with empty bodies.
|
|
bool HasEmptyLoopBodies = false;
|
|
|
|
/// Whether this compound statement corresponds to a GNU statement
|
|
/// expression.
|
|
bool IsStmtExpr;
|
|
|
|
/// FP options at the beginning of the compound statement, prior to
|
|
/// any pragma.
|
|
FPOptions InitialFPFeatures;
|
|
|
|
CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
|
|
: IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
|
|
|
|
void setHasEmptyLoopBodies() {
|
|
HasEmptyLoopBodies = true;
|
|
}
|
|
};
|
|
|
|
class PossiblyUnreachableDiag {
|
|
public:
|
|
PartialDiagnostic PD;
|
|
SourceLocation Loc;
|
|
llvm::TinyPtrVector<const Stmt*> Stmts;
|
|
|
|
PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
|
|
ArrayRef<const Stmt *> Stmts)
|
|
: PD(PD), Loc(Loc), Stmts(Stmts) {}
|
|
};
|
|
|
|
enum class FirstCoroutineStmtKind { CoReturn, CoAwait, CoYield };
|
|
|
|
/// Retains information about a function, method, or block that is
|
|
/// currently being parsed.
|
|
class FunctionScopeInfo {
|
|
protected:
|
|
enum ScopeKind {
|
|
SK_Function,
|
|
SK_Block,
|
|
SK_Lambda,
|
|
SK_CapturedRegion
|
|
};
|
|
|
|
public:
|
|
/// What kind of scope we are describing.
|
|
ScopeKind Kind : 3;
|
|
|
|
/// Whether this function contains a VLA, \@try, try, C++
|
|
/// initializer, or anything else that can't be jumped past.
|
|
bool HasBranchProtectedScope : 1;
|
|
|
|
/// Whether this function contains any switches or direct gotos.
|
|
bool HasBranchIntoScope : 1;
|
|
|
|
/// Whether this function contains any indirect gotos.
|
|
bool HasIndirectGoto : 1;
|
|
|
|
/// Whether this function contains any statement marked with
|
|
/// \c [[clang::musttail]].
|
|
bool HasMustTail : 1;
|
|
|
|
/// Whether a statement was dropped because it was invalid.
|
|
bool HasDroppedStmt : 1;
|
|
|
|
/// True if current scope is for OpenMP declare reduction combiner.
|
|
bool HasOMPDeclareReductionCombiner : 1;
|
|
|
|
/// Whether there is a fallthrough statement in this function.
|
|
bool HasFallthroughStmt : 1;
|
|
|
|
/// Whether this function uses constrained floating point intrinsics
|
|
bool UsesFPIntrin : 1;
|
|
|
|
/// Whether we make reference to a declaration that could be
|
|
/// unavailable.
|
|
bool HasPotentialAvailabilityViolations : 1;
|
|
|
|
/// A flag that is set when parsing a method that must call super's
|
|
/// implementation, such as \c -dealloc, \c -finalize, or any method marked
|
|
/// with \c __attribute__((objc_requires_super)).
|
|
bool ObjCShouldCallSuper : 1;
|
|
|
|
/// True when this is a method marked as a designated initializer.
|
|
bool ObjCIsDesignatedInit : 1;
|
|
|
|
/// This starts true for a method marked as designated initializer and will
|
|
/// be set to false if there is an invocation to a designated initializer of
|
|
/// the super class.
|
|
bool ObjCWarnForNoDesignatedInitChain : 1;
|
|
|
|
/// True when this is an initializer method not marked as a designated
|
|
/// initializer within a class that has at least one initializer marked as a
|
|
/// designated initializer.
|
|
bool ObjCIsSecondaryInit : 1;
|
|
|
|
/// This starts true for a secondary initializer method and will be set to
|
|
/// false if there is an invocation of an initializer on 'self'.
|
|
bool ObjCWarnForNoInitDelegation : 1;
|
|
|
|
/// True only when this function has not already built, or attempted
|
|
/// to build, the initial and final coroutine suspend points
|
|
bool NeedsCoroutineSuspends : 1;
|
|
|
|
/// An enumeration representing the kind of the first coroutine statement
|
|
/// in the function. One of co_return, co_await, or co_yield.
|
|
LLVM_PREFERRED_TYPE(FirstCoroutineStmtKind)
|
|
unsigned char FirstCoroutineStmtKind : 2;
|
|
|
|
/// Whether we found an immediate-escalating expression.
|
|
bool FoundImmediateEscalatingExpression : 1;
|
|
|
|
/// First coroutine statement in the current function.
|
|
/// (ex co_return, co_await, co_yield)
|
|
SourceLocation FirstCoroutineStmtLoc;
|
|
|
|
/// First 'return' statement in the current function.
|
|
SourceLocation FirstReturnLoc;
|
|
|
|
/// First C++ 'try' or ObjC @try statement in the current function.
|
|
SourceLocation FirstCXXOrObjCTryLoc;
|
|
enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
|
|
|
|
/// First SEH '__try' statement in the current function.
|
|
SourceLocation FirstSEHTryLoc;
|
|
|
|
/// First use of a VLA within the current function.
|
|
SourceLocation FirstVLALoc;
|
|
|
|
private:
|
|
/// Used to determine if errors occurred in this function or block.
|
|
DiagnosticErrorTrap ErrorTrap;
|
|
|
|
public:
|
|
/// A SwitchStmt, along with a flag indicating if its list of case statements
|
|
/// is incomplete (because we dropped an invalid one while parsing).
|
|
using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
|
|
|
|
/// SwitchStack - This is the current set of active switch statements in the
|
|
/// block.
|
|
SmallVector<SwitchInfo, 8> SwitchStack;
|
|
|
|
/// The list of return statements that occur within the function or
|
|
/// block, if there is any chance of applying the named return value
|
|
/// optimization, or if we need to infer a return type.
|
|
SmallVector<ReturnStmt*, 4> Returns;
|
|
|
|
/// The promise object for this coroutine, if any.
|
|
VarDecl *CoroutinePromise = nullptr;
|
|
|
|
/// A mapping between the coroutine function parameters that were moved
|
|
/// to the coroutine frame, and their move statements.
|
|
llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
|
|
|
|
/// The initial and final coroutine suspend points.
|
|
std::pair<Stmt *, Stmt *> CoroutineSuspends;
|
|
|
|
/// The stack of currently active compound statement scopes in the
|
|
/// function.
|
|
SmallVector<CompoundScopeInfo, 4> CompoundScopes;
|
|
|
|
/// The set of blocks that are introduced in this function.
|
|
llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
|
|
|
|
/// The set of __block variables that are introduced in this function.
|
|
llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
|
|
|
|
/// A list of PartialDiagnostics created but delayed within the
|
|
/// current function scope. These diagnostics are vetted for reachability
|
|
/// prior to being emitted.
|
|
SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
|
|
|
|
/// A list of parameters which have the nonnull attribute and are
|
|
/// modified in the function.
|
|
llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
|
|
|
|
/// The set of GNU address of label extension "&&label".
|
|
llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
|
|
|
|
public:
|
|
/// Represents a simple identification of a weak object.
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
///
|
|
/// This is used to determine if two weak accesses refer to the same object.
|
|
/// Here are some examples of how various accesses are "profiled":
|
|
///
|
|
/// Access Expression | "Base" Decl | "Property" Decl
|
|
/// :---------------: | :-----------------: | :------------------------------:
|
|
/// self.property | self (VarDecl) | property (ObjCPropertyDecl)
|
|
/// self.implicitProp | self (VarDecl) | -implicitProp (ObjCMethodDecl)
|
|
/// self->ivar.prop | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
|
|
/// cxxObj.obj.prop | obj (FieldDecl) | prop (ObjCPropertyDecl)
|
|
/// [self foo].prop | 0 (unknown) | prop (ObjCPropertyDecl)
|
|
/// self.prop1.prop2 | prop1 (ObjCPropertyDecl) | prop2 (ObjCPropertyDecl)
|
|
/// MyClass.prop | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
|
|
/// MyClass.foo.prop | +foo (ObjCMethodDecl) | -prop (ObjCPropertyDecl)
|
|
/// weakVar | 0 (known) | weakVar (VarDecl)
|
|
/// self->weakIvar | self (VarDecl) | weakIvar (ObjCIvarDecl)
|
|
///
|
|
/// Objects are identified with only two Decls to make it reasonably fast to
|
|
/// compare them.
|
|
class WeakObjectProfileTy {
|
|
/// The base object decl, as described in the class documentation.
|
|
///
|
|
/// The extra flag is "true" if the Base and Property are enough to uniquely
|
|
/// identify the object in memory.
|
|
///
|
|
/// \sa isExactProfile()
|
|
using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
|
|
BaseInfoTy Base;
|
|
|
|
/// The "property" decl, as described in the class documentation.
|
|
///
|
|
/// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
|
|
/// case of "implicit" properties (regular methods accessed via dot syntax).
|
|
const NamedDecl *Property = nullptr;
|
|
|
|
/// Used to find the proper base profile for a given base expression.
|
|
static BaseInfoTy getBaseInfo(const Expr *BaseE);
|
|
|
|
inline WeakObjectProfileTy();
|
|
static inline WeakObjectProfileTy getSentinel();
|
|
|
|
public:
|
|
WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
|
|
WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
|
|
WeakObjectProfileTy(const DeclRefExpr *RE);
|
|
WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
|
|
|
|
const NamedDecl *getBase() const { return Base.getPointer(); }
|
|
const NamedDecl *getProperty() const { return Property; }
|
|
|
|
/// Returns true if the object base specifies a known object in memory,
|
|
/// rather than, say, an instance variable or property of another object.
|
|
///
|
|
/// Note that this ignores the effects of aliasing; that is, \c foo.bar is
|
|
/// considered an exact profile if \c foo is a local variable, even if
|
|
/// another variable \c foo2 refers to the same object as \c foo.
|
|
///
|
|
/// For increased precision, accesses with base variables that are
|
|
/// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
|
|
/// be exact, though this is not true for arbitrary variables
|
|
/// (foo.prop1.prop2).
|
|
bool isExactProfile() const {
|
|
return Base.getInt();
|
|
}
|
|
|
|
bool operator==(const WeakObjectProfileTy &Other) const {
|
|
return Base == Other.Base && Property == Other.Property;
|
|
}
|
|
|
|
// For use in DenseMap.
|
|
// We can't specialize the usual llvm::DenseMapInfo at the end of the file
|
|
// because by that point the DenseMap in FunctionScopeInfo has already been
|
|
// instantiated.
|
|
class DenseMapInfo {
|
|
public:
|
|
static inline WeakObjectProfileTy getEmptyKey() {
|
|
return WeakObjectProfileTy();
|
|
}
|
|
|
|
static inline WeakObjectProfileTy getTombstoneKey() {
|
|
return WeakObjectProfileTy::getSentinel();
|
|
}
|
|
|
|
static unsigned getHashValue(const WeakObjectProfileTy &Val) {
|
|
using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
|
|
|
|
return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
|
|
Val.Property));
|
|
}
|
|
|
|
static bool isEqual(const WeakObjectProfileTy &LHS,
|
|
const WeakObjectProfileTy &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
};
|
|
|
|
/// Represents a single use of a weak object.
|
|
///
|
|
/// Stores both the expression and whether the access is potentially unsafe
|
|
/// (i.e. it could potentially be warned about).
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
class WeakUseTy {
|
|
llvm::PointerIntPair<const Expr *, 1, bool> Rep;
|
|
|
|
public:
|
|
WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
|
|
|
|
const Expr *getUseExpr() const { return Rep.getPointer(); }
|
|
bool isUnsafe() const { return Rep.getInt(); }
|
|
void markSafe() { Rep.setInt(false); }
|
|
|
|
bool operator==(const WeakUseTy &Other) const {
|
|
return Rep == Other.Rep;
|
|
}
|
|
};
|
|
|
|
/// Used to collect uses of a particular weak object in a function body.
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
using WeakUseVector = SmallVector<WeakUseTy, 4>;
|
|
|
|
/// Used to collect all uses of weak objects in a function body.
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
using WeakObjectUseMap =
|
|
llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
|
|
WeakObjectProfileTy::DenseMapInfo>;
|
|
|
|
private:
|
|
/// Used to collect all uses of weak objects in this function body.
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
WeakObjectUseMap WeakObjectUses;
|
|
|
|
protected:
|
|
FunctionScopeInfo(const FunctionScopeInfo&) = default;
|
|
|
|
public:
|
|
FunctionScopeInfo(DiagnosticsEngine &Diag)
|
|
: Kind(SK_Function), HasBranchProtectedScope(false),
|
|
HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
|
|
HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
|
|
HasFallthroughStmt(false), UsesFPIntrin(false),
|
|
HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
|
|
ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
|
|
ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
|
|
NeedsCoroutineSuspends(true), FoundImmediateEscalatingExpression(false),
|
|
ErrorTrap(Diag) {}
|
|
|
|
virtual ~FunctionScopeInfo();
|
|
|
|
/// Determine whether an unrecoverable error has occurred within this
|
|
/// function. Note that this may return false even if the function body is
|
|
/// invalid, because the errors may be suppressed if they're caused by prior
|
|
/// invalid declarations.
|
|
///
|
|
/// FIXME: Migrate the caller of this to use containsErrors() instead once
|
|
/// it's ready.
|
|
bool hasUnrecoverableErrorOccurred() const {
|
|
return ErrorTrap.hasUnrecoverableErrorOccurred();
|
|
}
|
|
|
|
/// Record that a weak object was accessed.
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
template <typename ExprT>
|
|
inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
|
|
|
|
void recordUseOfWeak(const ObjCMessageExpr *Msg,
|
|
const ObjCPropertyDecl *Prop);
|
|
|
|
/// Record that a given expression is a "safe" access of a weak object (e.g.
|
|
/// assigning it to a strong variable.)
|
|
///
|
|
/// Part of the implementation of -Wrepeated-use-of-weak.
|
|
void markSafeWeakUse(const Expr *E);
|
|
|
|
const WeakObjectUseMap &getWeakObjectUses() const {
|
|
return WeakObjectUses;
|
|
}
|
|
|
|
void setHasBranchIntoScope() {
|
|
HasBranchIntoScope = true;
|
|
}
|
|
|
|
void setHasBranchProtectedScope() {
|
|
HasBranchProtectedScope = true;
|
|
}
|
|
|
|
void setHasIndirectGoto() {
|
|
HasIndirectGoto = true;
|
|
}
|
|
|
|
void setHasMustTail() { HasMustTail = true; }
|
|
|
|
void setHasDroppedStmt() {
|
|
HasDroppedStmt = true;
|
|
}
|
|
|
|
void setHasOMPDeclareReductionCombiner() {
|
|
HasOMPDeclareReductionCombiner = true;
|
|
}
|
|
|
|
void setHasFallthroughStmt() {
|
|
HasFallthroughStmt = true;
|
|
}
|
|
|
|
void setUsesFPIntrin() {
|
|
UsesFPIntrin = true;
|
|
}
|
|
|
|
void setHasCXXTry(SourceLocation TryLoc) {
|
|
setHasBranchProtectedScope();
|
|
FirstCXXOrObjCTryLoc = TryLoc;
|
|
FirstTryType = TryLocIsCXX;
|
|
}
|
|
|
|
void setHasObjCTry(SourceLocation TryLoc) {
|
|
setHasBranchProtectedScope();
|
|
FirstCXXOrObjCTryLoc = TryLoc;
|
|
FirstTryType = TryLocIsObjC;
|
|
}
|
|
|
|
void setHasSEHTry(SourceLocation TryLoc) {
|
|
setHasBranchProtectedScope();
|
|
FirstSEHTryLoc = TryLoc;
|
|
}
|
|
|
|
void setHasVLA(SourceLocation VLALoc) {
|
|
if (FirstVLALoc.isInvalid())
|
|
FirstVLALoc = VLALoc;
|
|
}
|
|
|
|
bool NeedsScopeChecking() const {
|
|
return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
|
|
(HasBranchProtectedScope && HasBranchIntoScope));
|
|
}
|
|
|
|
// Add a block introduced in this function.
|
|
void addBlock(const BlockDecl *BD) {
|
|
Blocks.insert(BD);
|
|
}
|
|
|
|
// Add a __block variable introduced in this function.
|
|
void addByrefBlockVar(VarDecl *VD) {
|
|
ByrefBlockVars.push_back(VD);
|
|
}
|
|
|
|
bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
|
|
|
|
void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
|
|
assert(FirstCoroutineStmtLoc.isInvalid() &&
|
|
"first coroutine statement location already set");
|
|
FirstCoroutineStmtLoc = Loc;
|
|
FirstCoroutineStmtKind =
|
|
llvm::StringSwitch<unsigned char>(Keyword)
|
|
.Case("co_return",
|
|
llvm::to_underlying(FirstCoroutineStmtKind::CoReturn))
|
|
.Case("co_await",
|
|
llvm::to_underlying(FirstCoroutineStmtKind::CoAwait))
|
|
.Case("co_yield",
|
|
llvm::to_underlying(FirstCoroutineStmtKind::CoYield));
|
|
}
|
|
|
|
StringRef getFirstCoroutineStmtKeyword() const {
|
|
assert(FirstCoroutineStmtLoc.isValid()
|
|
&& "no coroutine statement available");
|
|
auto Value =
|
|
static_cast<enum FirstCoroutineStmtKind>(FirstCoroutineStmtKind);
|
|
switch (Value) {
|
|
case FirstCoroutineStmtKind::CoReturn:
|
|
return "co_return";
|
|
case FirstCoroutineStmtKind::CoAwait:
|
|
return "co_await";
|
|
case FirstCoroutineStmtKind::CoYield:
|
|
return "co_yield";
|
|
};
|
|
llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
|
|
}
|
|
|
|
void setNeedsCoroutineSuspends(bool value = true) {
|
|
assert((!value || CoroutineSuspends.first == nullptr) &&
|
|
"we already have valid suspend points");
|
|
NeedsCoroutineSuspends = value;
|
|
}
|
|
|
|
bool hasInvalidCoroutineSuspends() const {
|
|
return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
|
|
}
|
|
|
|
void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
|
|
assert(Initial && Final && "suspend points cannot be null");
|
|
assert(CoroutineSuspends.first == nullptr && "suspend points already set");
|
|
NeedsCoroutineSuspends = false;
|
|
CoroutineSuspends.first = Initial;
|
|
CoroutineSuspends.second = Final;
|
|
}
|
|
|
|
/// Clear out the information in this function scope, making it
|
|
/// suitable for reuse.
|
|
void Clear();
|
|
|
|
bool isPlainFunction() const { return Kind == SK_Function; }
|
|
};
|
|
|
|
class Capture {
|
|
// There are three categories of capture: capturing 'this', capturing
|
|
// local variables, and C++1y initialized captures (which can have an
|
|
// arbitrary initializer, and don't really capture in the traditional
|
|
// sense at all).
|
|
//
|
|
// There are three ways to capture a local variable:
|
|
// - capture by copy in the C++11 sense,
|
|
// - capture by reference in the C++11 sense, and
|
|
// - __block capture.
|
|
// Lambdas explicitly specify capture by copy or capture by reference.
|
|
// For blocks, __block capture applies to variables with that annotation,
|
|
// variables of reference type are captured by reference, and other
|
|
// variables are captured by copy.
|
|
enum CaptureKind {
|
|
Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
|
|
};
|
|
|
|
union {
|
|
/// If Kind == Cap_VLA, the captured type.
|
|
const VariableArrayType *CapturedVLA;
|
|
|
|
/// Otherwise, the captured variable (if any).
|
|
ValueDecl *CapturedVar;
|
|
};
|
|
|
|
/// The source location at which the first capture occurred.
|
|
SourceLocation Loc;
|
|
|
|
/// The location of the ellipsis that expands a parameter pack.
|
|
SourceLocation EllipsisLoc;
|
|
|
|
/// The type as it was captured, which is the type of the non-static data
|
|
/// member that would hold the capture.
|
|
QualType CaptureType;
|
|
|
|
/// The CaptureKind of this capture.
|
|
LLVM_PREFERRED_TYPE(CaptureKind)
|
|
unsigned Kind : 2;
|
|
|
|
/// Whether this is a nested capture (a capture of an enclosing capturing
|
|
/// scope's capture).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned Nested : 1;
|
|
|
|
/// Whether this is a capture of '*this'.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned CapturesThis : 1;
|
|
|
|
/// Whether an explicit capture has been odr-used in the body of the
|
|
/// lambda.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned ODRUsed : 1;
|
|
|
|
/// Whether an explicit capture has been non-odr-used in the body of
|
|
/// the lambda.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned NonODRUsed : 1;
|
|
|
|
/// Whether the capture is invalid (a capture was required but the entity is
|
|
/// non-capturable).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned Invalid : 1;
|
|
|
|
public:
|
|
Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
|
|
SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
|
|
bool Invalid)
|
|
: CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
|
|
CaptureType(CaptureType), Kind(Block ? Cap_Block
|
|
: ByRef ? Cap_ByRef
|
|
: Cap_ByCopy),
|
|
Nested(IsNested), CapturesThis(false), ODRUsed(false),
|
|
NonODRUsed(false), Invalid(Invalid) {}
|
|
|
|
enum IsThisCapture { ThisCapture };
|
|
Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
|
|
QualType CaptureType, const bool ByCopy, bool Invalid)
|
|
: Loc(Loc), CaptureType(CaptureType),
|
|
Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
|
|
CapturesThis(true), ODRUsed(false), NonODRUsed(false),
|
|
Invalid(Invalid) {}
|
|
|
|
enum IsVLACapture { VLACapture };
|
|
Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
|
|
SourceLocation Loc, QualType CaptureType)
|
|
: CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
|
|
Nested(IsNested), CapturesThis(false), ODRUsed(false),
|
|
NonODRUsed(false), Invalid(false) {}
|
|
|
|
bool isThisCapture() const { return CapturesThis; }
|
|
bool isVariableCapture() const {
|
|
return !isThisCapture() && !isVLATypeCapture();
|
|
}
|
|
|
|
bool isCopyCapture() const { return Kind == Cap_ByCopy; }
|
|
bool isReferenceCapture() const { return Kind == Cap_ByRef; }
|
|
bool isBlockCapture() const { return Kind == Cap_Block; }
|
|
bool isVLATypeCapture() const { return Kind == Cap_VLA; }
|
|
|
|
bool isNested() const { return Nested; }
|
|
|
|
bool isInvalid() const { return Invalid; }
|
|
|
|
/// Determine whether this capture is an init-capture.
|
|
bool isInitCapture() const;
|
|
|
|
bool isODRUsed() const { return ODRUsed; }
|
|
bool isNonODRUsed() const { return NonODRUsed; }
|
|
void markUsed(bool IsODRUse) {
|
|
if (IsODRUse)
|
|
ODRUsed = true;
|
|
else
|
|
NonODRUsed = true;
|
|
}
|
|
|
|
ValueDecl *getVariable() const {
|
|
assert(isVariableCapture());
|
|
return CapturedVar;
|
|
}
|
|
|
|
const VariableArrayType *getCapturedVLAType() const {
|
|
assert(isVLATypeCapture());
|
|
return CapturedVLA;
|
|
}
|
|
|
|
/// Retrieve the location at which this variable was captured.
|
|
SourceLocation getLocation() const { return Loc; }
|
|
|
|
/// Retrieve the source location of the ellipsis, whose presence
|
|
/// indicates that the capture is a pack expansion.
|
|
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
|
|
|
|
/// Retrieve the capture type for this capture, which is effectively
|
|
/// the type of the non-static data member in the lambda/block structure
|
|
/// that would store this capture.
|
|
QualType getCaptureType() const { return CaptureType; }
|
|
};
|
|
|
|
class CapturingScopeInfo : public FunctionScopeInfo {
|
|
protected:
|
|
CapturingScopeInfo(const CapturingScopeInfo&) = default;
|
|
|
|
public:
|
|
enum ImplicitCaptureStyle {
|
|
ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
|
|
ImpCap_CapturedRegion
|
|
};
|
|
|
|
ImplicitCaptureStyle ImpCaptureStyle;
|
|
|
|
CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
|
|
: FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
|
|
|
|
/// CaptureMap - A map of captured variables to (index+1) into Captures.
|
|
llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
|
|
|
|
/// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
|
|
/// zero if 'this' is not captured.
|
|
unsigned CXXThisCaptureIndex = 0;
|
|
|
|
/// Captures - The captures.
|
|
SmallVector<Capture, 4> Captures;
|
|
|
|
/// - Whether the target type of return statements in this context
|
|
/// is deduced (e.g. a lambda or block with omitted return type).
|
|
bool HasImplicitReturnType = false;
|
|
|
|
/// ReturnType - The target type of return statements in this context,
|
|
/// or null if unknown.
|
|
QualType ReturnType;
|
|
|
|
void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
|
|
SourceLocation Loc, SourceLocation EllipsisLoc,
|
|
QualType CaptureType, bool Invalid) {
|
|
Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
|
|
EllipsisLoc, CaptureType, Invalid));
|
|
CaptureMap[Var] = Captures.size();
|
|
}
|
|
|
|
void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
|
|
QualType CaptureType) {
|
|
Captures.push_back(Capture(Capture::VLACapture, VLAType,
|
|
/*FIXME: IsNested*/ false, Loc, CaptureType));
|
|
}
|
|
|
|
void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
|
|
bool ByCopy);
|
|
|
|
/// Determine whether the C++ 'this' is captured.
|
|
bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
|
|
|
|
/// Retrieve the capture of C++ 'this', if it has been captured.
|
|
Capture &getCXXThisCapture() {
|
|
assert(isCXXThisCaptured() && "this has not been captured");
|
|
return Captures[CXXThisCaptureIndex - 1];
|
|
}
|
|
|
|
/// Determine whether the given variable has been captured.
|
|
bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
|
|
|
|
/// Determine whether the given variable-array type has been captured.
|
|
bool isVLATypeCaptured(const VariableArrayType *VAT) const;
|
|
|
|
/// Retrieve the capture of the given variable, if it has been
|
|
/// captured already.
|
|
Capture &getCapture(ValueDecl *Var) {
|
|
assert(isCaptured(Var) && "Variable has not been captured");
|
|
return Captures[CaptureMap[Var] - 1];
|
|
}
|
|
|
|
const Capture &getCapture(ValueDecl *Var) const {
|
|
llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
|
|
CaptureMap.find(Var);
|
|
assert(Known != CaptureMap.end() && "Variable has not been captured");
|
|
return Captures[Known->second - 1];
|
|
}
|
|
|
|
static bool classof(const FunctionScopeInfo *FSI) {
|
|
return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
|
|
|| FSI->Kind == SK_CapturedRegion;
|
|
}
|
|
};
|
|
|
|
/// Retains information about a block that is currently being parsed.
|
|
class BlockScopeInfo final : public CapturingScopeInfo {
|
|
public:
|
|
BlockDecl *TheDecl;
|
|
|
|
/// TheScope - This is the scope for the block itself, which contains
|
|
/// arguments etc.
|
|
Scope *TheScope;
|
|
|
|
/// BlockType - The function type of the block, if one was given.
|
|
/// Its return type may be BuiltinType::Dependent.
|
|
QualType FunctionType;
|
|
|
|
BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
|
|
: CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
|
|
TheScope(BlockScope) {
|
|
Kind = SK_Block;
|
|
}
|
|
|
|
~BlockScopeInfo() override;
|
|
|
|
static bool classof(const FunctionScopeInfo *FSI) {
|
|
return FSI->Kind == SK_Block;
|
|
}
|
|
};
|
|
|
|
/// Retains information about a captured region.
|
|
class CapturedRegionScopeInfo final : public CapturingScopeInfo {
|
|
public:
|
|
/// The CapturedDecl for this statement.
|
|
CapturedDecl *TheCapturedDecl;
|
|
|
|
/// The captured record type.
|
|
RecordDecl *TheRecordDecl;
|
|
|
|
/// This is the enclosing scope of the captured region.
|
|
Scope *TheScope;
|
|
|
|
/// The implicit parameter for the captured variables.
|
|
ImplicitParamDecl *ContextParam;
|
|
|
|
/// The kind of captured region.
|
|
unsigned short CapRegionKind;
|
|
|
|
unsigned short OpenMPLevel;
|
|
unsigned short OpenMPCaptureLevel;
|
|
|
|
CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
|
|
RecordDecl *RD, ImplicitParamDecl *Context,
|
|
CapturedRegionKind K, unsigned OpenMPLevel,
|
|
unsigned OpenMPCaptureLevel)
|
|
: CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
|
|
TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
|
|
ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
|
|
OpenMPCaptureLevel(OpenMPCaptureLevel) {
|
|
Kind = SK_CapturedRegion;
|
|
}
|
|
|
|
~CapturedRegionScopeInfo() override;
|
|
|
|
/// A descriptive name for the kind of captured region this is.
|
|
StringRef getRegionName() const {
|
|
switch (CapRegionKind) {
|
|
case CR_Default:
|
|
return "default captured statement";
|
|
case CR_ObjCAtFinally:
|
|
return "Objective-C @finally statement";
|
|
case CR_OpenMP:
|
|
return "OpenMP region";
|
|
}
|
|
llvm_unreachable("Invalid captured region kind!");
|
|
}
|
|
|
|
static bool classof(const FunctionScopeInfo *FSI) {
|
|
return FSI->Kind == SK_CapturedRegion;
|
|
}
|
|
};
|
|
|
|
class LambdaScopeInfo final :
|
|
public CapturingScopeInfo, public InventedTemplateParameterInfo {
|
|
public:
|
|
/// The class that describes the lambda.
|
|
CXXRecordDecl *Lambda = nullptr;
|
|
|
|
/// The lambda's compiler-generated \c operator().
|
|
CXXMethodDecl *CallOperator = nullptr;
|
|
|
|
/// Indicate that we parsed the parameter list
|
|
/// at which point the mutability of the lambda
|
|
/// is known.
|
|
bool AfterParameterList = true;
|
|
|
|
ParmVarDecl *ExplicitObjectParameter = nullptr;
|
|
|
|
/// Source range covering the lambda introducer [...].
|
|
SourceRange IntroducerRange;
|
|
|
|
/// Source location of the '&' or '=' specifying the default capture
|
|
/// type, if any.
|
|
SourceLocation CaptureDefaultLoc;
|
|
|
|
/// The number of captures in the \c Captures list that are
|
|
/// explicit captures.
|
|
unsigned NumExplicitCaptures = 0;
|
|
|
|
/// Whether this is a mutable lambda. Until the mutable keyword is parsed,
|
|
/// we assume the lambda is mutable.
|
|
bool Mutable = true;
|
|
|
|
/// Whether the (empty) parameter list is explicit.
|
|
bool ExplicitParams = false;
|
|
|
|
/// Whether any of the capture expressions requires cleanups.
|
|
CleanupInfo Cleanup;
|
|
|
|
/// Whether the lambda contains an unexpanded parameter pack.
|
|
bool ContainsUnexpandedParameterPack = false;
|
|
|
|
/// Packs introduced by this lambda, if any.
|
|
SmallVector<NamedDecl*, 4> LocalPacks;
|
|
|
|
/// Source range covering the explicit template parameter list (if it exists).
|
|
SourceRange ExplicitTemplateParamsRange;
|
|
|
|
/// The requires-clause immediately following the explicit template parameter
|
|
/// list, if any. (Note that there may be another requires-clause included as
|
|
/// part of the lambda-declarator.)
|
|
ExprResult RequiresClause;
|
|
|
|
/// If this is a generic lambda, and the template parameter
|
|
/// list has been created (from the TemplateParams) then store
|
|
/// a reference to it (cache it to avoid reconstructing it).
|
|
TemplateParameterList *GLTemplateParameterList = nullptr;
|
|
|
|
/// Contains all variable-referring-expressions (i.e. DeclRefExprs
|
|
/// or MemberExprs) that refer to local variables in a generic lambda
|
|
/// or a lambda in a potentially-evaluated-if-used context.
|
|
///
|
|
/// Potentially capturable variables of a nested lambda that might need
|
|
/// to be captured by the lambda are housed here.
|
|
/// This is specifically useful for generic lambdas or
|
|
/// lambdas within a potentially evaluated-if-used context.
|
|
/// If an enclosing variable is named in an expression of a lambda nested
|
|
/// within a generic lambda, we don't always know whether the variable
|
|
/// will truly be odr-used (i.e. need to be captured) by that nested lambda,
|
|
/// until its instantiation. But we still need to capture it in the
|
|
/// enclosing lambda if all intervening lambdas can capture the variable.
|
|
llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
|
|
|
|
/// Contains all variable-referring-expressions that refer
|
|
/// to local variables that are usable as constant expressions and
|
|
/// do not involve an odr-use (they may still need to be captured
|
|
/// if the enclosing full-expression is instantiation dependent).
|
|
llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
|
|
|
|
/// A map of explicit capture indices to their introducer source ranges.
|
|
llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
|
|
|
|
/// Contains all of the variables defined in this lambda that shadow variables
|
|
/// that were defined in parent contexts. Used to avoid warnings when the
|
|
/// shadowed variables are uncaptured by this lambda.
|
|
struct ShadowedOuterDecl {
|
|
const NamedDecl *VD;
|
|
const NamedDecl *ShadowedDecl;
|
|
};
|
|
llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
|
|
|
|
SourceLocation PotentialThisCaptureLocation;
|
|
|
|
LambdaScopeInfo(DiagnosticsEngine &Diag)
|
|
: CapturingScopeInfo(Diag, ImpCap_None) {
|
|
Kind = SK_Lambda;
|
|
}
|
|
|
|
/// Note when all explicit captures have been added.
|
|
void finishedExplicitCaptures() {
|
|
NumExplicitCaptures = Captures.size();
|
|
}
|
|
|
|
static bool classof(const FunctionScopeInfo *FSI) {
|
|
return FSI->Kind == SK_Lambda;
|
|
}
|
|
|
|
/// Is this scope known to be for a generic lambda? (This will be false until
|
|
/// we parse a template parameter list or the first 'auto'-typed parameter).
|
|
bool isGenericLambda() const {
|
|
return !TemplateParams.empty() || GLTemplateParameterList;
|
|
}
|
|
|
|
/// Add a variable that might potentially be captured by the
|
|
/// lambda and therefore the enclosing lambdas.
|
|
///
|
|
/// This is also used by enclosing lambda's to speculatively capture
|
|
/// variables that nested lambda's - depending on their enclosing
|
|
/// specialization - might need to capture.
|
|
/// Consider:
|
|
/// void f(int, int); <-- don't capture
|
|
/// void f(const int&, double); <-- capture
|
|
/// void foo() {
|
|
/// const int x = 10;
|
|
/// auto L = [=](auto a) { // capture 'x'
|
|
/// return [=](auto b) {
|
|
/// f(x, a); // we may or may not need to capture 'x'
|
|
/// };
|
|
/// };
|
|
/// }
|
|
void addPotentialCapture(Expr *VarExpr) {
|
|
assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
|
|
isa<FunctionParmPackExpr>(VarExpr));
|
|
PotentiallyCapturingExprs.push_back(VarExpr);
|
|
}
|
|
|
|
void addPotentialThisCapture(SourceLocation Loc) {
|
|
PotentialThisCaptureLocation = Loc;
|
|
}
|
|
|
|
bool hasPotentialThisCapture() const {
|
|
return PotentialThisCaptureLocation.isValid();
|
|
}
|
|
|
|
/// Mark a variable's reference in a lambda as non-odr using.
|
|
///
|
|
/// For generic lambdas, if a variable is named in a potentially evaluated
|
|
/// expression, where the enclosing full expression is dependent then we
|
|
/// must capture the variable (given a default capture).
|
|
/// This is accomplished by recording all references to variables
|
|
/// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
|
|
/// PotentialCaptures. All such variables have to be captured by that lambda,
|
|
/// except for as described below.
|
|
/// If that variable is usable as a constant expression and is named in a
|
|
/// manner that does not involve its odr-use (e.g. undergoes
|
|
/// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
|
|
/// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
|
|
/// if we can determine that the full expression is not instantiation-
|
|
/// dependent, then we can entirely avoid its capture.
|
|
///
|
|
/// const int n = 0;
|
|
/// [&] (auto x) {
|
|
/// (void)+n + x;
|
|
/// };
|
|
/// Interestingly, this strategy would involve a capture of n, even though
|
|
/// it's obviously not odr-used here, because the full-expression is
|
|
/// instantiation-dependent. It could be useful to avoid capturing such
|
|
/// variables, even when they are referred to in an instantiation-dependent
|
|
/// expression, if we can unambiguously determine that they shall never be
|
|
/// odr-used. This would involve removal of the variable-referring-expression
|
|
/// from the array of PotentialCaptures during the lvalue-to-rvalue
|
|
/// conversions. But per the working draft N3797, (post-chicago 2013) we must
|
|
/// capture such variables.
|
|
/// Before anyone is tempted to implement a strategy for not-capturing 'n',
|
|
/// consider the insightful warning in:
|
|
/// /cfe-commits/Week-of-Mon-20131104/092596.html
|
|
/// "The problem is that the set of captures for a lambda is part of the ABI
|
|
/// (since lambda layout can be made visible through inline functions and the
|
|
/// like), and there are no guarantees as to which cases we'll manage to build
|
|
/// an lvalue-to-rvalue conversion in, when parsing a template -- some
|
|
/// seemingly harmless change elsewhere in Sema could cause us to start or stop
|
|
/// building such a node. So we need a rule that anyone can implement and get
|
|
/// exactly the same result".
|
|
void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
|
|
assert(isa<DeclRefExpr>(CapturingVarExpr) ||
|
|
isa<MemberExpr>(CapturingVarExpr) ||
|
|
isa<FunctionParmPackExpr>(CapturingVarExpr));
|
|
NonODRUsedCapturingExprs.insert(CapturingVarExpr);
|
|
}
|
|
bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
|
|
assert(isa<DeclRefExpr>(CapturingVarExpr) ||
|
|
isa<MemberExpr>(CapturingVarExpr) ||
|
|
isa<FunctionParmPackExpr>(CapturingVarExpr));
|
|
return NonODRUsedCapturingExprs.count(CapturingVarExpr);
|
|
}
|
|
void removePotentialCapture(Expr *E) {
|
|
llvm::erase(PotentiallyCapturingExprs, E);
|
|
}
|
|
void clearPotentialCaptures() {
|
|
PotentiallyCapturingExprs.clear();
|
|
PotentialThisCaptureLocation = SourceLocation();
|
|
}
|
|
unsigned getNumPotentialVariableCaptures() const {
|
|
return PotentiallyCapturingExprs.size();
|
|
}
|
|
|
|
bool hasPotentialCaptures() const {
|
|
return getNumPotentialVariableCaptures() ||
|
|
PotentialThisCaptureLocation.isValid();
|
|
}
|
|
|
|
void visitPotentialCaptures(
|
|
llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
|
|
|
|
bool lambdaCaptureShouldBeConst() const;
|
|
};
|
|
|
|
FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
|
|
: Base(nullptr, false) {}
|
|
|
|
FunctionScopeInfo::WeakObjectProfileTy
|
|
FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
|
|
FunctionScopeInfo::WeakObjectProfileTy Result;
|
|
Result.Base.setInt(true);
|
|
return Result;
|
|
}
|
|
|
|
template <typename ExprT>
|
|
void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
|
|
assert(E);
|
|
WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
|
|
Uses.push_back(WeakUseTy(E, IsRead));
|
|
}
|
|
|
|
inline void CapturingScopeInfo::addThisCapture(bool isNested,
|
|
SourceLocation Loc,
|
|
QualType CaptureType,
|
|
bool ByCopy) {
|
|
Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
|
|
ByCopy, /*Invalid*/ false));
|
|
CXXThisCaptureIndex = Captures.size();
|
|
}
|
|
|
|
} // namespace sema
|
|
|
|
} // namespace clang
|
|
|
|
#endif // LLVM_CLANG_SEMA_SCOPEINFO_H
|