clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1581 lines
52 KiB
C++
1581 lines
52 KiB
C++
//===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the CFG and CFGBuilder classes for representing and
|
|
// building Control-Flow Graphs (CFGs) from ASTs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_ANALYSIS_CFG_H
|
|
#define LLVM_CLANG_ANALYSIS_CFG_H
|
|
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Analysis/ConstructionContext.h"
|
|
#include "clang/Analysis/Support/BumpVector.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <bitset>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
namespace clang {
|
|
|
|
class ASTContext;
|
|
class BinaryOperator;
|
|
class CFG;
|
|
class CXXBaseSpecifier;
|
|
class CXXBindTemporaryExpr;
|
|
class CXXCtorInitializer;
|
|
class CXXDeleteExpr;
|
|
class CXXDestructorDecl;
|
|
class CXXNewExpr;
|
|
class CXXRecordDecl;
|
|
class Decl;
|
|
class FieldDecl;
|
|
class LangOptions;
|
|
class VarDecl;
|
|
|
|
/// Represents a top-level expression in a basic block.
|
|
class CFGElement {
|
|
public:
|
|
enum Kind {
|
|
// main kind
|
|
Initializer,
|
|
ScopeBegin,
|
|
ScopeEnd,
|
|
NewAllocator,
|
|
LifetimeEnds,
|
|
LoopExit,
|
|
// stmt kind
|
|
Statement,
|
|
Constructor,
|
|
CXXRecordTypedCall,
|
|
STMT_BEGIN = Statement,
|
|
STMT_END = CXXRecordTypedCall,
|
|
// dtor kind
|
|
AutomaticObjectDtor,
|
|
DeleteDtor,
|
|
BaseDtor,
|
|
MemberDtor,
|
|
TemporaryDtor,
|
|
DTOR_BEGIN = AutomaticObjectDtor,
|
|
DTOR_END = TemporaryDtor,
|
|
CleanupFunction,
|
|
};
|
|
|
|
protected:
|
|
// The int bits are used to mark the kind.
|
|
llvm::PointerIntPair<void *, 2> Data1;
|
|
llvm::PointerIntPair<void *, 2> Data2;
|
|
|
|
CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
|
|
: Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
|
|
Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
|
|
assert(getKind() == kind);
|
|
}
|
|
|
|
CFGElement() = default;
|
|
|
|
public:
|
|
/// Convert to the specified CFGElement type, asserting that this
|
|
/// CFGElement is of the desired type.
|
|
template<typename T>
|
|
T castAs() const {
|
|
assert(T::isKind(*this));
|
|
T t;
|
|
CFGElement& e = t;
|
|
e = *this;
|
|
return t;
|
|
}
|
|
|
|
/// Convert to the specified CFGElement type, returning std::nullopt if this
|
|
/// CFGElement is not of the desired type.
|
|
template <typename T> std::optional<T> getAs() const {
|
|
if (!T::isKind(*this))
|
|
return std::nullopt;
|
|
T t;
|
|
CFGElement& e = t;
|
|
e = *this;
|
|
return t;
|
|
}
|
|
|
|
Kind getKind() const {
|
|
unsigned x = Data2.getInt();
|
|
x <<= 2;
|
|
x |= Data1.getInt();
|
|
return (Kind) x;
|
|
}
|
|
|
|
void dumpToStream(llvm::raw_ostream &OS) const;
|
|
|
|
void dump() const {
|
|
dumpToStream(llvm::errs());
|
|
}
|
|
};
|
|
|
|
class CFGStmt : public CFGElement {
|
|
public:
|
|
explicit CFGStmt(const Stmt *S, Kind K = Statement) : CFGElement(K, S) {
|
|
assert(isKind(*this));
|
|
}
|
|
|
|
const Stmt *getStmt() const {
|
|
return static_cast<const Stmt *>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
|
|
}
|
|
|
|
protected:
|
|
CFGStmt() = default;
|
|
};
|
|
|
|
/// Represents C++ constructor call. Maintains information necessary to figure
|
|
/// out what memory is being initialized by the constructor expression. For now
|
|
/// this is only used by the analyzer's CFG.
|
|
class CFGConstructor : public CFGStmt {
|
|
public:
|
|
explicit CFGConstructor(const CXXConstructExpr *CE,
|
|
const ConstructionContext *C)
|
|
: CFGStmt(CE, Constructor) {
|
|
assert(C);
|
|
Data2.setPointer(const_cast<ConstructionContext *>(C));
|
|
}
|
|
|
|
const ConstructionContext *getConstructionContext() const {
|
|
return static_cast<ConstructionContext *>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGConstructor() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == Constructor;
|
|
}
|
|
};
|
|
|
|
/// Represents a function call that returns a C++ object by value. This, like
|
|
/// constructor, requires a construction context in order to understand the
|
|
/// storage of the returned object . In C such tracking is not necessary because
|
|
/// no additional effort is required for destroying the object or modeling copy
|
|
/// elision. Like CFGConstructor, this element is for now only used by the
|
|
/// analyzer's CFG.
|
|
class CFGCXXRecordTypedCall : public CFGStmt {
|
|
public:
|
|
/// Returns true when call expression \p CE needs to be represented
|
|
/// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
|
|
static bool isCXXRecordTypedCall(const Expr *E) {
|
|
assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
|
|
// There is no such thing as reference-type expression. If the function
|
|
// returns a reference, it'll return the respective lvalue or xvalue
|
|
// instead, and we're only interested in objects.
|
|
return !E->isGLValue() &&
|
|
E->getType().getCanonicalType()->getAsCXXRecordDecl();
|
|
}
|
|
|
|
explicit CFGCXXRecordTypedCall(const Expr *E, const ConstructionContext *C)
|
|
: CFGStmt(E, CXXRecordTypedCall) {
|
|
assert(isCXXRecordTypedCall(E));
|
|
assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
|
|
// These are possible in C++17 due to mandatory copy elision.
|
|
isa<ReturnedValueConstructionContext>(C) ||
|
|
isa<VariableConstructionContext>(C) ||
|
|
isa<ConstructorInitializerConstructionContext>(C) ||
|
|
isa<ArgumentConstructionContext>(C) ||
|
|
isa<LambdaCaptureConstructionContext>(C)));
|
|
Data2.setPointer(const_cast<ConstructionContext *>(C));
|
|
}
|
|
|
|
const ConstructionContext *getConstructionContext() const {
|
|
return static_cast<ConstructionContext *>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGCXXRecordTypedCall() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == CXXRecordTypedCall;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ base or member initializer from constructor's initialization
|
|
/// list.
|
|
class CFGInitializer : public CFGElement {
|
|
public:
|
|
explicit CFGInitializer(const CXXCtorInitializer *initializer)
|
|
: CFGElement(Initializer, initializer) {}
|
|
|
|
CXXCtorInitializer* getInitializer() const {
|
|
return static_cast<CXXCtorInitializer*>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGInitializer() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == Initializer;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ allocator call.
|
|
class CFGNewAllocator : public CFGElement {
|
|
public:
|
|
explicit CFGNewAllocator(const CXXNewExpr *S)
|
|
: CFGElement(NewAllocator, S) {}
|
|
|
|
// Get the new expression.
|
|
const CXXNewExpr *getAllocatorExpr() const {
|
|
return static_cast<CXXNewExpr *>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGNewAllocator() = default;
|
|
|
|
static bool isKind(const CFGElement &elem) {
|
|
return elem.getKind() == NewAllocator;
|
|
}
|
|
};
|
|
|
|
/// Represents the point where a loop ends.
|
|
/// This element is only produced when building the CFG for the static
|
|
/// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
|
|
///
|
|
/// Note: a loop exit element can be reached even when the loop body was never
|
|
/// entered.
|
|
class CFGLoopExit : public CFGElement {
|
|
public:
|
|
explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}
|
|
|
|
const Stmt *getLoopStmt() const {
|
|
return static_cast<Stmt *>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGLoopExit() = default;
|
|
|
|
static bool isKind(const CFGElement &elem) {
|
|
return elem.getKind() == LoopExit;
|
|
}
|
|
};
|
|
|
|
/// Represents the point where the lifetime of an automatic object ends
|
|
class CFGLifetimeEnds : public CFGElement {
|
|
public:
|
|
explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
|
|
: CFGElement(LifetimeEnds, var, stmt) {}
|
|
|
|
const VarDecl *getVarDecl() const {
|
|
return static_cast<VarDecl *>(Data1.getPointer());
|
|
}
|
|
|
|
const Stmt *getTriggerStmt() const {
|
|
return static_cast<Stmt *>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGLifetimeEnds() = default;
|
|
|
|
static bool isKind(const CFGElement &elem) {
|
|
return elem.getKind() == LifetimeEnds;
|
|
}
|
|
};
|
|
|
|
/// Represents beginning of a scope implicitly generated
|
|
/// by the compiler on encountering a CompoundStmt
|
|
class CFGScopeBegin : public CFGElement {
|
|
public:
|
|
CFGScopeBegin() {}
|
|
CFGScopeBegin(const VarDecl *VD, const Stmt *S)
|
|
: CFGElement(ScopeBegin, VD, S) {}
|
|
|
|
// Get statement that triggered a new scope.
|
|
const Stmt *getTriggerStmt() const {
|
|
return static_cast<Stmt*>(Data2.getPointer());
|
|
}
|
|
|
|
// Get VD that triggered a new scope.
|
|
const VarDecl *getVarDecl() const {
|
|
return static_cast<VarDecl *>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
static bool isKind(const CFGElement &E) {
|
|
Kind kind = E.getKind();
|
|
return kind == ScopeBegin;
|
|
}
|
|
};
|
|
|
|
/// Represents end of a scope implicitly generated by
|
|
/// the compiler after the last Stmt in a CompoundStmt's body
|
|
class CFGScopeEnd : public CFGElement {
|
|
public:
|
|
CFGScopeEnd() {}
|
|
CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}
|
|
|
|
const VarDecl *getVarDecl() const {
|
|
return static_cast<VarDecl *>(Data1.getPointer());
|
|
}
|
|
|
|
const Stmt *getTriggerStmt() const {
|
|
return static_cast<Stmt *>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
static bool isKind(const CFGElement &E) {
|
|
Kind kind = E.getKind();
|
|
return kind == ScopeEnd;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor implicitly generated by compiler on various
|
|
/// occasions.
|
|
class CFGImplicitDtor : public CFGElement {
|
|
protected:
|
|
CFGImplicitDtor() = default;
|
|
|
|
CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
|
|
: CFGElement(kind, data1, data2) {
|
|
assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
|
|
}
|
|
|
|
public:
|
|
const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
|
|
bool isNoReturn(ASTContext &astContext) const;
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
Kind kind = E.getKind();
|
|
return kind >= DTOR_BEGIN && kind <= DTOR_END;
|
|
}
|
|
};
|
|
|
|
class CFGCleanupFunction final : public CFGElement {
|
|
public:
|
|
CFGCleanupFunction() = default;
|
|
CFGCleanupFunction(const VarDecl *VD)
|
|
: CFGElement(Kind::CleanupFunction, VD) {
|
|
assert(VD->hasAttr<CleanupAttr>());
|
|
}
|
|
|
|
const VarDecl *getVarDecl() const {
|
|
return static_cast<VarDecl *>(Data1.getPointer());
|
|
}
|
|
|
|
/// Returns the function to be called when cleaning up the var decl.
|
|
const FunctionDecl *getFunctionDecl() const {
|
|
const CleanupAttr *A = getVarDecl()->getAttr<CleanupAttr>();
|
|
return A->getFunctionDecl();
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
static bool isKind(const CFGElement E) {
|
|
return E.getKind() == Kind::CleanupFunction;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor implicitly generated for automatic object
|
|
/// or temporary bound to const reference at the point of leaving its local
|
|
/// scope.
|
|
class CFGAutomaticObjDtor: public CFGImplicitDtor {
|
|
public:
|
|
CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
|
|
: CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
|
|
|
|
const VarDecl *getVarDecl() const {
|
|
return static_cast<VarDecl*>(Data1.getPointer());
|
|
}
|
|
|
|
// Get statement end of which triggered the destructor call.
|
|
const Stmt *getTriggerStmt() const {
|
|
return static_cast<Stmt*>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGAutomaticObjDtor() = default;
|
|
|
|
static bool isKind(const CFGElement &elem) {
|
|
return elem.getKind() == AutomaticObjectDtor;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor generated from a call to delete.
|
|
class CFGDeleteDtor : public CFGImplicitDtor {
|
|
public:
|
|
CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
|
|
: CFGImplicitDtor(DeleteDtor, RD, DE) {}
|
|
|
|
const CXXRecordDecl *getCXXRecordDecl() const {
|
|
return static_cast<CXXRecordDecl*>(Data1.getPointer());
|
|
}
|
|
|
|
// Get Delete expression which triggered the destructor call.
|
|
const CXXDeleteExpr *getDeleteExpr() const {
|
|
return static_cast<CXXDeleteExpr *>(Data2.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGDeleteDtor() = default;
|
|
|
|
static bool isKind(const CFGElement &elem) {
|
|
return elem.getKind() == DeleteDtor;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor implicitly generated for base object in
|
|
/// destructor.
|
|
class CFGBaseDtor : public CFGImplicitDtor {
|
|
public:
|
|
CFGBaseDtor(const CXXBaseSpecifier *base)
|
|
: CFGImplicitDtor(BaseDtor, base) {}
|
|
|
|
const CXXBaseSpecifier *getBaseSpecifier() const {
|
|
return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGBaseDtor() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == BaseDtor;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor implicitly generated for member object in
|
|
/// destructor.
|
|
class CFGMemberDtor : public CFGImplicitDtor {
|
|
public:
|
|
CFGMemberDtor(const FieldDecl *field)
|
|
: CFGImplicitDtor(MemberDtor, field, nullptr) {}
|
|
|
|
const FieldDecl *getFieldDecl() const {
|
|
return static_cast<const FieldDecl*>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGMemberDtor() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == MemberDtor;
|
|
}
|
|
};
|
|
|
|
/// Represents C++ object destructor implicitly generated at the end of full
|
|
/// expression for temporary object.
|
|
class CFGTemporaryDtor : public CFGImplicitDtor {
|
|
public:
|
|
CFGTemporaryDtor(const CXXBindTemporaryExpr *expr)
|
|
: CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
|
|
|
|
const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
|
|
return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
|
|
}
|
|
|
|
private:
|
|
friend class CFGElement;
|
|
|
|
CFGTemporaryDtor() = default;
|
|
|
|
static bool isKind(const CFGElement &E) {
|
|
return E.getKind() == TemporaryDtor;
|
|
}
|
|
};
|
|
|
|
/// Represents CFGBlock terminator statement.
|
|
///
|
|
class CFGTerminator {
|
|
public:
|
|
enum Kind {
|
|
/// A branch that corresponds to a statement in the code,
|
|
/// such as an if-statement.
|
|
StmtBranch,
|
|
/// A branch in control flow of destructors of temporaries. In this case
|
|
/// terminator statement is the same statement that branches control flow
|
|
/// in evaluation of matching full expression.
|
|
TemporaryDtorsBranch,
|
|
/// A shortcut around virtual base initializers. It gets taken when
|
|
/// virtual base classes have already been initialized by the constructor
|
|
/// of the most derived class while we're in the base class.
|
|
VirtualBaseBranch,
|
|
|
|
/// Number of different kinds, for assertions. We subtract 1 so that
|
|
/// to keep receiving compiler warnings when we don't cover all enum values
|
|
/// in a switch.
|
|
NumKindsMinusOne = VirtualBaseBranch
|
|
};
|
|
|
|
private:
|
|
static constexpr int KindBits = 2;
|
|
static_assert((1 << KindBits) > NumKindsMinusOne,
|
|
"Not enough room for kind!");
|
|
llvm::PointerIntPair<Stmt *, KindBits> Data;
|
|
|
|
public:
|
|
CFGTerminator() { assert(!isValid()); }
|
|
CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}
|
|
|
|
bool isValid() const { return Data.getOpaqueValue() != nullptr; }
|
|
Stmt *getStmt() { return Data.getPointer(); }
|
|
const Stmt *getStmt() const { return Data.getPointer(); }
|
|
Kind getKind() const { return static_cast<Kind>(Data.getInt()); }
|
|
|
|
bool isStmtBranch() const {
|
|
return getKind() == StmtBranch;
|
|
}
|
|
bool isTemporaryDtorsBranch() const {
|
|
return getKind() == TemporaryDtorsBranch;
|
|
}
|
|
bool isVirtualBaseBranch() const {
|
|
return getKind() == VirtualBaseBranch;
|
|
}
|
|
};
|
|
|
|
/// Represents a single basic block in a source-level CFG.
|
|
/// It consists of:
|
|
///
|
|
/// (1) A set of statements/expressions (which may contain subexpressions).
|
|
/// (2) A "terminator" statement (not in the set of statements).
|
|
/// (3) A list of successors and predecessors.
|
|
///
|
|
/// Terminator: The terminator represents the type of control-flow that occurs
|
|
/// at the end of the basic block. The terminator is a Stmt* referring to an
|
|
/// AST node that has control-flow: if-statements, breaks, loops, etc.
|
|
/// If the control-flow is conditional, the condition expression will appear
|
|
/// within the set of statements in the block (usually the last statement).
|
|
///
|
|
/// Predecessors: the order in the set of predecessors is arbitrary.
|
|
///
|
|
/// Successors: the order in the set of successors is NOT arbitrary. We
|
|
/// currently have the following orderings based on the terminator:
|
|
///
|
|
/// Terminator | Successor Ordering
|
|
/// ------------------|------------------------------------
|
|
/// if | Then Block; Else Block
|
|
/// ? operator | LHS expression; RHS expression
|
|
/// logical and/or | expression that consumes the op, RHS
|
|
/// vbase inits | already handled by the most derived class; not yet
|
|
///
|
|
/// But note that any of that may be NULL in case of optimized-out edges.
|
|
class CFGBlock {
|
|
class ElementList {
|
|
using ImplTy = BumpVector<CFGElement>;
|
|
|
|
ImplTy Impl;
|
|
|
|
public:
|
|
ElementList(BumpVectorContext &C) : Impl(C, 4) {}
|
|
|
|
using iterator = std::reverse_iterator<ImplTy::iterator>;
|
|
using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
|
|
using reverse_iterator = ImplTy::iterator;
|
|
using const_reverse_iterator = ImplTy::const_iterator;
|
|
using const_reference = ImplTy::const_reference;
|
|
|
|
void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
|
|
|
|
reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
|
|
BumpVectorContext &C) {
|
|
return Impl.insert(I, Cnt, E, C);
|
|
}
|
|
|
|
const_reference front() const { return Impl.back(); }
|
|
const_reference back() const { return Impl.front(); }
|
|
|
|
iterator begin() { return Impl.rbegin(); }
|
|
iterator end() { return Impl.rend(); }
|
|
const_iterator begin() const { return Impl.rbegin(); }
|
|
const_iterator end() const { return Impl.rend(); }
|
|
reverse_iterator rbegin() { return Impl.begin(); }
|
|
reverse_iterator rend() { return Impl.end(); }
|
|
const_reverse_iterator rbegin() const { return Impl.begin(); }
|
|
const_reverse_iterator rend() const { return Impl.end(); }
|
|
|
|
CFGElement operator[](size_t i) const {
|
|
assert(i < Impl.size());
|
|
return Impl[Impl.size() - 1 - i];
|
|
}
|
|
|
|
size_t size() const { return Impl.size(); }
|
|
bool empty() const { return Impl.empty(); }
|
|
};
|
|
|
|
/// A convenience class for comparing CFGElements, since methods of CFGBlock
|
|
/// like operator[] return CFGElements by value. This is practically a wrapper
|
|
/// around a (CFGBlock, Index) pair.
|
|
template <bool IsConst> class ElementRefImpl {
|
|
|
|
template <bool IsOtherConst> friend class ElementRefImpl;
|
|
|
|
using CFGBlockPtr =
|
|
std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
|
|
|
|
using CFGElementPtr =
|
|
std::conditional_t<IsConst, const CFGElement *, CFGElement *>;
|
|
|
|
protected:
|
|
CFGBlockPtr Parent;
|
|
size_t Index;
|
|
|
|
public:
|
|
ElementRefImpl(CFGBlockPtr Parent, size_t Index)
|
|
: Parent(Parent), Index(Index) {}
|
|
|
|
template <bool IsOtherConst>
|
|
ElementRefImpl(ElementRefImpl<IsOtherConst> Other)
|
|
: ElementRefImpl(Other.Parent, Other.Index) {}
|
|
|
|
size_t getIndexInBlock() const { return Index; }
|
|
|
|
CFGBlockPtr getParent() { return Parent; }
|
|
CFGBlockPtr getParent() const { return Parent; }
|
|
|
|
bool operator<(ElementRefImpl Other) const {
|
|
return std::make_pair(Parent, Index) <
|
|
std::make_pair(Other.Parent, Other.Index);
|
|
}
|
|
|
|
bool operator==(ElementRefImpl Other) const {
|
|
return Parent == Other.Parent && Index == Other.Index;
|
|
}
|
|
|
|
bool operator!=(ElementRefImpl Other) const { return !(*this == Other); }
|
|
CFGElement operator*() const { return (*Parent)[Index]; }
|
|
CFGElementPtr operator->() const { return &*(Parent->begin() + Index); }
|
|
|
|
void dumpToStream(llvm::raw_ostream &OS) const {
|
|
OS << getIndexInBlock() + 1 << ": ";
|
|
(*this)->dumpToStream(OS);
|
|
}
|
|
|
|
void dump() const {
|
|
dumpToStream(llvm::errs());
|
|
}
|
|
};
|
|
|
|
template <bool IsReverse, bool IsConst> class ElementRefIterator {
|
|
|
|
template <bool IsOtherReverse, bool IsOtherConst>
|
|
friend class ElementRefIterator;
|
|
|
|
using CFGBlockRef =
|
|
std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
|
|
|
|
using UnderlayingIteratorTy = std::conditional_t<
|
|
IsConst,
|
|
std::conditional_t<IsReverse, ElementList::const_reverse_iterator,
|
|
ElementList::const_iterator>,
|
|
std::conditional_t<IsReverse, ElementList::reverse_iterator,
|
|
ElementList::iterator>>;
|
|
|
|
using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>;
|
|
using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>;
|
|
|
|
public:
|
|
using difference_type = typename IteratorTraits::difference_type;
|
|
using value_type = ElementRef;
|
|
using pointer = ElementRef *;
|
|
using iterator_category = typename IteratorTraits::iterator_category;
|
|
|
|
private:
|
|
CFGBlockRef Parent;
|
|
UnderlayingIteratorTy Pos;
|
|
|
|
public:
|
|
ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos)
|
|
: Parent(Parent), Pos(Pos) {}
|
|
|
|
template <bool IsOtherConst>
|
|
ElementRefIterator(ElementRefIterator<false, IsOtherConst> E)
|
|
: ElementRefIterator(E.Parent, E.Pos.base()) {}
|
|
|
|
template <bool IsOtherConst>
|
|
ElementRefIterator(ElementRefIterator<true, IsOtherConst> E)
|
|
: ElementRefIterator(E.Parent, std::make_reverse_iterator(E.Pos)) {}
|
|
|
|
bool operator<(ElementRefIterator Other) const {
|
|
assert(Parent == Other.Parent);
|
|
return Pos < Other.Pos;
|
|
}
|
|
|
|
bool operator==(ElementRefIterator Other) const {
|
|
return Parent == Other.Parent && Pos == Other.Pos;
|
|
}
|
|
|
|
bool operator!=(ElementRefIterator Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
private:
|
|
template <bool IsOtherConst>
|
|
static size_t
|
|
getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) {
|
|
return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1;
|
|
}
|
|
|
|
template <bool IsOtherConst>
|
|
static size_t
|
|
getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) {
|
|
return E.Pos - E.Parent->begin();
|
|
}
|
|
|
|
public:
|
|
value_type operator*() { return {Parent, getIndexInBlock(*this)}; }
|
|
|
|
difference_type operator-(ElementRefIterator Other) const {
|
|
return Pos - Other.Pos;
|
|
}
|
|
|
|
ElementRefIterator operator++() {
|
|
++this->Pos;
|
|
return *this;
|
|
}
|
|
ElementRefIterator operator++(int) {
|
|
ElementRefIterator Ret = *this;
|
|
++*this;
|
|
return Ret;
|
|
}
|
|
ElementRefIterator operator+(size_t count) {
|
|
this->Pos += count;
|
|
return *this;
|
|
}
|
|
ElementRefIterator operator-(size_t count) {
|
|
this->Pos -= count;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
public:
|
|
/// The set of statements in the basic block.
|
|
ElementList Elements;
|
|
|
|
/// An (optional) label that prefixes the executable statements in the block.
|
|
/// When this variable is non-NULL, it is either an instance of LabelStmt,
|
|
/// SwitchCase or CXXCatchStmt.
|
|
Stmt *Label = nullptr;
|
|
|
|
/// The terminator for a basic block that indicates the type of control-flow
|
|
/// that occurs between a block and its successors.
|
|
CFGTerminator Terminator;
|
|
|
|
/// Some blocks are used to represent the "loop edge" to the start of a loop
|
|
/// from within the loop body. This Stmt* will be refer to the loop statement
|
|
/// for such blocks (and be null otherwise).
|
|
const Stmt *LoopTarget = nullptr;
|
|
|
|
/// A numerical ID assigned to a CFGBlock during construction of the CFG.
|
|
unsigned BlockID;
|
|
|
|
public:
|
|
/// This class represents a potential adjacent block in the CFG. It encodes
|
|
/// whether or not the block is actually reachable, or can be proved to be
|
|
/// trivially unreachable. For some cases it allows one to encode scenarios
|
|
/// where a block was substituted because the original (now alternate) block
|
|
/// is unreachable.
|
|
class AdjacentBlock {
|
|
enum Kind {
|
|
AB_Normal,
|
|
AB_Unreachable,
|
|
AB_Alternate
|
|
};
|
|
|
|
CFGBlock *ReachableBlock;
|
|
llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;
|
|
|
|
public:
|
|
/// Construct an AdjacentBlock with a possibly unreachable block.
|
|
AdjacentBlock(CFGBlock *B, bool IsReachable);
|
|
|
|
/// Construct an AdjacentBlock with a reachable block and an alternate
|
|
/// unreachable block.
|
|
AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
|
|
|
|
/// Get the reachable block, if one exists.
|
|
CFGBlock *getReachableBlock() const {
|
|
return ReachableBlock;
|
|
}
|
|
|
|
/// Get the potentially unreachable block.
|
|
CFGBlock *getPossiblyUnreachableBlock() const {
|
|
return UnreachableBlock.getPointer();
|
|
}
|
|
|
|
/// Provide an implicit conversion to CFGBlock* so that
|
|
/// AdjacentBlock can be substituted for CFGBlock*.
|
|
operator CFGBlock*() const {
|
|
return getReachableBlock();
|
|
}
|
|
|
|
CFGBlock& operator *() const {
|
|
return *getReachableBlock();
|
|
}
|
|
|
|
CFGBlock* operator ->() const {
|
|
return getReachableBlock();
|
|
}
|
|
|
|
bool isReachable() const {
|
|
Kind K = (Kind) UnreachableBlock.getInt();
|
|
return K == AB_Normal || K == AB_Alternate;
|
|
}
|
|
};
|
|
|
|
private:
|
|
/// Keep track of the predecessor / successor CFG blocks.
|
|
using AdjacentBlocks = BumpVector<AdjacentBlock>;
|
|
AdjacentBlocks Preds;
|
|
AdjacentBlocks Succs;
|
|
|
|
/// This bit is set when the basic block contains a function call
|
|
/// or implicit destructor that is attributed as 'noreturn'. In that case,
|
|
/// control cannot technically ever proceed past this block. All such blocks
|
|
/// will have a single immediate successor: the exit block. This allows them
|
|
/// to be easily reached from the exit block and using this bit quickly
|
|
/// recognized without scanning the contents of the block.
|
|
///
|
|
/// Optimization Note: This bit could be profitably folded with Terminator's
|
|
/// storage if the memory usage of CFGBlock becomes an issue.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned HasNoReturnElement : 1;
|
|
|
|
/// The parent CFG that owns this CFGBlock.
|
|
CFG *Parent;
|
|
|
|
public:
|
|
explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
|
|
: Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
|
|
Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}
|
|
|
|
// Statement iterators
|
|
using iterator = ElementList::iterator;
|
|
using const_iterator = ElementList::const_iterator;
|
|
using reverse_iterator = ElementList::reverse_iterator;
|
|
using const_reverse_iterator = ElementList::const_reverse_iterator;
|
|
|
|
size_t getIndexInCFG() const;
|
|
|
|
CFGElement front() const { return Elements.front(); }
|
|
CFGElement back() const { return Elements.back(); }
|
|
|
|
iterator begin() { return Elements.begin(); }
|
|
iterator end() { return Elements.end(); }
|
|
const_iterator begin() const { return Elements.begin(); }
|
|
const_iterator end() const { return Elements.end(); }
|
|
|
|
reverse_iterator rbegin() { return Elements.rbegin(); }
|
|
reverse_iterator rend() { return Elements.rend(); }
|
|
const_reverse_iterator rbegin() const { return Elements.rbegin(); }
|
|
const_reverse_iterator rend() const { return Elements.rend(); }
|
|
|
|
using CFGElementRef = ElementRefImpl<false>;
|
|
using ConstCFGElementRef = ElementRefImpl<true>;
|
|
|
|
using ref_iterator = ElementRefIterator<false, false>;
|
|
using ref_iterator_range = llvm::iterator_range<ref_iterator>;
|
|
using const_ref_iterator = ElementRefIterator<false, true>;
|
|
using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>;
|
|
|
|
using reverse_ref_iterator = ElementRefIterator<true, false>;
|
|
using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>;
|
|
|
|
using const_reverse_ref_iterator = ElementRefIterator<true, true>;
|
|
using const_reverse_ref_iterator_range =
|
|
llvm::iterator_range<const_reverse_ref_iterator>;
|
|
|
|
ref_iterator ref_begin() { return {this, begin()}; }
|
|
ref_iterator ref_end() { return {this, end()}; }
|
|
const_ref_iterator ref_begin() const { return {this, begin()}; }
|
|
const_ref_iterator ref_end() const { return {this, end()}; }
|
|
|
|
reverse_ref_iterator rref_begin() { return {this, rbegin()}; }
|
|
reverse_ref_iterator rref_end() { return {this, rend()}; }
|
|
const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; }
|
|
const_reverse_ref_iterator rref_end() const { return {this, rend()}; }
|
|
|
|
ref_iterator_range refs() { return {ref_begin(), ref_end()}; }
|
|
const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; }
|
|
reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; }
|
|
const_reverse_ref_iterator_range rrefs() const {
|
|
return {rref_begin(), rref_end()};
|
|
}
|
|
|
|
unsigned size() const { return Elements.size(); }
|
|
bool empty() const { return Elements.empty(); }
|
|
|
|
CFGElement operator[](size_t i) const { return Elements[i]; }
|
|
|
|
// CFG iterators
|
|
using pred_iterator = AdjacentBlocks::iterator;
|
|
using const_pred_iterator = AdjacentBlocks::const_iterator;
|
|
using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
|
|
using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
|
|
using pred_range = llvm::iterator_range<pred_iterator>;
|
|
using pred_const_range = llvm::iterator_range<const_pred_iterator>;
|
|
|
|
using succ_iterator = AdjacentBlocks::iterator;
|
|
using const_succ_iterator = AdjacentBlocks::const_iterator;
|
|
using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
|
|
using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
|
|
using succ_range = llvm::iterator_range<succ_iterator>;
|
|
using succ_const_range = llvm::iterator_range<const_succ_iterator>;
|
|
|
|
pred_iterator pred_begin() { return Preds.begin(); }
|
|
pred_iterator pred_end() { return Preds.end(); }
|
|
const_pred_iterator pred_begin() const { return Preds.begin(); }
|
|
const_pred_iterator pred_end() const { return Preds.end(); }
|
|
|
|
pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); }
|
|
pred_reverse_iterator pred_rend() { return Preds.rend(); }
|
|
const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); }
|
|
const_pred_reverse_iterator pred_rend() const { return Preds.rend(); }
|
|
|
|
pred_range preds() {
|
|
return pred_range(pred_begin(), pred_end());
|
|
}
|
|
|
|
pred_const_range preds() const {
|
|
return pred_const_range(pred_begin(), pred_end());
|
|
}
|
|
|
|
succ_iterator succ_begin() { return Succs.begin(); }
|
|
succ_iterator succ_end() { return Succs.end(); }
|
|
const_succ_iterator succ_begin() const { return Succs.begin(); }
|
|
const_succ_iterator succ_end() const { return Succs.end(); }
|
|
|
|
succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); }
|
|
succ_reverse_iterator succ_rend() { return Succs.rend(); }
|
|
const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); }
|
|
const_succ_reverse_iterator succ_rend() const { return Succs.rend(); }
|
|
|
|
succ_range succs() {
|
|
return succ_range(succ_begin(), succ_end());
|
|
}
|
|
|
|
succ_const_range succs() const {
|
|
return succ_const_range(succ_begin(), succ_end());
|
|
}
|
|
|
|
unsigned succ_size() const { return Succs.size(); }
|
|
bool succ_empty() const { return Succs.empty(); }
|
|
|
|
unsigned pred_size() const { return Preds.size(); }
|
|
bool pred_empty() const { return Preds.empty(); }
|
|
|
|
|
|
class FilterOptions {
|
|
public:
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned IgnoreNullPredecessors : 1;
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned IgnoreDefaultsWithCoveredEnums : 1;
|
|
|
|
FilterOptions()
|
|
: IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
|
|
};
|
|
|
|
static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
|
|
const CFGBlock *Dst);
|
|
|
|
template <typename IMPL, bool IsPred>
|
|
class FilteredCFGBlockIterator {
|
|
private:
|
|
IMPL I, E;
|
|
const FilterOptions F;
|
|
const CFGBlock *From;
|
|
|
|
public:
|
|
explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
|
|
const CFGBlock *from,
|
|
const FilterOptions &f)
|
|
: I(i), E(e), F(f), From(from) {
|
|
while (hasMore() && Filter(*I))
|
|
++I;
|
|
}
|
|
|
|
bool hasMore() const { return I != E; }
|
|
|
|
FilteredCFGBlockIterator &operator++() {
|
|
do { ++I; } while (hasMore() && Filter(*I));
|
|
return *this;
|
|
}
|
|
|
|
const CFGBlock *operator*() const { return *I; }
|
|
|
|
private:
|
|
bool Filter(const CFGBlock *To) {
|
|
return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
|
|
}
|
|
};
|
|
|
|
using filtered_pred_iterator =
|
|
FilteredCFGBlockIterator<const_pred_iterator, true>;
|
|
|
|
using filtered_succ_iterator =
|
|
FilteredCFGBlockIterator<const_succ_iterator, false>;
|
|
|
|
filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
|
|
return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
|
|
}
|
|
|
|
filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
|
|
return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
|
|
}
|
|
|
|
// Manipulation of block contents
|
|
|
|
void setTerminator(CFGTerminator Term) { Terminator = Term; }
|
|
void setLabel(Stmt *Statement) { Label = Statement; }
|
|
void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
|
|
void setHasNoReturnElement() { HasNoReturnElement = true; }
|
|
|
|
/// Returns true if the block would eventually end with a sink (a noreturn
|
|
/// node).
|
|
bool isInevitablySinking() const;
|
|
|
|
CFGTerminator getTerminator() const { return Terminator; }
|
|
|
|
Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
|
|
const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }
|
|
|
|
/// \returns the last (\c rbegin()) condition, e.g. observe the following code
|
|
/// snippet:
|
|
/// if (A && B && C)
|
|
/// A block would be created for \c A, \c B, and \c C. For the latter,
|
|
/// \c getTerminatorStmt() would retrieve the entire condition, rather than
|
|
/// C itself, while this method would only return C.
|
|
const Expr *getLastCondition() const;
|
|
|
|
Stmt *getTerminatorCondition(bool StripParens = true);
|
|
|
|
const Stmt *getTerminatorCondition(bool StripParens = true) const {
|
|
return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
|
|
}
|
|
|
|
const Stmt *getLoopTarget() const { return LoopTarget; }
|
|
|
|
Stmt *getLabel() { return Label; }
|
|
const Stmt *getLabel() const { return Label; }
|
|
|
|
bool hasNoReturnElement() const { return HasNoReturnElement; }
|
|
|
|
unsigned getBlockID() const { return BlockID; }
|
|
|
|
CFG *getParent() const { return Parent; }
|
|
|
|
void dump() const;
|
|
|
|
void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
|
|
void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
|
|
bool ShowColors) const;
|
|
|
|
void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
|
|
void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
|
|
bool AddQuotes) const;
|
|
|
|
void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
|
|
OS << "BB#" << getBlockID();
|
|
}
|
|
|
|
/// Adds a (potentially unreachable) successor block to the current block.
|
|
void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
|
|
|
|
void appendStmt(Stmt *statement, BumpVectorContext &C) {
|
|
Elements.push_back(CFGStmt(statement), C);
|
|
}
|
|
|
|
void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
|
|
BumpVectorContext &C) {
|
|
Elements.push_back(CFGConstructor(CE, CC), C);
|
|
}
|
|
|
|
void appendCXXRecordTypedCall(Expr *E,
|
|
const ConstructionContext *CC,
|
|
BumpVectorContext &C) {
|
|
Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
|
|
}
|
|
|
|
void appendInitializer(CXXCtorInitializer *initializer,
|
|
BumpVectorContext &C) {
|
|
Elements.push_back(CFGInitializer(initializer), C);
|
|
}
|
|
|
|
void appendNewAllocator(CXXNewExpr *NE,
|
|
BumpVectorContext &C) {
|
|
Elements.push_back(CFGNewAllocator(NE), C);
|
|
}
|
|
|
|
void appendScopeBegin(const VarDecl *VD, const Stmt *S,
|
|
BumpVectorContext &C) {
|
|
Elements.push_back(CFGScopeBegin(VD, S), C);
|
|
}
|
|
|
|
void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
|
|
Elements.push_back(CFGScopeEnd(VD, S), C);
|
|
}
|
|
|
|
void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
|
|
Elements.push_back(CFGBaseDtor(BS), C);
|
|
}
|
|
|
|
void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
|
|
Elements.push_back(CFGMemberDtor(FD), C);
|
|
}
|
|
|
|
void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
|
|
Elements.push_back(CFGTemporaryDtor(E), C);
|
|
}
|
|
|
|
void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
|
|
Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
|
|
}
|
|
|
|
void appendCleanupFunction(const VarDecl *VD, BumpVectorContext &C) {
|
|
Elements.push_back(CFGCleanupFunction(VD), C);
|
|
}
|
|
|
|
void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
|
|
Elements.push_back(CFGLifetimeEnds(VD, S), C);
|
|
}
|
|
|
|
void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
|
|
Elements.push_back(CFGLoopExit(LoopStmt), C);
|
|
}
|
|
|
|
void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
|
|
Elements.push_back(CFGDeleteDtor(RD, DE), C);
|
|
}
|
|
};
|
|
|
|
/// CFGCallback defines methods that should be called when a logical
|
|
/// operator error is found when building the CFG.
|
|
class CFGCallback {
|
|
public:
|
|
CFGCallback() = default;
|
|
virtual ~CFGCallback() = default;
|
|
|
|
virtual void logicAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
|
|
virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
|
|
virtual void compareBitwiseEquality(const BinaryOperator *B,
|
|
bool isAlwaysTrue) {}
|
|
virtual void compareBitwiseOr(const BinaryOperator *B) {}
|
|
};
|
|
|
|
/// Represents a source-level, intra-procedural CFG that represents the
|
|
/// control-flow of a Stmt. The Stmt can represent an entire function body,
|
|
/// or a single expression. A CFG will always contain one empty block that
|
|
/// represents the Exit point of the CFG. A CFG will also contain a designated
|
|
/// Entry block. The CFG solely represents control-flow; it consists of
|
|
/// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
|
|
/// was constructed from.
|
|
class CFG {
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// CFG Construction & Manipulation.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
class BuildOptions {
|
|
// Stmt::lastStmtConstant has the same value as the last Stmt kind,
|
|
// so make sure we add one to account for this!
|
|
std::bitset<Stmt::lastStmtConstant + 1> alwaysAddMask;
|
|
|
|
public:
|
|
using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;
|
|
|
|
ForcedBlkExprs **forcedBlkExprs = nullptr;
|
|
CFGCallback *Observer = nullptr;
|
|
bool PruneTriviallyFalseEdges = true;
|
|
bool AddEHEdges = false;
|
|
bool AddInitializers = false;
|
|
bool AddImplicitDtors = false;
|
|
bool AddLifetime = false;
|
|
bool AddLoopExit = false;
|
|
bool AddTemporaryDtors = false;
|
|
bool AddScopes = false;
|
|
bool AddStaticInitBranches = false;
|
|
bool AddCXXNewAllocator = false;
|
|
bool AddCXXDefaultInitExprInCtors = false;
|
|
bool AddCXXDefaultInitExprInAggregates = false;
|
|
bool AddRichCXXConstructors = false;
|
|
bool MarkElidedCXXConstructors = false;
|
|
bool AddVirtualBaseBranches = false;
|
|
bool OmitImplicitValueInitializers = false;
|
|
|
|
BuildOptions() = default;
|
|
|
|
bool alwaysAdd(const Stmt *stmt) const {
|
|
return alwaysAddMask[stmt->getStmtClass()];
|
|
}
|
|
|
|
BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
|
|
alwaysAddMask[stmtClass] = val;
|
|
return *this;
|
|
}
|
|
|
|
BuildOptions &setAllAlwaysAdd() {
|
|
alwaysAddMask.set();
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
/// Builds a CFG from an AST.
|
|
static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
|
|
const BuildOptions &BO);
|
|
|
|
/// Create a new block in the CFG. The CFG owns the block; the caller should
|
|
/// not directly free it.
|
|
CFGBlock *createBlock();
|
|
|
|
/// Set the entry block of the CFG. This is typically used only during CFG
|
|
/// construction. Most CFG clients expect that the entry block has no
|
|
/// predecessors and contains no statements.
|
|
void setEntry(CFGBlock *B) { Entry = B; }
|
|
|
|
/// Set the block used for indirect goto jumps. This is typically used only
|
|
/// during CFG construction.
|
|
void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Block Iterators
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
using CFGBlockListTy = BumpVector<CFGBlock *>;
|
|
using iterator = CFGBlockListTy::iterator;
|
|
using const_iterator = CFGBlockListTy::const_iterator;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
|
|
CFGBlock & front() { return *Blocks.front(); }
|
|
CFGBlock & back() { return *Blocks.back(); }
|
|
|
|
iterator begin() { return Blocks.begin(); }
|
|
iterator end() { return Blocks.end(); }
|
|
const_iterator begin() const { return Blocks.begin(); }
|
|
const_iterator end() const { return Blocks.end(); }
|
|
|
|
iterator nodes_begin() { return iterator(Blocks.begin()); }
|
|
iterator nodes_end() { return iterator(Blocks.end()); }
|
|
|
|
llvm::iterator_range<iterator> nodes() { return {begin(), end()}; }
|
|
llvm::iterator_range<const_iterator> const_nodes() const {
|
|
return {begin(), end()};
|
|
}
|
|
|
|
const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
|
|
const_iterator nodes_end() const { return const_iterator(Blocks.end()); }
|
|
|
|
reverse_iterator rbegin() { return Blocks.rbegin(); }
|
|
reverse_iterator rend() { return Blocks.rend(); }
|
|
const_reverse_iterator rbegin() const { return Blocks.rbegin(); }
|
|
const_reverse_iterator rend() const { return Blocks.rend(); }
|
|
|
|
llvm::iterator_range<reverse_iterator> reverse_nodes() {
|
|
return {rbegin(), rend()};
|
|
}
|
|
llvm::iterator_range<const_reverse_iterator> const_reverse_nodes() const {
|
|
return {rbegin(), rend()};
|
|
}
|
|
|
|
CFGBlock & getEntry() { return *Entry; }
|
|
const CFGBlock & getEntry() const { return *Entry; }
|
|
CFGBlock & getExit() { return *Exit; }
|
|
const CFGBlock & getExit() const { return *Exit; }
|
|
|
|
CFGBlock * getIndirectGotoBlock() { return IndirectGotoBlock; }
|
|
const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
|
|
|
|
using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;
|
|
using try_block_range = llvm::iterator_range<try_block_iterator>;
|
|
|
|
try_block_iterator try_blocks_begin() const {
|
|
return TryDispatchBlocks.begin();
|
|
}
|
|
|
|
try_block_iterator try_blocks_end() const {
|
|
return TryDispatchBlocks.end();
|
|
}
|
|
|
|
try_block_range try_blocks() const {
|
|
return try_block_range(try_blocks_begin(), try_blocks_end());
|
|
}
|
|
|
|
void addTryDispatchBlock(const CFGBlock *block) {
|
|
TryDispatchBlocks.push_back(block);
|
|
}
|
|
|
|
/// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
|
|
///
|
|
/// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
|
|
/// multiple decls.
|
|
void addSyntheticDeclStmt(const DeclStmt *Synthetic,
|
|
const DeclStmt *Source) {
|
|
assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
|
|
assert(Synthetic != Source && "Don't include original DeclStmts in map");
|
|
assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
|
|
SyntheticDeclStmts[Synthetic] = Source;
|
|
}
|
|
|
|
using synthetic_stmt_iterator =
|
|
llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
|
|
using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;
|
|
|
|
/// Iterates over synthetic DeclStmts in the CFG.
|
|
///
|
|
/// Each element is a (synthetic statement, source statement) pair.
|
|
///
|
|
/// \sa addSyntheticDeclStmt
|
|
synthetic_stmt_iterator synthetic_stmt_begin() const {
|
|
return SyntheticDeclStmts.begin();
|
|
}
|
|
|
|
/// \sa synthetic_stmt_begin
|
|
synthetic_stmt_iterator synthetic_stmt_end() const {
|
|
return SyntheticDeclStmts.end();
|
|
}
|
|
|
|
/// \sa synthetic_stmt_begin
|
|
synthetic_stmt_range synthetic_stmts() const {
|
|
return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Member templates useful for various batch operations over CFGs.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <typename Callback> void VisitBlockStmts(Callback &O) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I)
|
|
for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
|
|
BI != BE; ++BI) {
|
|
if (std::optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
|
|
O(const_cast<Stmt *>(stmt->getStmt()));
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// CFG Introspection.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Returns the total number of BlockIDs allocated (which start at 0).
|
|
unsigned getNumBlockIDs() const { return NumBlockIDs; }
|
|
|
|
/// Return the total number of CFGBlocks within the CFG This is simply a
|
|
/// renaming of the getNumBlockIDs(). This is necessary because the dominator
|
|
/// implementation needs such an interface.
|
|
unsigned size() const { return NumBlockIDs; }
|
|
|
|
/// Returns true if the CFG has no branches. Usually it boils down to the CFG
|
|
/// having exactly three blocks (entry, the actual code, exit), but sometimes
|
|
/// more blocks appear due to having control flow that can be fully
|
|
/// resolved in compile time.
|
|
bool isLinear() const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// CFG Debugging: Pretty-Printing and Visualization.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void viewCFG(const LangOptions &LO) const;
|
|
void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
|
|
void dump(const LangOptions &LO, bool ShowColors) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Internal: constructors and data.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
CFG() : Blocks(BlkBVC, 10) {}
|
|
|
|
llvm::BumpPtrAllocator& getAllocator() {
|
|
return BlkBVC.getAllocator();
|
|
}
|
|
|
|
BumpVectorContext &getBumpVectorContext() {
|
|
return BlkBVC;
|
|
}
|
|
|
|
private:
|
|
CFGBlock *Entry = nullptr;
|
|
CFGBlock *Exit = nullptr;
|
|
|
|
// Special block to contain collective dispatch for indirect gotos
|
|
CFGBlock* IndirectGotoBlock = nullptr;
|
|
|
|
unsigned NumBlockIDs = 0;
|
|
|
|
BumpVectorContext BlkBVC;
|
|
|
|
CFGBlockListTy Blocks;
|
|
|
|
/// C++ 'try' statements are modeled with an indirect dispatch block.
|
|
/// This is the collection of such blocks present in the CFG.
|
|
std::vector<const CFGBlock *> TryDispatchBlocks;
|
|
|
|
/// Collects DeclStmts synthesized for this CFG and maps each one back to its
|
|
/// source DeclStmt.
|
|
llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
|
|
};
|
|
|
|
Expr *extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE);
|
|
|
|
} // namespace clang
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
|
|
/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
|
|
/// CFGTerminator to a specific Stmt class.
|
|
template <> struct simplify_type< ::clang::CFGTerminator> {
|
|
using SimpleType = ::clang::Stmt *;
|
|
|
|
static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
|
|
return Val.getStmt();
|
|
}
|
|
};
|
|
|
|
// Traits for: CFGBlock
|
|
|
|
template <> struct GraphTraits< ::clang::CFGBlock *> {
|
|
using NodeRef = ::clang::CFGBlock *;
|
|
using ChildIteratorType = ::clang::CFGBlock::succ_iterator;
|
|
|
|
static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits< const ::clang::CFGBlock *> {
|
|
using NodeRef = const ::clang::CFGBlock *;
|
|
using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;
|
|
|
|
static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
|
|
using NodeRef = ::clang::CFGBlock *;
|
|
using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
|
|
|
|
static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
|
|
return G.Graph;
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
|
|
using NodeRef = const ::clang::CFGBlock *;
|
|
using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
|
|
|
|
static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
|
|
return G.Graph;
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
|
|
};
|
|
|
|
// Traits for: CFG
|
|
|
|
template <> struct GraphTraits< ::clang::CFG* >
|
|
: public GraphTraits< ::clang::CFGBlock *> {
|
|
using nodes_iterator = ::clang::CFG::iterator;
|
|
|
|
static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
|
|
static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
|
|
static nodes_iterator nodes_end(::clang::CFG* F) { return F->nodes_end(); }
|
|
static unsigned size(::clang::CFG* F) { return F->size(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<const ::clang::CFG* >
|
|
: public GraphTraits<const ::clang::CFGBlock *> {
|
|
using nodes_iterator = ::clang::CFG::const_iterator;
|
|
|
|
static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }
|
|
|
|
static nodes_iterator nodes_begin( const ::clang::CFG* F) {
|
|
return F->nodes_begin();
|
|
}
|
|
|
|
static nodes_iterator nodes_end( const ::clang::CFG* F) {
|
|
return F->nodes_end();
|
|
}
|
|
|
|
static unsigned size(const ::clang::CFG* F) {
|
|
return F->size();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse< ::clang::CFG *>>
|
|
: public GraphTraits<Inverse< ::clang::CFGBlock *>> {
|
|
using nodes_iterator = ::clang::CFG::iterator;
|
|
|
|
static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
|
|
static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
|
|
static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
|
|
: public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
|
|
using nodes_iterator = ::clang::CFG::const_iterator;
|
|
|
|
static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }
|
|
|
|
static nodes_iterator nodes_begin(const ::clang::CFG* F) {
|
|
return F->nodes_begin();
|
|
}
|
|
|
|
static nodes_iterator nodes_end(const ::clang::CFG* F) {
|
|
return F->nodes_end();
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_CLANG_ANALYSIS_CFG_H
|