clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
5321 lines
188 KiB
C++
5321 lines
188 KiB
C++
//===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Defines the clang::Expr interface and subclasses for C++ expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_EXPRCXX_H
|
|
#define LLVM_CLANG_AST_EXPRCXX_H
|
|
|
|
#include "clang/AST/ASTConcept.h"
|
|
#include "clang/AST/ComputeDependence.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/DependenceFlags.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/UnresolvedSet.h"
|
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
|
#include "clang/Basic/ExpressionTraits.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/Lambda.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TypeTraits.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/TrailingObjects.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <optional>
|
|
|
|
namespace clang {
|
|
|
|
class ASTContext;
|
|
class DeclAccessPair;
|
|
class IdentifierInfo;
|
|
class LambdaCapture;
|
|
class NonTypeTemplateParmDecl;
|
|
class TemplateParameterList;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Expressions.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// A call to an overloaded operator written using operator
|
|
/// syntax.
|
|
///
|
|
/// Represents a call to an overloaded operator written using operator
|
|
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
|
|
/// normal call, this AST node provides better information about the
|
|
/// syntactic representation of the call.
|
|
///
|
|
/// In a C++ template, this expression node kind will be used whenever
|
|
/// any of the arguments are type-dependent. In this case, the
|
|
/// function itself will be a (possibly empty) set of functions and
|
|
/// function templates that were found by name lookup at template
|
|
/// definition time.
|
|
class CXXOperatorCallExpr final : public CallExpr {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
SourceRange Range;
|
|
|
|
// CXXOperatorCallExpr has some trailing objects belonging
|
|
// to CallExpr. See CallExpr for the details.
|
|
|
|
SourceRange getSourceRangeImpl() const LLVM_READONLY;
|
|
|
|
CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
|
|
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
|
|
SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
|
|
ADLCallKind UsesADL);
|
|
|
|
CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
|
|
|
|
public:
|
|
static CXXOperatorCallExpr *
|
|
Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
|
|
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
|
|
SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
|
|
ADLCallKind UsesADL = NotADL);
|
|
|
|
static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
|
|
unsigned NumArgs, bool HasFPFeatures,
|
|
EmptyShell Empty);
|
|
|
|
/// Returns the kind of overloaded operator that this expression refers to.
|
|
OverloadedOperatorKind getOperator() const {
|
|
return static_cast<OverloadedOperatorKind>(
|
|
CXXOperatorCallExprBits.OperatorKind);
|
|
}
|
|
|
|
static bool isAssignmentOp(OverloadedOperatorKind Opc) {
|
|
return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
|
|
Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
|
|
Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
|
|
Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
|
|
Opc == OO_CaretEqual || Opc == OO_PipeEqual;
|
|
}
|
|
bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
|
|
|
|
static bool isComparisonOp(OverloadedOperatorKind Opc) {
|
|
switch (Opc) {
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
case OO_Greater:
|
|
case OO_GreaterEqual:
|
|
case OO_Less:
|
|
case OO_LessEqual:
|
|
case OO_Spaceship:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
bool isComparisonOp() const { return isComparisonOp(getOperator()); }
|
|
|
|
/// Is this written as an infix binary operator?
|
|
bool isInfixBinaryOp() const;
|
|
|
|
/// Returns the location of the operator symbol in the expression.
|
|
///
|
|
/// When \c getOperator()==OO_Call, this is the location of the right
|
|
/// parentheses; when \c getOperator()==OO_Subscript, this is the location
|
|
/// of the right bracket.
|
|
SourceLocation getOperatorLoc() const { return getRParenLoc(); }
|
|
|
|
SourceLocation getExprLoc() const LLVM_READONLY {
|
|
OverloadedOperatorKind Operator = getOperator();
|
|
return (Operator < OO_Plus || Operator >= OO_Arrow ||
|
|
Operator == OO_PlusPlus || Operator == OO_MinusMinus)
|
|
? getBeginLoc()
|
|
: getOperatorLoc();
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const { return Range.getBegin(); }
|
|
SourceLocation getEndLoc() const { return Range.getEnd(); }
|
|
SourceRange getSourceRange() const { return Range; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXOperatorCallExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a call to a member function that
|
|
/// may be written either with member call syntax (e.g., "obj.func()"
|
|
/// or "objptr->func()") or with normal function-call syntax
|
|
/// ("func()") within a member function that ends up calling a member
|
|
/// function. The callee in either case is a MemberExpr that contains
|
|
/// both the object argument and the member function, while the
|
|
/// arguments are the arguments within the parentheses (not including
|
|
/// the object argument).
|
|
class CXXMemberCallExpr final : public CallExpr {
|
|
// CXXMemberCallExpr has some trailing objects belonging
|
|
// to CallExpr. See CallExpr for the details.
|
|
|
|
CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
|
|
ExprValueKind VK, SourceLocation RP,
|
|
FPOptionsOverride FPOptions, unsigned MinNumArgs);
|
|
|
|
CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
|
|
|
|
public:
|
|
static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
|
|
ArrayRef<Expr *> Args, QualType Ty,
|
|
ExprValueKind VK, SourceLocation RP,
|
|
FPOptionsOverride FPFeatures,
|
|
unsigned MinNumArgs = 0);
|
|
|
|
static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
|
|
bool HasFPFeatures, EmptyShell Empty);
|
|
|
|
/// Retrieve the implicit object argument for the member call.
|
|
///
|
|
/// For example, in "x.f(5)", this returns the sub-expression "x".
|
|
Expr *getImplicitObjectArgument() const;
|
|
|
|
/// Retrieve the type of the object argument.
|
|
///
|
|
/// Note that this always returns a non-pointer type.
|
|
QualType getObjectType() const;
|
|
|
|
/// Retrieve the declaration of the called method.
|
|
CXXMethodDecl *getMethodDecl() const;
|
|
|
|
/// Retrieve the CXXRecordDecl for the underlying type of
|
|
/// the implicit object argument.
|
|
///
|
|
/// Note that this is may not be the same declaration as that of the class
|
|
/// context of the CXXMethodDecl which this function is calling.
|
|
/// FIXME: Returns 0 for member pointer call exprs.
|
|
CXXRecordDecl *getRecordDecl() const;
|
|
|
|
SourceLocation getExprLoc() const LLVM_READONLY {
|
|
SourceLocation CLoc = getCallee()->getExprLoc();
|
|
if (CLoc.isValid())
|
|
return CLoc;
|
|
|
|
return getBeginLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXMemberCallExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a call to a CUDA kernel function.
|
|
class CUDAKernelCallExpr final : public CallExpr {
|
|
friend class ASTStmtReader;
|
|
|
|
enum { CONFIG, END_PREARG };
|
|
|
|
// CUDAKernelCallExpr has some trailing objects belonging
|
|
// to CallExpr. See CallExpr for the details.
|
|
|
|
CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
|
|
QualType Ty, ExprValueKind VK, SourceLocation RP,
|
|
FPOptionsOverride FPFeatures, unsigned MinNumArgs);
|
|
|
|
CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
|
|
|
|
public:
|
|
static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
|
|
CallExpr *Config, ArrayRef<Expr *> Args,
|
|
QualType Ty, ExprValueKind VK,
|
|
SourceLocation RP,
|
|
FPOptionsOverride FPFeatures,
|
|
unsigned MinNumArgs = 0);
|
|
|
|
static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
|
|
unsigned NumArgs, bool HasFPFeatures,
|
|
EmptyShell Empty);
|
|
|
|
const CallExpr *getConfig() const {
|
|
return cast_or_null<CallExpr>(getPreArg(CONFIG));
|
|
}
|
|
CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CUDAKernelCallExprClass;
|
|
}
|
|
};
|
|
|
|
/// A rewritten comparison expression that was originally written using
|
|
/// operator syntax.
|
|
///
|
|
/// In C++20, the following rewrites are performed:
|
|
/// - <tt>a == b</tt> -> <tt>b == a</tt>
|
|
/// - <tt>a != b</tt> -> <tt>!(a == b)</tt>
|
|
/// - <tt>a != b</tt> -> <tt>!(b == a)</tt>
|
|
/// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>:
|
|
/// - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt>
|
|
/// - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt>
|
|
///
|
|
/// This expression provides access to both the original syntax and the
|
|
/// rewritten expression.
|
|
///
|
|
/// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically
|
|
/// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators.
|
|
class CXXRewrittenBinaryOperator : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
/// The rewritten semantic form.
|
|
Stmt *SemanticForm;
|
|
|
|
public:
|
|
CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed)
|
|
: Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(),
|
|
SemanticForm->getValueKind(), SemanticForm->getObjectKind()),
|
|
SemanticForm(SemanticForm) {
|
|
CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
CXXRewrittenBinaryOperator(EmptyShell Empty)
|
|
: Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}
|
|
|
|
/// Get an equivalent semantic form for this expression.
|
|
Expr *getSemanticForm() { return cast<Expr>(SemanticForm); }
|
|
const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }
|
|
|
|
struct DecomposedForm {
|
|
/// The original opcode, prior to rewriting.
|
|
BinaryOperatorKind Opcode;
|
|
/// The original left-hand side.
|
|
const Expr *LHS;
|
|
/// The original right-hand side.
|
|
const Expr *RHS;
|
|
/// The inner \c == or \c <=> operator expression.
|
|
const Expr *InnerBinOp;
|
|
};
|
|
|
|
/// Decompose this operator into its syntactic form.
|
|
DecomposedForm getDecomposedForm() const LLVM_READONLY;
|
|
|
|
/// Determine whether this expression was rewritten in reverse form.
|
|
bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }
|
|
|
|
BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; }
|
|
BinaryOperatorKind getOpcode() const { return getOperator(); }
|
|
static StringRef getOpcodeStr(BinaryOperatorKind Op) {
|
|
return BinaryOperator::getOpcodeStr(Op);
|
|
}
|
|
StringRef getOpcodeStr() const {
|
|
return BinaryOperator::getOpcodeStr(getOpcode());
|
|
}
|
|
bool isComparisonOp() const { return true; }
|
|
bool isAssignmentOp() const { return false; }
|
|
|
|
const Expr *getLHS() const { return getDecomposedForm().LHS; }
|
|
const Expr *getRHS() const { return getDecomposedForm().RHS; }
|
|
|
|
SourceLocation getOperatorLoc() const LLVM_READONLY {
|
|
return getDecomposedForm().InnerBinOp->getExprLoc();
|
|
}
|
|
SourceLocation getExprLoc() const LLVM_READONLY { return getOperatorLoc(); }
|
|
|
|
/// Compute the begin and end locations from the decomposed form.
|
|
/// The locations of the semantic form are not reliable if this is
|
|
/// a reversed expression.
|
|
//@{
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return getDecomposedForm().LHS->getBeginLoc();
|
|
}
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return getDecomposedForm().RHS->getEndLoc();
|
|
}
|
|
SourceRange getSourceRange() const LLVM_READONLY {
|
|
DecomposedForm DF = getDecomposedForm();
|
|
return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc());
|
|
}
|
|
//@}
|
|
|
|
child_range children() {
|
|
return child_range(&SemanticForm, &SemanticForm + 1);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXRewrittenBinaryOperatorClass;
|
|
}
|
|
};
|
|
|
|
/// Abstract class common to all of the C++ "named"/"keyword" casts.
|
|
///
|
|
/// This abstract class is inherited by all of the classes
|
|
/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
|
|
/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
|
|
/// reinterpret_cast, CXXConstCastExpr for \c const_cast and
|
|
/// CXXAddrspaceCastExpr for addrspace_cast (in OpenCL).
|
|
class CXXNamedCastExpr : public ExplicitCastExpr {
|
|
private:
|
|
// the location of the casting op
|
|
SourceLocation Loc;
|
|
|
|
// the location of the right parenthesis
|
|
SourceLocation RParenLoc;
|
|
|
|
// range for '<' '>'
|
|
SourceRange AngleBrackets;
|
|
|
|
protected:
|
|
friend class ASTStmtReader;
|
|
|
|
CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK, CastKind kind,
|
|
Expr *op, unsigned PathSize, bool HasFPFeatures,
|
|
TypeSourceInfo *writtenTy, SourceLocation l,
|
|
SourceLocation RParenLoc, SourceRange AngleBrackets)
|
|
: ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, HasFPFeatures,
|
|
writtenTy),
|
|
Loc(l), RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
|
|
|
|
explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize,
|
|
bool HasFPFeatures)
|
|
: ExplicitCastExpr(SC, Shell, PathSize, HasFPFeatures) {}
|
|
|
|
public:
|
|
const char *getCastName() const;
|
|
|
|
/// Retrieve the location of the cast operator keyword, e.g.,
|
|
/// \c static_cast.
|
|
SourceLocation getOperatorLoc() const { return Loc; }
|
|
|
|
/// Retrieve the location of the closing parenthesis.
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
|
|
SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
switch (T->getStmtClass()) {
|
|
case CXXStaticCastExprClass:
|
|
case CXXDynamicCastExprClass:
|
|
case CXXReinterpretCastExprClass:
|
|
case CXXConstCastExprClass:
|
|
case CXXAddrspaceCastExprClass:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A C++ \c static_cast expression (C++ [expr.static.cast]).
|
|
///
|
|
/// This expression node represents a C++ static cast, e.g.,
|
|
/// \c static_cast<int>(1.0).
|
|
class CXXStaticCastExpr final
|
|
: public CXXNamedCastExpr,
|
|
private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *,
|
|
FPOptionsOverride> {
|
|
CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
|
|
unsigned pathSize, TypeSourceInfo *writtenTy,
|
|
FPOptionsOverride FPO, SourceLocation l,
|
|
SourceLocation RParenLoc, SourceRange AngleBrackets)
|
|
: CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
|
|
FPO.requiresTrailingStorage(), writtenTy, l, RParenLoc,
|
|
AngleBrackets) {
|
|
if (hasStoredFPFeatures())
|
|
*getTrailingFPFeatures() = FPO;
|
|
}
|
|
|
|
explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize,
|
|
bool HasFPFeatures)
|
|
: CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize,
|
|
HasFPFeatures) {}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
|
|
return path_size();
|
|
}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXStaticCastExpr *
|
|
Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K,
|
|
Expr *Op, const CXXCastPath *Path, TypeSourceInfo *Written,
|
|
FPOptionsOverride FPO, SourceLocation L, SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets);
|
|
static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned PathSize, bool hasFPFeatures);
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXStaticCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
|
|
///
|
|
/// This expression node represents a dynamic cast, e.g.,
|
|
/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
|
|
/// check to determine how to perform the type conversion.
|
|
class CXXDynamicCastExpr final
|
|
: public CXXNamedCastExpr,
|
|
private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
|
|
CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind, Expr *op,
|
|
unsigned pathSize, TypeSourceInfo *writtenTy,
|
|
SourceLocation l, SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets)
|
|
: CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
|
|
/*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
|
|
AngleBrackets) {}
|
|
|
|
explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
|
|
: CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize,
|
|
/*HasFPFeatures*/ false) {}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
|
|
ExprValueKind VK, CastKind Kind, Expr *Op,
|
|
const CXXCastPath *Path,
|
|
TypeSourceInfo *Written, SourceLocation L,
|
|
SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets);
|
|
|
|
static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned pathSize);
|
|
|
|
bool isAlwaysNull() const;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXDynamicCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
|
|
///
|
|
/// This expression node represents a reinterpret cast, e.g.,
|
|
/// @c reinterpret_cast<int>(VoidPtr).
|
|
///
|
|
/// A reinterpret_cast provides a differently-typed view of a value but
|
|
/// (in Clang, as in most C++ implementations) performs no actual work at
|
|
/// run time.
|
|
class CXXReinterpretCastExpr final
|
|
: public CXXNamedCastExpr,
|
|
private llvm::TrailingObjects<CXXReinterpretCastExpr,
|
|
CXXBaseSpecifier *> {
|
|
CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
|
|
unsigned pathSize, TypeSourceInfo *writtenTy,
|
|
SourceLocation l, SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets)
|
|
: CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
|
|
pathSize, /*HasFPFeatures*/ false, writtenTy, l,
|
|
RParenLoc, AngleBrackets) {}
|
|
|
|
CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
|
|
: CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize,
|
|
/*HasFPFeatures*/ false) {}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
|
|
ExprValueKind VK, CastKind Kind,
|
|
Expr *Op, const CXXCastPath *Path,
|
|
TypeSourceInfo *WrittenTy, SourceLocation L,
|
|
SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets);
|
|
static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned pathSize);
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXReinterpretCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// A C++ \c const_cast expression (C++ [expr.const.cast]).
|
|
///
|
|
/// This expression node represents a const cast, e.g.,
|
|
/// \c const_cast<char*>(PtrToConstChar).
|
|
///
|
|
/// A const_cast can remove type qualifiers but does not change the underlying
|
|
/// value.
|
|
class CXXConstCastExpr final
|
|
: public CXXNamedCastExpr,
|
|
private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
|
|
CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
|
|
TypeSourceInfo *writtenTy, SourceLocation l,
|
|
SourceLocation RParenLoc, SourceRange AngleBrackets)
|
|
: CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 0,
|
|
/*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
|
|
AngleBrackets) {}
|
|
|
|
explicit CXXConstCastExpr(EmptyShell Empty)
|
|
: CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0,
|
|
/*HasFPFeatures*/ false) {}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
|
|
ExprValueKind VK, Expr *Op,
|
|
TypeSourceInfo *WrittenTy, SourceLocation L,
|
|
SourceLocation RParenLoc,
|
|
SourceRange AngleBrackets);
|
|
static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXConstCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// A C++ addrspace_cast expression (currently only enabled for OpenCL).
|
|
///
|
|
/// This expression node represents a cast between pointers to objects in
|
|
/// different address spaces e.g.,
|
|
/// \c addrspace_cast<global int*>(PtrToGenericInt).
|
|
///
|
|
/// A addrspace_cast can cast address space type qualifiers but does not change
|
|
/// the underlying value.
|
|
class CXXAddrspaceCastExpr final
|
|
: public CXXNamedCastExpr,
|
|
private llvm::TrailingObjects<CXXAddrspaceCastExpr, CXXBaseSpecifier *> {
|
|
CXXAddrspaceCastExpr(QualType ty, ExprValueKind VK, CastKind Kind, Expr *op,
|
|
TypeSourceInfo *writtenTy, SourceLocation l,
|
|
SourceLocation RParenLoc, SourceRange AngleBrackets)
|
|
: CXXNamedCastExpr(CXXAddrspaceCastExprClass, ty, VK, Kind, op, 0,
|
|
/*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
|
|
AngleBrackets) {}
|
|
|
|
explicit CXXAddrspaceCastExpr(EmptyShell Empty)
|
|
: CXXNamedCastExpr(CXXAddrspaceCastExprClass, Empty, 0,
|
|
/*HasFPFeatures*/ false) {}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXAddrspaceCastExpr *
|
|
Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind,
|
|
Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L,
|
|
SourceLocation RParenLoc, SourceRange AngleBrackets);
|
|
static CXXAddrspaceCastExpr *CreateEmpty(const ASTContext &Context);
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXAddrspaceCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// A call to a literal operator (C++11 [over.literal])
|
|
/// written as a user-defined literal (C++11 [lit.ext]).
|
|
///
|
|
/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
|
|
/// is semantically equivalent to a normal call, this AST node provides better
|
|
/// information about the syntactic representation of the literal.
|
|
///
|
|
/// Since literal operators are never found by ADL and can only be declared at
|
|
/// namespace scope, a user-defined literal is never dependent.
|
|
class UserDefinedLiteral final : public CallExpr {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
/// The location of a ud-suffix within the literal.
|
|
SourceLocation UDSuffixLoc;
|
|
|
|
// UserDefinedLiteral has some trailing objects belonging
|
|
// to CallExpr. See CallExpr for the details.
|
|
|
|
UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
|
|
ExprValueKind VK, SourceLocation LitEndLoc,
|
|
SourceLocation SuffixLoc, FPOptionsOverride FPFeatures);
|
|
|
|
UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
|
|
|
|
public:
|
|
static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
|
|
ArrayRef<Expr *> Args, QualType Ty,
|
|
ExprValueKind VK, SourceLocation LitEndLoc,
|
|
SourceLocation SuffixLoc,
|
|
FPOptionsOverride FPFeatures);
|
|
|
|
static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
|
|
unsigned NumArgs, bool HasFPOptions,
|
|
EmptyShell Empty);
|
|
|
|
/// The kind of literal operator which is invoked.
|
|
enum LiteralOperatorKind {
|
|
/// Raw form: operator "" X (const char *)
|
|
LOK_Raw,
|
|
|
|
/// Raw form: operator "" X<cs...> ()
|
|
LOK_Template,
|
|
|
|
/// operator "" X (unsigned long long)
|
|
LOK_Integer,
|
|
|
|
/// operator "" X (long double)
|
|
LOK_Floating,
|
|
|
|
/// operator "" X (const CharT *, size_t)
|
|
LOK_String,
|
|
|
|
/// operator "" X (CharT)
|
|
LOK_Character
|
|
};
|
|
|
|
/// Returns the kind of literal operator invocation
|
|
/// which this expression represents.
|
|
LiteralOperatorKind getLiteralOperatorKind() const;
|
|
|
|
/// If this is not a raw user-defined literal, get the
|
|
/// underlying cooked literal (representing the literal with the suffix
|
|
/// removed).
|
|
Expr *getCookedLiteral();
|
|
const Expr *getCookedLiteral() const {
|
|
return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const {
|
|
if (getLiteralOperatorKind() == LOK_Template)
|
|
return getRParenLoc();
|
|
return getArg(0)->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const { return getRParenLoc(); }
|
|
|
|
/// Returns the location of a ud-suffix in the expression.
|
|
///
|
|
/// For a string literal, there may be multiple identical suffixes. This
|
|
/// returns the first.
|
|
SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
|
|
|
|
/// Returns the ud-suffix specified for this literal.
|
|
const IdentifierInfo *getUDSuffix() const;
|
|
|
|
static bool classof(const Stmt *S) {
|
|
return S->getStmtClass() == UserDefinedLiteralClass;
|
|
}
|
|
};
|
|
|
|
/// A boolean literal, per ([C++ lex.bool] Boolean literals).
|
|
class CXXBoolLiteralExpr : public Expr {
|
|
public:
|
|
CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
|
|
: Expr(CXXBoolLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) {
|
|
CXXBoolLiteralExprBits.Value = Val;
|
|
CXXBoolLiteralExprBits.Loc = Loc;
|
|
setDependence(ExprDependence::None);
|
|
}
|
|
|
|
explicit CXXBoolLiteralExpr(EmptyShell Empty)
|
|
: Expr(CXXBoolLiteralExprClass, Empty) {}
|
|
|
|
static CXXBoolLiteralExpr *Create(const ASTContext &C, bool Val, QualType Ty,
|
|
SourceLocation Loc) {
|
|
return new (C) CXXBoolLiteralExpr(Val, Ty, Loc);
|
|
}
|
|
|
|
bool getValue() const { return CXXBoolLiteralExprBits.Value; }
|
|
void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
|
|
|
|
SourceLocation getBeginLoc() const { return getLocation(); }
|
|
SourceLocation getEndLoc() const { return getLocation(); }
|
|
|
|
SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
|
|
void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXBoolLiteralExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// The null pointer literal (C++11 [lex.nullptr])
|
|
///
|
|
/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
|
|
/// This also implements the null pointer literal in C23 (C23 6.4.1) which is
|
|
/// intended to have the same semantics as the feature in C++.
|
|
class CXXNullPtrLiteralExpr : public Expr {
|
|
public:
|
|
CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
|
|
: Expr(CXXNullPtrLiteralExprClass, Ty, VK_PRValue, OK_Ordinary) {
|
|
CXXNullPtrLiteralExprBits.Loc = Loc;
|
|
setDependence(ExprDependence::None);
|
|
}
|
|
|
|
explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
|
|
: Expr(CXXNullPtrLiteralExprClass, Empty) {}
|
|
|
|
SourceLocation getBeginLoc() const { return getLocation(); }
|
|
SourceLocation getEndLoc() const { return getLocation(); }
|
|
|
|
SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
|
|
void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXNullPtrLiteralExprClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Implicit construction of a std::initializer_list<T> object from an
|
|
/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
|
|
class CXXStdInitializerListExpr : public Expr {
|
|
Stmt *SubExpr = nullptr;
|
|
|
|
CXXStdInitializerListExpr(EmptyShell Empty)
|
|
: Expr(CXXStdInitializerListExprClass, Empty) {}
|
|
|
|
public:
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
|
|
CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
|
|
: Expr(CXXStdInitializerListExprClass, Ty, VK_PRValue, OK_Ordinary),
|
|
SubExpr(SubExpr) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
|
|
const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return SubExpr->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return SubExpr->getEndLoc();
|
|
}
|
|
|
|
/// Retrieve the source range of the expression.
|
|
SourceRange getSourceRange() const LLVM_READONLY {
|
|
return SubExpr->getSourceRange();
|
|
}
|
|
|
|
static bool classof(const Stmt *S) {
|
|
return S->getStmtClass() == CXXStdInitializerListExprClass;
|
|
}
|
|
|
|
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&SubExpr, &SubExpr + 1);
|
|
}
|
|
};
|
|
|
|
/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
|
|
/// the \c type_info that corresponds to the supplied type, or the (possibly
|
|
/// dynamic) type of the supplied expression.
|
|
///
|
|
/// This represents code like \c typeid(int) or \c typeid(*objPtr)
|
|
class CXXTypeidExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
private:
|
|
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
|
|
SourceRange Range;
|
|
|
|
public:
|
|
CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
|
|
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
|
|
Range(R) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
|
|
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
|
|
Range(R) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXTypeidExpr(EmptyShell Empty, bool isExpr)
|
|
: Expr(CXXTypeidExprClass, Empty) {
|
|
if (isExpr)
|
|
Operand = (Expr*)nullptr;
|
|
else
|
|
Operand = (TypeSourceInfo*)nullptr;
|
|
}
|
|
|
|
/// Determine whether this typeid has a type operand which is potentially
|
|
/// evaluated, per C++11 [expr.typeid]p3.
|
|
bool isPotentiallyEvaluated() const;
|
|
|
|
/// Best-effort check if the expression operand refers to a most derived
|
|
/// object. This is not a strong guarantee.
|
|
bool isMostDerived(ASTContext &Context) const;
|
|
|
|
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
|
|
|
|
/// Retrieves the type operand of this typeid() expression after
|
|
/// various required adjustments (removing reference types, cv-qualifiers).
|
|
QualType getTypeOperand(ASTContext &Context) const;
|
|
|
|
/// Retrieve source information for the type operand.
|
|
TypeSourceInfo *getTypeOperandSourceInfo() const {
|
|
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
|
|
return Operand.get<TypeSourceInfo *>();
|
|
}
|
|
Expr *getExprOperand() const {
|
|
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
|
|
return static_cast<Expr*>(Operand.get<Stmt *>());
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
|
|
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
|
|
void setSourceRange(SourceRange R) { Range = R; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXTypeidExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
if (isTypeOperand())
|
|
return child_range(child_iterator(), child_iterator());
|
|
auto **begin = reinterpret_cast<Stmt **>(&Operand);
|
|
return child_range(begin, begin + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
if (isTypeOperand())
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
|
|
auto **begin =
|
|
reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
|
|
return const_child_range(begin, begin + 1);
|
|
}
|
|
|
|
/// Whether this is of a form like "typeid(*ptr)" that can throw a
|
|
/// std::bad_typeid if a pointer is a null pointer ([expr.typeid]p2)
|
|
bool hasNullCheck() const;
|
|
};
|
|
|
|
/// A member reference to an MSPropertyDecl.
|
|
///
|
|
/// This expression always has pseudo-object type, and therefore it is
|
|
/// typically not encountered in a fully-typechecked expression except
|
|
/// within the syntactic form of a PseudoObjectExpr.
|
|
class MSPropertyRefExpr : public Expr {
|
|
Expr *BaseExpr;
|
|
MSPropertyDecl *TheDecl;
|
|
SourceLocation MemberLoc;
|
|
bool IsArrow;
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
|
|
MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
|
|
QualType ty, ExprValueKind VK,
|
|
NestedNameSpecifierLoc qualifierLoc, SourceLocation nameLoc)
|
|
: Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary), BaseExpr(baseExpr),
|
|
TheDecl(decl), MemberLoc(nameLoc), IsArrow(isArrow),
|
|
QualifierLoc(qualifierLoc) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
|
|
|
|
SourceRange getSourceRange() const LLVM_READONLY {
|
|
return SourceRange(getBeginLoc(), getEndLoc());
|
|
}
|
|
|
|
bool isImplicitAccess() const {
|
|
return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const {
|
|
if (!isImplicitAccess())
|
|
return BaseExpr->getBeginLoc();
|
|
else if (QualifierLoc)
|
|
return QualifierLoc.getBeginLoc();
|
|
else
|
|
return MemberLoc;
|
|
}
|
|
|
|
SourceLocation getEndLoc() const { return getMemberLoc(); }
|
|
|
|
child_range children() {
|
|
return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
|
|
return const_child_range(Children.begin(), Children.end());
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == MSPropertyRefExprClass;
|
|
}
|
|
|
|
Expr *getBaseExpr() const { return BaseExpr; }
|
|
MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
|
|
bool isArrow() const { return IsArrow; }
|
|
SourceLocation getMemberLoc() const { return MemberLoc; }
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
};
|
|
|
|
/// MS property subscript expression.
|
|
/// MSVC supports 'property' attribute and allows to apply it to the
|
|
/// declaration of an empty array in a class or structure definition.
|
|
/// For example:
|
|
/// \code
|
|
/// __declspec(property(get=GetX, put=PutX)) int x[];
|
|
/// \endcode
|
|
/// The above statement indicates that x[] can be used with one or more array
|
|
/// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
|
|
/// p->x[a][b] = i will be turned into p->PutX(a, b, i).
|
|
/// This is a syntactic pseudo-object expression.
|
|
class MSPropertySubscriptExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
|
|
|
|
Stmt *SubExprs[NUM_SUBEXPRS];
|
|
SourceLocation RBracketLoc;
|
|
|
|
void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
|
|
void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
|
|
|
|
public:
|
|
MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
|
|
ExprObjectKind OK, SourceLocation RBracketLoc)
|
|
: Expr(MSPropertySubscriptExprClass, Ty, VK, OK),
|
|
RBracketLoc(RBracketLoc) {
|
|
SubExprs[BASE_EXPR] = Base;
|
|
SubExprs[IDX_EXPR] = Idx;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
/// Create an empty array subscript expression.
|
|
explicit MSPropertySubscriptExpr(EmptyShell Shell)
|
|
: Expr(MSPropertySubscriptExprClass, Shell) {}
|
|
|
|
Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
|
|
const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
|
|
|
|
Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
|
|
const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return getBase()->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }
|
|
|
|
SourceLocation getRBracketLoc() const { return RBracketLoc; }
|
|
void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
|
|
|
|
SourceLocation getExprLoc() const LLVM_READONLY {
|
|
return getBase()->getExprLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == MSPropertySubscriptExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
|
|
}
|
|
};
|
|
|
|
/// A Microsoft C++ @c __uuidof expression, which gets
|
|
/// the _GUID that corresponds to the supplied type or expression.
|
|
///
|
|
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
|
|
class CXXUuidofExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
private:
|
|
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
|
|
MSGuidDecl *Guid;
|
|
SourceRange Range;
|
|
|
|
public:
|
|
CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, MSGuidDecl *Guid,
|
|
SourceRange R)
|
|
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
|
|
Guid(Guid), Range(R) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXUuidofExpr(QualType Ty, Expr *Operand, MSGuidDecl *Guid, SourceRange R)
|
|
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
|
|
Guid(Guid), Range(R) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXUuidofExpr(EmptyShell Empty, bool isExpr)
|
|
: Expr(CXXUuidofExprClass, Empty) {
|
|
if (isExpr)
|
|
Operand = (Expr*)nullptr;
|
|
else
|
|
Operand = (TypeSourceInfo*)nullptr;
|
|
}
|
|
|
|
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
|
|
|
|
/// Retrieves the type operand of this __uuidof() expression after
|
|
/// various required adjustments (removing reference types, cv-qualifiers).
|
|
QualType getTypeOperand(ASTContext &Context) const;
|
|
|
|
/// Retrieve source information for the type operand.
|
|
TypeSourceInfo *getTypeOperandSourceInfo() const {
|
|
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
|
|
return Operand.get<TypeSourceInfo *>();
|
|
}
|
|
Expr *getExprOperand() const {
|
|
assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
|
|
return static_cast<Expr*>(Operand.get<Stmt *>());
|
|
}
|
|
|
|
MSGuidDecl *getGuidDecl() const { return Guid; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
|
|
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
|
|
void setSourceRange(SourceRange R) { Range = R; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXUuidofExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
if (isTypeOperand())
|
|
return child_range(child_iterator(), child_iterator());
|
|
auto **begin = reinterpret_cast<Stmt **>(&Operand);
|
|
return child_range(begin, begin + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
if (isTypeOperand())
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
auto **begin =
|
|
reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
|
|
return const_child_range(begin, begin + 1);
|
|
}
|
|
};
|
|
|
|
/// Represents the \c this expression in C++.
|
|
///
|
|
/// This is a pointer to the object on which the current member function is
|
|
/// executing (C++ [expr.prim]p3). Example:
|
|
///
|
|
/// \code
|
|
/// class Foo {
|
|
/// public:
|
|
/// void bar();
|
|
/// void test() { this->bar(); }
|
|
/// };
|
|
/// \endcode
|
|
class CXXThisExpr : public Expr {
|
|
CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit, ExprValueKind VK)
|
|
: Expr(CXXThisExprClass, Ty, VK, OK_Ordinary) {
|
|
CXXThisExprBits.IsImplicit = IsImplicit;
|
|
CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
|
|
CXXThisExprBits.Loc = L;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
|
|
|
|
public:
|
|
static CXXThisExpr *Create(const ASTContext &Ctx, SourceLocation L,
|
|
QualType Ty, bool IsImplicit);
|
|
|
|
static CXXThisExpr *CreateEmpty(const ASTContext &Ctx);
|
|
|
|
SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
|
|
void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
|
|
|
|
SourceLocation getBeginLoc() const { return getLocation(); }
|
|
SourceLocation getEndLoc() const { return getLocation(); }
|
|
|
|
bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
|
|
void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
|
|
|
|
bool isCapturedByCopyInLambdaWithExplicitObjectParameter() const {
|
|
return CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter;
|
|
}
|
|
|
|
void setCapturedByCopyInLambdaWithExplicitObjectParameter(bool Set) {
|
|
CXXThisExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = Set;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXThisExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// A C++ throw-expression (C++ [except.throw]).
|
|
///
|
|
/// This handles 'throw' (for re-throwing the current exception) and
|
|
/// 'throw' assignment-expression. When assignment-expression isn't
|
|
/// present, Op will be null.
|
|
class CXXThrowExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
/// The optional expression in the throw statement.
|
|
Stmt *Operand;
|
|
|
|
public:
|
|
// \p Ty is the void type which is used as the result type of the
|
|
// expression. The \p Loc is the location of the throw keyword.
|
|
// \p Operand is the expression in the throw statement, and can be
|
|
// null if not present.
|
|
CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
|
|
bool IsThrownVariableInScope)
|
|
: Expr(CXXThrowExprClass, Ty, VK_PRValue, OK_Ordinary), Operand(Operand) {
|
|
CXXThrowExprBits.ThrowLoc = Loc;
|
|
CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
|
|
|
|
const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
|
|
Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
|
|
|
|
SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
|
|
|
|
/// Determines whether the variable thrown by this expression (if any!)
|
|
/// is within the innermost try block.
|
|
///
|
|
/// This information is required to determine whether the NRVO can apply to
|
|
/// this variable.
|
|
bool isThrownVariableInScope() const {
|
|
return CXXThrowExprBits.IsThrownVariableInScope;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const { return getThrowLoc(); }
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (!getSubExpr())
|
|
return getThrowLoc();
|
|
return getSubExpr()->getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXThrowExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
|
|
}
|
|
};
|
|
|
|
/// A default argument (C++ [dcl.fct.default]).
|
|
///
|
|
/// This wraps up a function call argument that was created from the
|
|
/// corresponding parameter's default argument, when the call did not
|
|
/// explicitly supply arguments for all of the parameters.
|
|
class CXXDefaultArgExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXDefaultArgExpr, Expr *> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTReader;
|
|
friend TrailingObjects;
|
|
|
|
/// The parameter whose default is being used.
|
|
ParmVarDecl *Param;
|
|
|
|
/// The context where the default argument expression was used.
|
|
DeclContext *UsedContext;
|
|
|
|
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
|
|
Expr *RewrittenExpr, DeclContext *UsedContext)
|
|
: Expr(SC,
|
|
Param->hasUnparsedDefaultArg()
|
|
? Param->getType().getNonReferenceType()
|
|
: Param->getDefaultArg()->getType(),
|
|
Param->getDefaultArg()->getValueKind(),
|
|
Param->getDefaultArg()->getObjectKind()),
|
|
Param(Param), UsedContext(UsedContext) {
|
|
CXXDefaultArgExprBits.Loc = Loc;
|
|
CXXDefaultArgExprBits.HasRewrittenInit = RewrittenExpr != nullptr;
|
|
if (RewrittenExpr)
|
|
*getTrailingObjects<Expr *>() = RewrittenExpr;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CXXDefaultArgExpr(EmptyShell Empty, bool HasRewrittenInit)
|
|
: Expr(CXXDefaultArgExprClass, Empty) {
|
|
CXXDefaultArgExprBits.HasRewrittenInit = HasRewrittenInit;
|
|
}
|
|
|
|
public:
|
|
static CXXDefaultArgExpr *CreateEmpty(const ASTContext &C,
|
|
bool HasRewrittenInit);
|
|
|
|
// \p Param is the parameter whose default argument is used by this
|
|
// expression.
|
|
static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
|
|
ParmVarDecl *Param, Expr *RewrittenExpr,
|
|
DeclContext *UsedContext);
|
|
// Retrieve the parameter that the argument was created from.
|
|
const ParmVarDecl *getParam() const { return Param; }
|
|
ParmVarDecl *getParam() { return Param; }
|
|
|
|
bool hasRewrittenInit() const {
|
|
return CXXDefaultArgExprBits.HasRewrittenInit;
|
|
}
|
|
|
|
// Retrieve the argument to the function call.
|
|
Expr *getExpr();
|
|
const Expr *getExpr() const {
|
|
return const_cast<CXXDefaultArgExpr *>(this)->getExpr();
|
|
}
|
|
|
|
Expr *getRewrittenExpr() {
|
|
return hasRewrittenInit() ? *getTrailingObjects<Expr *>() : nullptr;
|
|
}
|
|
|
|
const Expr *getRewrittenExpr() const {
|
|
return const_cast<CXXDefaultArgExpr *>(this)->getRewrittenExpr();
|
|
}
|
|
|
|
// Retrieve the rewritten init expression (for an init expression containing
|
|
// immediate calls) with the top level FullExpr and ConstantExpr stripped off.
|
|
Expr *getAdjustedRewrittenExpr();
|
|
const Expr *getAdjustedRewrittenExpr() const {
|
|
return const_cast<CXXDefaultArgExpr *>(this)->getAdjustedRewrittenExpr();
|
|
}
|
|
|
|
const DeclContext *getUsedContext() const { return UsedContext; }
|
|
DeclContext *getUsedContext() { return UsedContext; }
|
|
|
|
/// Retrieve the location where this default argument was actually used.
|
|
SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
|
|
|
|
/// Default argument expressions have no representation in the
|
|
/// source, so they have an empty source range.
|
|
SourceLocation getBeginLoc() const { return SourceLocation(); }
|
|
SourceLocation getEndLoc() const { return SourceLocation(); }
|
|
|
|
SourceLocation getExprLoc() const { return getUsedLocation(); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXDefaultArgExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// A use of a default initializer in a constructor or in aggregate
|
|
/// initialization.
|
|
///
|
|
/// This wraps a use of a C++ default initializer (technically,
|
|
/// a brace-or-equal-initializer for a non-static data member) when it
|
|
/// is implicitly used in a mem-initializer-list in a constructor
|
|
/// (C++11 [class.base.init]p8) or in aggregate initialization
|
|
/// (C++1y [dcl.init.aggr]p7).
|
|
class CXXDefaultInitExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXDefaultInitExpr, Expr *> {
|
|
|
|
friend class ASTStmtReader;
|
|
friend class ASTReader;
|
|
friend TrailingObjects;
|
|
/// The field whose default is being used.
|
|
FieldDecl *Field;
|
|
|
|
/// The context where the default initializer expression was used.
|
|
DeclContext *UsedContext;
|
|
|
|
CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
|
|
FieldDecl *Field, QualType Ty, DeclContext *UsedContext,
|
|
Expr *RewrittenInitExpr);
|
|
|
|
CXXDefaultInitExpr(EmptyShell Empty, bool HasRewrittenInit)
|
|
: Expr(CXXDefaultInitExprClass, Empty) {
|
|
CXXDefaultInitExprBits.HasRewrittenInit = HasRewrittenInit;
|
|
}
|
|
|
|
public:
|
|
static CXXDefaultInitExpr *CreateEmpty(const ASTContext &C,
|
|
bool HasRewrittenInit);
|
|
/// \p Field is the non-static data member whose default initializer is used
|
|
/// by this expression.
|
|
static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
|
|
FieldDecl *Field, DeclContext *UsedContext,
|
|
Expr *RewrittenInitExpr);
|
|
|
|
bool hasRewrittenInit() const {
|
|
return CXXDefaultInitExprBits.HasRewrittenInit;
|
|
}
|
|
|
|
/// Get the field whose initializer will be used.
|
|
FieldDecl *getField() { return Field; }
|
|
const FieldDecl *getField() const { return Field; }
|
|
|
|
/// Get the initialization expression that will be used.
|
|
Expr *getExpr();
|
|
const Expr *getExpr() const {
|
|
return const_cast<CXXDefaultInitExpr *>(this)->getExpr();
|
|
}
|
|
|
|
/// Retrieve the initializing expression with evaluated immediate calls, if
|
|
/// any.
|
|
const Expr *getRewrittenExpr() const {
|
|
assert(hasRewrittenInit() && "expected a rewritten init expression");
|
|
return *getTrailingObjects<Expr *>();
|
|
}
|
|
|
|
/// Retrieve the initializing expression with evaluated immediate calls, if
|
|
/// any.
|
|
Expr *getRewrittenExpr() {
|
|
assert(hasRewrittenInit() && "expected a rewritten init expression");
|
|
return *getTrailingObjects<Expr *>();
|
|
}
|
|
|
|
const DeclContext *getUsedContext() const { return UsedContext; }
|
|
DeclContext *getUsedContext() { return UsedContext; }
|
|
|
|
/// Retrieve the location where this default initializer expression was
|
|
/// actually used.
|
|
SourceLocation getUsedLocation() const { return getBeginLoc(); }
|
|
|
|
SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
|
|
SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXDefaultInitExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Represents a C++ temporary.
|
|
class CXXTemporary {
|
|
/// The destructor that needs to be called.
|
|
const CXXDestructorDecl *Destructor;
|
|
|
|
explicit CXXTemporary(const CXXDestructorDecl *destructor)
|
|
: Destructor(destructor) {}
|
|
|
|
public:
|
|
static CXXTemporary *Create(const ASTContext &C,
|
|
const CXXDestructorDecl *Destructor);
|
|
|
|
const CXXDestructorDecl *getDestructor() const { return Destructor; }
|
|
|
|
void setDestructor(const CXXDestructorDecl *Dtor) {
|
|
Destructor = Dtor;
|
|
}
|
|
};
|
|
|
|
/// Represents binding an expression to a temporary.
|
|
///
|
|
/// This ensures the destructor is called for the temporary. It should only be
|
|
/// needed for non-POD, non-trivially destructable class types. For example:
|
|
///
|
|
/// \code
|
|
/// struct S {
|
|
/// S() { } // User defined constructor makes S non-POD.
|
|
/// ~S() { } // User defined destructor makes it non-trivial.
|
|
/// };
|
|
/// void test() {
|
|
/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Destructor might be null if destructor declaration is not valid.
|
|
class CXXBindTemporaryExpr : public Expr {
|
|
CXXTemporary *Temp = nullptr;
|
|
Stmt *SubExpr = nullptr;
|
|
|
|
CXXBindTemporaryExpr(CXXTemporary *temp, Expr *SubExpr)
|
|
: Expr(CXXBindTemporaryExprClass, SubExpr->getType(), VK_PRValue,
|
|
OK_Ordinary),
|
|
Temp(temp), SubExpr(SubExpr) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
public:
|
|
CXXBindTemporaryExpr(EmptyShell Empty)
|
|
: Expr(CXXBindTemporaryExprClass, Empty) {}
|
|
|
|
static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
|
|
Expr* SubExpr);
|
|
|
|
CXXTemporary *getTemporary() { return Temp; }
|
|
const CXXTemporary *getTemporary() const { return Temp; }
|
|
void setTemporary(CXXTemporary *T) { Temp = T; }
|
|
|
|
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
|
|
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
|
|
void setSubExpr(Expr *E) { SubExpr = E; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return SubExpr->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return SubExpr->getEndLoc();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXBindTemporaryExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&SubExpr, &SubExpr + 1);
|
|
}
|
|
};
|
|
|
|
enum class CXXConstructionKind {
|
|
Complete,
|
|
NonVirtualBase,
|
|
VirtualBase,
|
|
Delegating
|
|
};
|
|
|
|
/// Represents a call to a C++ constructor.
|
|
class CXXConstructExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
/// A pointer to the constructor which will be ultimately called.
|
|
CXXConstructorDecl *Constructor;
|
|
|
|
SourceRange ParenOrBraceRange;
|
|
|
|
/// The number of arguments.
|
|
unsigned NumArgs;
|
|
|
|
// We would like to stash the arguments of the constructor call after
|
|
// CXXConstructExpr. However CXXConstructExpr is used as a base class of
|
|
// CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
|
|
// impossible.
|
|
//
|
|
// Instead we manually stash the trailing object after the full object
|
|
// containing CXXConstructExpr (that is either CXXConstructExpr or
|
|
// CXXTemporaryObjectExpr).
|
|
//
|
|
// The trailing objects are:
|
|
//
|
|
// * An array of getNumArgs() "Stmt *" for the arguments of the
|
|
// constructor call.
|
|
|
|
/// Return a pointer to the start of the trailing arguments.
|
|
/// Defined just after CXXTemporaryObjectExpr.
|
|
inline Stmt **getTrailingArgs();
|
|
const Stmt *const *getTrailingArgs() const {
|
|
return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
|
|
}
|
|
|
|
protected:
|
|
/// Build a C++ construction expression.
|
|
CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
|
|
CXXConstructorDecl *Ctor, bool Elidable,
|
|
ArrayRef<Expr *> Args, bool HadMultipleCandidates,
|
|
bool ListInitialization, bool StdInitListInitialization,
|
|
bool ZeroInitialization, CXXConstructionKind ConstructKind,
|
|
SourceRange ParenOrBraceRange);
|
|
|
|
/// Build an empty C++ construction expression.
|
|
CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
|
|
|
|
/// Return the size in bytes of the trailing objects. Used by
|
|
/// CXXTemporaryObjectExpr to allocate the right amount of storage.
|
|
static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
|
|
return NumArgs * sizeof(Stmt *);
|
|
}
|
|
|
|
public:
|
|
/// Create a C++ construction expression.
|
|
static CXXConstructExpr *
|
|
Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
|
|
CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
|
|
bool HadMultipleCandidates, bool ListInitialization,
|
|
bool StdInitListInitialization, bool ZeroInitialization,
|
|
CXXConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
|
|
|
|
/// Create an empty C++ construction expression.
|
|
static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
|
|
|
|
/// Get the constructor that this expression will (ultimately) call.
|
|
CXXConstructorDecl *getConstructor() const { return Constructor; }
|
|
|
|
SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
|
|
void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
|
|
|
|
/// Whether this construction is elidable.
|
|
bool isElidable() const { return CXXConstructExprBits.Elidable; }
|
|
void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
|
|
|
|
/// Whether the referred constructor was resolved from
|
|
/// an overloaded set having size greater than 1.
|
|
bool hadMultipleCandidates() const {
|
|
return CXXConstructExprBits.HadMultipleCandidates;
|
|
}
|
|
void setHadMultipleCandidates(bool V) {
|
|
CXXConstructExprBits.HadMultipleCandidates = V;
|
|
}
|
|
|
|
/// Whether this constructor call was written as list-initialization.
|
|
bool isListInitialization() const {
|
|
return CXXConstructExprBits.ListInitialization;
|
|
}
|
|
void setListInitialization(bool V) {
|
|
CXXConstructExprBits.ListInitialization = V;
|
|
}
|
|
|
|
/// Whether this constructor call was written as list-initialization,
|
|
/// but was interpreted as forming a std::initializer_list<T> from the list
|
|
/// and passing that as a single constructor argument.
|
|
/// See C++11 [over.match.list]p1 bullet 1.
|
|
bool isStdInitListInitialization() const {
|
|
return CXXConstructExprBits.StdInitListInitialization;
|
|
}
|
|
void setStdInitListInitialization(bool V) {
|
|
CXXConstructExprBits.StdInitListInitialization = V;
|
|
}
|
|
|
|
/// Whether this construction first requires
|
|
/// zero-initialization before the initializer is called.
|
|
bool requiresZeroInitialization() const {
|
|
return CXXConstructExprBits.ZeroInitialization;
|
|
}
|
|
void setRequiresZeroInitialization(bool ZeroInit) {
|
|
CXXConstructExprBits.ZeroInitialization = ZeroInit;
|
|
}
|
|
|
|
/// Determine whether this constructor is actually constructing
|
|
/// a base class (rather than a complete object).
|
|
CXXConstructionKind getConstructionKind() const {
|
|
return static_cast<CXXConstructionKind>(
|
|
CXXConstructExprBits.ConstructionKind);
|
|
}
|
|
void setConstructionKind(CXXConstructionKind CK) {
|
|
CXXConstructExprBits.ConstructionKind = llvm::to_underlying(CK);
|
|
}
|
|
|
|
using arg_iterator = ExprIterator;
|
|
using const_arg_iterator = ConstExprIterator;
|
|
using arg_range = llvm::iterator_range<arg_iterator>;
|
|
using const_arg_range = llvm::iterator_range<const_arg_iterator>;
|
|
|
|
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
|
|
const_arg_range arguments() const {
|
|
return const_arg_range(arg_begin(), arg_end());
|
|
}
|
|
|
|
arg_iterator arg_begin() { return getTrailingArgs(); }
|
|
arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
|
|
const_arg_iterator arg_begin() const { return getTrailingArgs(); }
|
|
const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
|
|
|
|
Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
|
|
const Expr *const *getArgs() const {
|
|
return reinterpret_cast<const Expr *const *>(getTrailingArgs());
|
|
}
|
|
|
|
/// Return the number of arguments to the constructor call.
|
|
unsigned getNumArgs() const { return NumArgs; }
|
|
|
|
/// Return the specified argument.
|
|
Expr *getArg(unsigned Arg) {
|
|
assert(Arg < getNumArgs() && "Arg access out of range!");
|
|
return getArgs()[Arg];
|
|
}
|
|
const Expr *getArg(unsigned Arg) const {
|
|
assert(Arg < getNumArgs() && "Arg access out of range!");
|
|
return getArgs()[Arg];
|
|
}
|
|
|
|
/// Set the specified argument.
|
|
void setArg(unsigned Arg, Expr *ArgExpr) {
|
|
assert(Arg < getNumArgs() && "Arg access out of range!");
|
|
getArgs()[Arg] = ArgExpr;
|
|
}
|
|
|
|
bool isImmediateEscalating() const {
|
|
return CXXConstructExprBits.IsImmediateEscalating;
|
|
}
|
|
|
|
void setIsImmediateEscalating(bool Set) {
|
|
CXXConstructExprBits.IsImmediateEscalating = Set;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY;
|
|
SourceLocation getEndLoc() const LLVM_READONLY;
|
|
SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
|
|
void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXConstructExprClass ||
|
|
T->getStmtClass() == CXXTemporaryObjectExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
auto Children = const_cast<CXXConstructExpr *>(this)->children();
|
|
return const_child_range(Children.begin(), Children.end());
|
|
}
|
|
};
|
|
|
|
/// Represents a call to an inherited base class constructor from an
|
|
/// inheriting constructor. This call implicitly forwards the arguments from
|
|
/// the enclosing context (an inheriting constructor) to the specified inherited
|
|
/// base class constructor.
|
|
class CXXInheritedCtorInitExpr : public Expr {
|
|
private:
|
|
CXXConstructorDecl *Constructor = nullptr;
|
|
|
|
/// The location of the using declaration.
|
|
SourceLocation Loc;
|
|
|
|
/// Whether this is the construction of a virtual base.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned ConstructsVirtualBase : 1;
|
|
|
|
/// Whether the constructor is inherited from a virtual base class of the
|
|
/// class that we construct.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned InheritedFromVirtualBase : 1;
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
|
|
/// Construct a C++ inheriting construction expression.
|
|
CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
|
|
CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
|
|
bool InheritedFromVirtualBase)
|
|
: Expr(CXXInheritedCtorInitExprClass, T, VK_PRValue, OK_Ordinary),
|
|
Constructor(Ctor), Loc(Loc),
|
|
ConstructsVirtualBase(ConstructsVirtualBase),
|
|
InheritedFromVirtualBase(InheritedFromVirtualBase) {
|
|
assert(!T->isDependentType());
|
|
setDependence(ExprDependence::None);
|
|
}
|
|
|
|
/// Construct an empty C++ inheriting construction expression.
|
|
explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
|
|
: Expr(CXXInheritedCtorInitExprClass, Empty),
|
|
ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
|
|
|
|
/// Get the constructor that this expression will call.
|
|
CXXConstructorDecl *getConstructor() const { return Constructor; }
|
|
|
|
/// Determine whether this constructor is actually constructing
|
|
/// a base class (rather than a complete object).
|
|
bool constructsVBase() const { return ConstructsVirtualBase; }
|
|
CXXConstructionKind getConstructionKind() const {
|
|
return ConstructsVirtualBase ? CXXConstructionKind::VirtualBase
|
|
: CXXConstructionKind::NonVirtualBase;
|
|
}
|
|
|
|
/// Determine whether the inherited constructor is inherited from a
|
|
/// virtual base of the object we construct. If so, we are not responsible
|
|
/// for calling the inherited constructor (the complete object constructor
|
|
/// does that), and so we don't need to pass any arguments.
|
|
bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
|
|
|
|
SourceLocation getLocation() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXInheritedCtorInitExprClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Represents an explicit C++ type conversion that uses "functional"
|
|
/// notation (C++ [expr.type.conv]).
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// x = int(0.5);
|
|
/// \endcode
|
|
class CXXFunctionalCastExpr final
|
|
: public ExplicitCastExpr,
|
|
private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *,
|
|
FPOptionsOverride> {
|
|
SourceLocation LParenLoc;
|
|
SourceLocation RParenLoc;
|
|
|
|
CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
|
|
TypeSourceInfo *writtenTy, CastKind kind,
|
|
Expr *castExpr, unsigned pathSize,
|
|
FPOptionsOverride FPO, SourceLocation lParenLoc,
|
|
SourceLocation rParenLoc)
|
|
: ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind, castExpr,
|
|
pathSize, FPO.requiresTrailingStorage(), writtenTy),
|
|
LParenLoc(lParenLoc), RParenLoc(rParenLoc) {
|
|
if (hasStoredFPFeatures())
|
|
*getTrailingFPFeatures() = FPO;
|
|
}
|
|
|
|
explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize,
|
|
bool HasFPFeatures)
|
|
: ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize,
|
|
HasFPFeatures) {}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
|
|
return path_size();
|
|
}
|
|
|
|
public:
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
static CXXFunctionalCastExpr *
|
|
Create(const ASTContext &Context, QualType T, ExprValueKind VK,
|
|
TypeSourceInfo *Written, CastKind Kind, Expr *Op,
|
|
const CXXCastPath *Path, FPOptionsOverride FPO, SourceLocation LPLoc,
|
|
SourceLocation RPLoc);
|
|
static CXXFunctionalCastExpr *
|
|
CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures);
|
|
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
|
|
/// Determine whether this expression models list-initialization.
|
|
bool isListInitialization() const { return LParenLoc.isInvalid(); }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY;
|
|
SourceLocation getEndLoc() const LLVM_READONLY;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXFunctionalCastExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a C++ functional cast expression that builds a
|
|
/// temporary object.
|
|
///
|
|
/// This expression type represents a C++ "functional" cast
|
|
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
|
|
/// constructor to build a temporary object. With N == 1 arguments the
|
|
/// functional cast expression will be represented by CXXFunctionalCastExpr.
|
|
/// Example:
|
|
/// \code
|
|
/// struct X { X(int, float); }
|
|
///
|
|
/// X create_X() {
|
|
/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
|
|
/// };
|
|
/// \endcode
|
|
class CXXTemporaryObjectExpr final : public CXXConstructExpr {
|
|
friend class ASTStmtReader;
|
|
|
|
// CXXTemporaryObjectExpr has some trailing objects belonging
|
|
// to CXXConstructExpr. See the comment inside CXXConstructExpr
|
|
// for more details.
|
|
|
|
TypeSourceInfo *TSI;
|
|
|
|
CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
|
|
TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
|
|
SourceRange ParenOrBraceRange,
|
|
bool HadMultipleCandidates, bool ListInitialization,
|
|
bool StdInitListInitialization,
|
|
bool ZeroInitialization);
|
|
|
|
CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
|
|
|
|
public:
|
|
static CXXTemporaryObjectExpr *
|
|
Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
|
|
TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
|
|
SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
|
|
bool ListInitialization, bool StdInitListInitialization,
|
|
bool ZeroInitialization);
|
|
|
|
static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
|
|
unsigned NumArgs);
|
|
|
|
TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY;
|
|
SourceLocation getEndLoc() const LLVM_READONLY;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXTemporaryObjectExprClass;
|
|
}
|
|
};
|
|
|
|
Stmt **CXXConstructExpr::getTrailingArgs() {
|
|
if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
|
|
return reinterpret_cast<Stmt **>(E + 1);
|
|
assert((getStmtClass() == CXXConstructExprClass) &&
|
|
"Unexpected class deriving from CXXConstructExpr!");
|
|
return reinterpret_cast<Stmt **>(this + 1);
|
|
}
|
|
|
|
/// A C++ lambda expression, which produces a function object
|
|
/// (of unspecified type) that can be invoked later.
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// void low_pass_filter(std::vector<double> &values, double cutoff) {
|
|
/// values.erase(std::remove_if(values.begin(), values.end(),
|
|
/// [=](double value) { return value > cutoff; });
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// C++11 lambda expressions can capture local variables, either by copying
|
|
/// the values of those local variables at the time the function
|
|
/// object is constructed (not when it is called!) or by holding a
|
|
/// reference to the local variable. These captures can occur either
|
|
/// implicitly or can be written explicitly between the square
|
|
/// brackets ([...]) that start the lambda expression.
|
|
///
|
|
/// C++1y introduces a new form of "capture" called an init-capture that
|
|
/// includes an initializing expression (rather than capturing a variable),
|
|
/// and which can never occur implicitly.
|
|
class LambdaExpr final : public Expr,
|
|
private llvm::TrailingObjects<LambdaExpr, Stmt *> {
|
|
// LambdaExpr has some data stored in LambdaExprBits.
|
|
|
|
/// The source range that covers the lambda introducer ([...]).
|
|
SourceRange IntroducerRange;
|
|
|
|
/// The source location of this lambda's capture-default ('=' or '&').
|
|
SourceLocation CaptureDefaultLoc;
|
|
|
|
/// The location of the closing brace ('}') that completes
|
|
/// the lambda.
|
|
///
|
|
/// The location of the brace is also available by looking up the
|
|
/// function call operator in the lambda class. However, it is
|
|
/// stored here to improve the performance of getSourceRange(), and
|
|
/// to avoid having to deserialize the function call operator from a
|
|
/// module file just to determine the source range.
|
|
SourceLocation ClosingBrace;
|
|
|
|
/// Construct a lambda expression.
|
|
LambdaExpr(QualType T, SourceRange IntroducerRange,
|
|
LambdaCaptureDefault CaptureDefault,
|
|
SourceLocation CaptureDefaultLoc, bool ExplicitParams,
|
|
bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
|
|
SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
|
|
|
|
/// Construct an empty lambda expression.
|
|
LambdaExpr(EmptyShell Empty, unsigned NumCaptures);
|
|
|
|
Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
|
|
Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
|
|
|
|
void initBodyIfNeeded() const;
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// Construct a new lambda expression.
|
|
static LambdaExpr *
|
|
Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
|
|
LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
|
|
bool ExplicitParams, bool ExplicitResultType,
|
|
ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
|
|
bool ContainsUnexpandedParameterPack);
|
|
|
|
/// Construct a new lambda expression that will be deserialized from
|
|
/// an external source.
|
|
static LambdaExpr *CreateDeserialized(const ASTContext &C,
|
|
unsigned NumCaptures);
|
|
|
|
/// Determine the default capture kind for this lambda.
|
|
LambdaCaptureDefault getCaptureDefault() const {
|
|
return static_cast<LambdaCaptureDefault>(LambdaExprBits.CaptureDefault);
|
|
}
|
|
|
|
/// Retrieve the location of this lambda's capture-default, if any.
|
|
SourceLocation getCaptureDefaultLoc() const { return CaptureDefaultLoc; }
|
|
|
|
/// Determine whether one of this lambda's captures is an init-capture.
|
|
bool isInitCapture(const LambdaCapture *Capture) const;
|
|
|
|
/// An iterator that walks over the captures of the lambda,
|
|
/// both implicit and explicit.
|
|
using capture_iterator = const LambdaCapture *;
|
|
|
|
/// An iterator over a range of lambda captures.
|
|
using capture_range = llvm::iterator_range<capture_iterator>;
|
|
|
|
/// Retrieve this lambda's captures.
|
|
capture_range captures() const;
|
|
|
|
/// Retrieve an iterator pointing to the first lambda capture.
|
|
capture_iterator capture_begin() const;
|
|
|
|
/// Retrieve an iterator pointing past the end of the
|
|
/// sequence of lambda captures.
|
|
capture_iterator capture_end() const;
|
|
|
|
/// Determine the number of captures in this lambda.
|
|
unsigned capture_size() const { return LambdaExprBits.NumCaptures; }
|
|
|
|
/// Retrieve this lambda's explicit captures.
|
|
capture_range explicit_captures() const;
|
|
|
|
/// Retrieve an iterator pointing to the first explicit
|
|
/// lambda capture.
|
|
capture_iterator explicit_capture_begin() const;
|
|
|
|
/// Retrieve an iterator pointing past the end of the sequence of
|
|
/// explicit lambda captures.
|
|
capture_iterator explicit_capture_end() const;
|
|
|
|
/// Retrieve this lambda's implicit captures.
|
|
capture_range implicit_captures() const;
|
|
|
|
/// Retrieve an iterator pointing to the first implicit
|
|
/// lambda capture.
|
|
capture_iterator implicit_capture_begin() const;
|
|
|
|
/// Retrieve an iterator pointing past the end of the sequence of
|
|
/// implicit lambda captures.
|
|
capture_iterator implicit_capture_end() const;
|
|
|
|
/// Iterator that walks over the capture initialization
|
|
/// arguments.
|
|
using capture_init_iterator = Expr **;
|
|
|
|
/// Const iterator that walks over the capture initialization
|
|
/// arguments.
|
|
/// FIXME: This interface is prone to being used incorrectly.
|
|
using const_capture_init_iterator = Expr *const *;
|
|
|
|
/// Retrieve the initialization expressions for this lambda's captures.
|
|
llvm::iterator_range<capture_init_iterator> capture_inits() {
|
|
return llvm::make_range(capture_init_begin(), capture_init_end());
|
|
}
|
|
|
|
/// Retrieve the initialization expressions for this lambda's captures.
|
|
llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
|
|
return llvm::make_range(capture_init_begin(), capture_init_end());
|
|
}
|
|
|
|
/// Retrieve the first initialization argument for this
|
|
/// lambda expression (which initializes the first capture field).
|
|
capture_init_iterator capture_init_begin() {
|
|
return reinterpret_cast<Expr **>(getStoredStmts());
|
|
}
|
|
|
|
/// Retrieve the first initialization argument for this
|
|
/// lambda expression (which initializes the first capture field).
|
|
const_capture_init_iterator capture_init_begin() const {
|
|
return reinterpret_cast<Expr *const *>(getStoredStmts());
|
|
}
|
|
|
|
/// Retrieve the iterator pointing one past the last
|
|
/// initialization argument for this lambda expression.
|
|
capture_init_iterator capture_init_end() {
|
|
return capture_init_begin() + capture_size();
|
|
}
|
|
|
|
/// Retrieve the iterator pointing one past the last
|
|
/// initialization argument for this lambda expression.
|
|
const_capture_init_iterator capture_init_end() const {
|
|
return capture_init_begin() + capture_size();
|
|
}
|
|
|
|
/// Retrieve the source range covering the lambda introducer,
|
|
/// which contains the explicit capture list surrounded by square
|
|
/// brackets ([...]).
|
|
SourceRange getIntroducerRange() const { return IntroducerRange; }
|
|
|
|
/// Retrieve the class that corresponds to the lambda.
|
|
///
|
|
/// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
|
|
/// captures in its fields and provides the various operations permitted
|
|
/// on a lambda (copying, calling).
|
|
CXXRecordDecl *getLambdaClass() const;
|
|
|
|
/// Retrieve the function call operator associated with this
|
|
/// lambda expression.
|
|
CXXMethodDecl *getCallOperator() const;
|
|
|
|
/// Retrieve the function template call operator associated with this
|
|
/// lambda expression.
|
|
FunctionTemplateDecl *getDependentCallOperator() const;
|
|
|
|
/// If this is a generic lambda expression, retrieve the template
|
|
/// parameter list associated with it, or else return null.
|
|
TemplateParameterList *getTemplateParameterList() const;
|
|
|
|
/// Get the template parameters were explicitly specified (as opposed to being
|
|
/// invented by use of an auto parameter).
|
|
ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
|
|
|
|
/// Get the trailing requires clause, if any.
|
|
Expr *getTrailingRequiresClause() const;
|
|
|
|
/// Whether this is a generic lambda.
|
|
bool isGenericLambda() const { return getTemplateParameterList(); }
|
|
|
|
/// Retrieve the body of the lambda. This will be most of the time
|
|
/// a \p CompoundStmt, but can also be \p CoroutineBodyStmt wrapping
|
|
/// a \p CompoundStmt. Note that unlike functions, lambda-expressions
|
|
/// cannot have a function-try-block.
|
|
Stmt *getBody() const;
|
|
|
|
/// Retrieve the \p CompoundStmt representing the body of the lambda.
|
|
/// This is a convenience function for callers who do not need
|
|
/// to handle node(s) which may wrap a \p CompoundStmt.
|
|
const CompoundStmt *getCompoundStmtBody() const;
|
|
CompoundStmt *getCompoundStmtBody() {
|
|
const auto *ConstThis = this;
|
|
return const_cast<CompoundStmt *>(ConstThis->getCompoundStmtBody());
|
|
}
|
|
|
|
/// Determine whether the lambda is mutable, meaning that any
|
|
/// captures values can be modified.
|
|
bool isMutable() const;
|
|
|
|
/// Determine whether this lambda has an explicit parameter
|
|
/// list vs. an implicit (empty) parameter list.
|
|
bool hasExplicitParameters() const { return LambdaExprBits.ExplicitParams; }
|
|
|
|
/// Whether this lambda had its result type explicitly specified.
|
|
bool hasExplicitResultType() const {
|
|
return LambdaExprBits.ExplicitResultType;
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == LambdaExprClass;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return IntroducerRange.getBegin();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return ClosingBrace; }
|
|
|
|
/// Includes the captures and the body of the lambda.
|
|
child_range children();
|
|
const_child_range children() const;
|
|
};
|
|
|
|
/// An expression "T()" which creates an rvalue of a non-class type T.
|
|
/// For non-void T, the rvalue is value-initialized.
|
|
/// See (C++98 [5.2.3p2]).
|
|
class CXXScalarValueInitExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
TypeSourceInfo *TypeInfo;
|
|
|
|
public:
|
|
/// Create an explicitly-written scalar-value initialization
|
|
/// expression.
|
|
CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
|
|
SourceLocation RParenLoc)
|
|
: Expr(CXXScalarValueInitExprClass, Type, VK_PRValue, OK_Ordinary),
|
|
TypeInfo(TypeInfo) {
|
|
CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
explicit CXXScalarValueInitExpr(EmptyShell Shell)
|
|
: Expr(CXXScalarValueInitExprClass, Shell) {}
|
|
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return TypeInfo;
|
|
}
|
|
|
|
SourceLocation getRParenLoc() const {
|
|
return CXXScalarValueInitExprBits.RParenLoc;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY;
|
|
SourceLocation getEndLoc() const { return getRParenLoc(); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXScalarValueInitExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
enum class CXXNewInitializationStyle {
|
|
/// New-expression has no initializer as written.
|
|
None,
|
|
|
|
/// New-expression has a C++98 paren-delimited initializer.
|
|
Parens,
|
|
|
|
/// New-expression has a C++11 list-initializer.
|
|
Braces
|
|
};
|
|
|
|
/// Represents a new-expression for memory allocation and constructor
|
|
/// calls, e.g: "new CXXNewExpr(foo)".
|
|
class CXXNewExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// Points to the allocation function used.
|
|
FunctionDecl *OperatorNew;
|
|
|
|
/// Points to the deallocation function used in case of error. May be null.
|
|
FunctionDecl *OperatorDelete;
|
|
|
|
/// The allocated type-source information, as written in the source.
|
|
TypeSourceInfo *AllocatedTypeInfo;
|
|
|
|
/// Range of the entire new expression.
|
|
SourceRange Range;
|
|
|
|
/// Source-range of a paren-delimited initializer.
|
|
SourceRange DirectInitRange;
|
|
|
|
// CXXNewExpr is followed by several optional trailing objects.
|
|
// They are in order:
|
|
//
|
|
// * An optional "Stmt *" for the array size expression.
|
|
// Present if and ony if isArray().
|
|
//
|
|
// * An optional "Stmt *" for the init expression.
|
|
// Present if and only if hasInitializer().
|
|
//
|
|
// * An array of getNumPlacementArgs() "Stmt *" for the placement new
|
|
// arguments, if any.
|
|
//
|
|
// * An optional SourceRange for the range covering the parenthesized type-id
|
|
// if the allocated type was expressed as a parenthesized type-id.
|
|
// Present if and only if isParenTypeId().
|
|
unsigned arraySizeOffset() const { return 0; }
|
|
unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
|
|
unsigned placementNewArgsOffset() const {
|
|
return initExprOffset() + hasInitializer();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
|
|
return isArray() + hasInitializer() + getNumPlacementArgs();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
|
|
return isParenTypeId();
|
|
}
|
|
|
|
/// Build a c++ new expression.
|
|
CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
|
|
FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
|
|
bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
|
|
SourceRange TypeIdParens, std::optional<Expr *> ArraySize,
|
|
CXXNewInitializationStyle InitializationStyle, Expr *Initializer,
|
|
QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
|
|
SourceRange DirectInitRange);
|
|
|
|
/// Build an empty c++ new expression.
|
|
CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
|
|
bool IsParenTypeId);
|
|
|
|
public:
|
|
/// Create a c++ new expression.
|
|
static CXXNewExpr *
|
|
Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
|
|
FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
|
|
bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
|
|
SourceRange TypeIdParens, std::optional<Expr *> ArraySize,
|
|
CXXNewInitializationStyle InitializationStyle, Expr *Initializer,
|
|
QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
|
|
SourceRange DirectInitRange);
|
|
|
|
/// Create an empty c++ new expression.
|
|
static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
|
|
bool HasInit, unsigned NumPlacementArgs,
|
|
bool IsParenTypeId);
|
|
|
|
QualType getAllocatedType() const {
|
|
return getType()->castAs<PointerType>()->getPointeeType();
|
|
}
|
|
|
|
TypeSourceInfo *getAllocatedTypeSourceInfo() const {
|
|
return AllocatedTypeInfo;
|
|
}
|
|
|
|
/// True if the allocation result needs to be null-checked.
|
|
///
|
|
/// C++11 [expr.new]p13:
|
|
/// If the allocation function returns null, initialization shall
|
|
/// not be done, the deallocation function shall not be called,
|
|
/// and the value of the new-expression shall be null.
|
|
///
|
|
/// C++ DR1748:
|
|
/// If the allocation function is a reserved placement allocation
|
|
/// function that returns null, the behavior is undefined.
|
|
///
|
|
/// An allocation function is not allowed to return null unless it
|
|
/// has a non-throwing exception-specification. The '03 rule is
|
|
/// identical except that the definition of a non-throwing
|
|
/// exception specification is just "is it throw()?".
|
|
bool shouldNullCheckAllocation() const;
|
|
|
|
FunctionDecl *getOperatorNew() const { return OperatorNew; }
|
|
void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
|
|
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
|
|
void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
|
|
|
|
bool isArray() const { return CXXNewExprBits.IsArray; }
|
|
|
|
/// This might return std::nullopt even if isArray() returns true,
|
|
/// since there might not be an array size expression.
|
|
/// If the result is not std::nullopt, it will never wrap a nullptr.
|
|
std::optional<Expr *> getArraySize() {
|
|
if (!isArray())
|
|
return std::nullopt;
|
|
|
|
if (auto *Result =
|
|
cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]))
|
|
return Result;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// This might return std::nullopt even if isArray() returns true,
|
|
/// since there might not be an array size expression.
|
|
/// If the result is not std::nullopt, it will never wrap a nullptr.
|
|
std::optional<const Expr *> getArraySize() const {
|
|
if (!isArray())
|
|
return std::nullopt;
|
|
|
|
if (auto *Result =
|
|
cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]))
|
|
return Result;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
unsigned getNumPlacementArgs() const {
|
|
return CXXNewExprBits.NumPlacementArgs;
|
|
}
|
|
|
|
Expr **getPlacementArgs() {
|
|
return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
|
|
placementNewArgsOffset());
|
|
}
|
|
|
|
Expr *getPlacementArg(unsigned I) {
|
|
assert((I < getNumPlacementArgs()) && "Index out of range!");
|
|
return getPlacementArgs()[I];
|
|
}
|
|
const Expr *getPlacementArg(unsigned I) const {
|
|
return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
|
|
}
|
|
|
|
bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
|
|
SourceRange getTypeIdParens() const {
|
|
return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
|
|
: SourceRange();
|
|
}
|
|
|
|
bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
|
|
|
|
/// Whether this new-expression has any initializer at all.
|
|
bool hasInitializer() const { return CXXNewExprBits.HasInitializer; }
|
|
|
|
/// The kind of initializer this new-expression has.
|
|
CXXNewInitializationStyle getInitializationStyle() const {
|
|
return static_cast<CXXNewInitializationStyle>(
|
|
CXXNewExprBits.StoredInitializationStyle);
|
|
}
|
|
|
|
/// The initializer of this new-expression.
|
|
Expr *getInitializer() {
|
|
return hasInitializer()
|
|
? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
|
|
: nullptr;
|
|
}
|
|
const Expr *getInitializer() const {
|
|
return hasInitializer()
|
|
? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
|
|
: nullptr;
|
|
}
|
|
|
|
/// Returns the CXXConstructExpr from this new-expression, or null.
|
|
const CXXConstructExpr *getConstructExpr() const {
|
|
return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
|
|
}
|
|
|
|
/// Indicates whether the required alignment should be implicitly passed to
|
|
/// the allocation function.
|
|
bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
|
|
|
|
/// Answers whether the usual array deallocation function for the
|
|
/// allocated type expects the size of the allocation as a
|
|
/// parameter.
|
|
bool doesUsualArrayDeleteWantSize() const {
|
|
return CXXNewExprBits.UsualArrayDeleteWantsSize;
|
|
}
|
|
|
|
using arg_iterator = ExprIterator;
|
|
using const_arg_iterator = ConstExprIterator;
|
|
|
|
llvm::iterator_range<arg_iterator> placement_arguments() {
|
|
return llvm::make_range(placement_arg_begin(), placement_arg_end());
|
|
}
|
|
|
|
llvm::iterator_range<const_arg_iterator> placement_arguments() const {
|
|
return llvm::make_range(placement_arg_begin(), placement_arg_end());
|
|
}
|
|
|
|
arg_iterator placement_arg_begin() {
|
|
return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
|
|
}
|
|
arg_iterator placement_arg_end() {
|
|
return placement_arg_begin() + getNumPlacementArgs();
|
|
}
|
|
const_arg_iterator placement_arg_begin() const {
|
|
return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
|
|
}
|
|
const_arg_iterator placement_arg_end() const {
|
|
return placement_arg_begin() + getNumPlacementArgs();
|
|
}
|
|
|
|
using raw_arg_iterator = Stmt **;
|
|
|
|
raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
|
|
raw_arg_iterator raw_arg_end() {
|
|
return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
|
|
}
|
|
const_arg_iterator raw_arg_begin() const {
|
|
return getTrailingObjects<Stmt *>();
|
|
}
|
|
const_arg_iterator raw_arg_end() const {
|
|
return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const { return Range.getBegin(); }
|
|
SourceLocation getEndLoc() const { return Range.getEnd(); }
|
|
|
|
SourceRange getDirectInitRange() const { return DirectInitRange; }
|
|
SourceRange getSourceRange() const { return Range; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXNewExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_cast<CXXNewExpr *>(this)->children());
|
|
}
|
|
};
|
|
|
|
/// Represents a \c delete expression for memory deallocation and
|
|
/// destructor calls, e.g. "delete[] pArray".
|
|
class CXXDeleteExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
/// Points to the operator delete overload that is used. Could be a member.
|
|
FunctionDecl *OperatorDelete = nullptr;
|
|
|
|
/// The pointer expression to be deleted.
|
|
Stmt *Argument = nullptr;
|
|
|
|
public:
|
|
CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
|
|
bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
|
|
FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
|
|
: Expr(CXXDeleteExprClass, Ty, VK_PRValue, OK_Ordinary),
|
|
OperatorDelete(OperatorDelete), Argument(Arg) {
|
|
CXXDeleteExprBits.GlobalDelete = GlobalDelete;
|
|
CXXDeleteExprBits.ArrayForm = ArrayForm;
|
|
CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
|
|
CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
|
|
CXXDeleteExprBits.Loc = Loc;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
|
|
|
|
bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
|
|
bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
|
|
bool isArrayFormAsWritten() const {
|
|
return CXXDeleteExprBits.ArrayFormAsWritten;
|
|
}
|
|
|
|
/// Answers whether the usual array deallocation function for the
|
|
/// allocated type expects the size of the allocation as a
|
|
/// parameter. This can be true even if the actual deallocation
|
|
/// function that we're using doesn't want a size.
|
|
bool doesUsualArrayDeleteWantSize() const {
|
|
return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
|
|
}
|
|
|
|
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
|
|
|
|
Expr *getArgument() { return cast<Expr>(Argument); }
|
|
const Expr *getArgument() const { return cast<Expr>(Argument); }
|
|
|
|
/// Retrieve the type being destroyed.
|
|
///
|
|
/// If the type being destroyed is a dependent type which may or may not
|
|
/// be a pointer, return an invalid type.
|
|
QualType getDestroyedType() const;
|
|
|
|
SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return Argument->getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXDeleteExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&Argument, &Argument + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Argument, &Argument + 1);
|
|
}
|
|
};
|
|
|
|
/// Stores the type being destroyed by a pseudo-destructor expression.
|
|
class PseudoDestructorTypeStorage {
|
|
/// Either the type source information or the name of the type, if
|
|
/// it couldn't be resolved due to type-dependence.
|
|
llvm::PointerUnion<TypeSourceInfo *, const IdentifierInfo *> Type;
|
|
|
|
/// The starting source location of the pseudo-destructor type.
|
|
SourceLocation Location;
|
|
|
|
public:
|
|
PseudoDestructorTypeStorage() = default;
|
|
|
|
PseudoDestructorTypeStorage(const IdentifierInfo *II, SourceLocation Loc)
|
|
: Type(II), Location(Loc) {}
|
|
|
|
PseudoDestructorTypeStorage(TypeSourceInfo *Info);
|
|
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return Type.dyn_cast<TypeSourceInfo *>();
|
|
}
|
|
|
|
const IdentifierInfo *getIdentifier() const {
|
|
return Type.dyn_cast<const IdentifierInfo *>();
|
|
}
|
|
|
|
SourceLocation getLocation() const { return Location; }
|
|
};
|
|
|
|
/// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
|
|
///
|
|
/// A pseudo-destructor is an expression that looks like a member access to a
|
|
/// destructor of a scalar type, except that scalar types don't have
|
|
/// destructors. For example:
|
|
///
|
|
/// \code
|
|
/// typedef int T;
|
|
/// void f(int *p) {
|
|
/// p->T::~T();
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Pseudo-destructors typically occur when instantiating templates such as:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// void destroy(T* ptr) {
|
|
/// ptr->T::~T();
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// for scalar types. A pseudo-destructor expression has no run-time semantics
|
|
/// beyond evaluating the base expression.
|
|
class CXXPseudoDestructorExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
/// The base expression (that is being destroyed).
|
|
Stmt *Base = nullptr;
|
|
|
|
/// Whether the operator was an arrow ('->'); otherwise, it was a
|
|
/// period ('.').
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
bool IsArrow : 1;
|
|
|
|
/// The location of the '.' or '->' operator.
|
|
SourceLocation OperatorLoc;
|
|
|
|
/// The nested-name-specifier that follows the operator, if present.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// The type that precedes the '::' in a qualified pseudo-destructor
|
|
/// expression.
|
|
TypeSourceInfo *ScopeType = nullptr;
|
|
|
|
/// The location of the '::' in a qualified pseudo-destructor
|
|
/// expression.
|
|
SourceLocation ColonColonLoc;
|
|
|
|
/// The location of the '~'.
|
|
SourceLocation TildeLoc;
|
|
|
|
/// The type being destroyed, or its name if we were unable to
|
|
/// resolve the name.
|
|
PseudoDestructorTypeStorage DestroyedType;
|
|
|
|
public:
|
|
CXXPseudoDestructorExpr(const ASTContext &Context,
|
|
Expr *Base, bool isArrow, SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation ColonColonLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage DestroyedType);
|
|
|
|
explicit CXXPseudoDestructorExpr(EmptyShell Shell)
|
|
: Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
|
|
|
|
Expr *getBase() const { return cast<Expr>(Base); }
|
|
|
|
/// Determines whether this member expression actually had
|
|
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
|
|
/// x->Base::foo.
|
|
bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
|
|
|
|
/// Retrieves the nested-name-specifier that qualifies the type name,
|
|
/// with source-location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// If the member name was qualified, retrieves the
|
|
/// nested-name-specifier that precedes the member name. Otherwise, returns
|
|
/// null.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
/// Determine whether this pseudo-destructor expression was written
|
|
/// using an '->' (otherwise, it used a '.').
|
|
bool isArrow() const { return IsArrow; }
|
|
|
|
/// Retrieve the location of the '.' or '->' operator.
|
|
SourceLocation getOperatorLoc() const { return OperatorLoc; }
|
|
|
|
/// Retrieve the scope type in a qualified pseudo-destructor
|
|
/// expression.
|
|
///
|
|
/// Pseudo-destructor expressions can have extra qualification within them
|
|
/// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
|
|
/// Here, if the object type of the expression is (or may be) a scalar type,
|
|
/// \p T may also be a scalar type and, therefore, cannot be part of a
|
|
/// nested-name-specifier. It is stored as the "scope type" of the pseudo-
|
|
/// destructor expression.
|
|
TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
|
|
|
|
/// Retrieve the location of the '::' in a qualified pseudo-destructor
|
|
/// expression.
|
|
SourceLocation getColonColonLoc() const { return ColonColonLoc; }
|
|
|
|
/// Retrieve the location of the '~'.
|
|
SourceLocation getTildeLoc() const { return TildeLoc; }
|
|
|
|
/// Retrieve the source location information for the type
|
|
/// being destroyed.
|
|
///
|
|
/// This type-source information is available for non-dependent
|
|
/// pseudo-destructor expressions and some dependent pseudo-destructor
|
|
/// expressions. Returns null if we only have the identifier for a
|
|
/// dependent pseudo-destructor expression.
|
|
TypeSourceInfo *getDestroyedTypeInfo() const {
|
|
return DestroyedType.getTypeSourceInfo();
|
|
}
|
|
|
|
/// In a dependent pseudo-destructor expression for which we do not
|
|
/// have full type information on the destroyed type, provides the name
|
|
/// of the destroyed type.
|
|
const IdentifierInfo *getDestroyedTypeIdentifier() const {
|
|
return DestroyedType.getIdentifier();
|
|
}
|
|
|
|
/// Retrieve the type being destroyed.
|
|
QualType getDestroyedType() const;
|
|
|
|
/// Retrieve the starting location of the type being destroyed.
|
|
SourceLocation getDestroyedTypeLoc() const {
|
|
return DestroyedType.getLocation();
|
|
}
|
|
|
|
/// Set the name of destroyed type for a dependent pseudo-destructor
|
|
/// expression.
|
|
void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
|
|
DestroyedType = PseudoDestructorTypeStorage(II, Loc);
|
|
}
|
|
|
|
/// Set the destroyed type.
|
|
void setDestroyedType(TypeSourceInfo *Info) {
|
|
DestroyedType = PseudoDestructorTypeStorage(Info);
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return Base->getBeginLoc();
|
|
}
|
|
SourceLocation getEndLoc() const LLVM_READONLY;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXPseudoDestructorExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&Base, &Base + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Base, &Base + 1);
|
|
}
|
|
};
|
|
|
|
/// A type trait used in the implementation of various C++11 and
|
|
/// Library TR1 trait templates.
|
|
///
|
|
/// \code
|
|
/// __is_pod(int) == true
|
|
/// __is_enum(std::string) == false
|
|
/// __is_trivially_constructible(vector<int>, int*, int*)
|
|
/// \endcode
|
|
class TypeTraitExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
|
|
/// The location of the type trait keyword.
|
|
SourceLocation Loc;
|
|
|
|
/// The location of the closing parenthesis.
|
|
SourceLocation RParenLoc;
|
|
|
|
// Note: The TypeSourceInfos for the arguments are allocated after the
|
|
// TypeTraitExpr.
|
|
|
|
TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool Value);
|
|
|
|
TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
|
|
|
|
size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
|
|
return getNumArgs();
|
|
}
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// Create a new type trait expression.
|
|
static TypeTraitExpr *Create(const ASTContext &C, QualType T,
|
|
SourceLocation Loc, TypeTrait Kind,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool Value);
|
|
|
|
static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
|
|
unsigned NumArgs);
|
|
|
|
/// Determine which type trait this expression uses.
|
|
TypeTrait getTrait() const {
|
|
return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
|
|
}
|
|
|
|
bool getValue() const {
|
|
assert(!isValueDependent());
|
|
return TypeTraitExprBits.Value;
|
|
}
|
|
|
|
/// Determine the number of arguments to this type trait.
|
|
unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
|
|
|
|
/// Retrieve the Ith argument.
|
|
TypeSourceInfo *getArg(unsigned I) const {
|
|
assert(I < getNumArgs() && "Argument out-of-range");
|
|
return getArgs()[I];
|
|
}
|
|
|
|
/// Retrieve the argument types.
|
|
ArrayRef<TypeSourceInfo *> getArgs() const {
|
|
return llvm::ArrayRef(getTrailingObjects<TypeSourceInfo *>(), getNumArgs());
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == TypeTraitExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// An Embarcadero array type trait, as used in the implementation of
|
|
/// __array_rank and __array_extent.
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// __array_rank(int[10][20]) == 2
|
|
/// __array_extent(int, 1) == 20
|
|
/// \endcode
|
|
class ArrayTypeTraitExpr : public Expr {
|
|
/// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
|
|
LLVM_PREFERRED_TYPE(ArrayTypeTrait)
|
|
unsigned ATT : 2;
|
|
|
|
/// The value of the type trait. Unspecified if dependent.
|
|
uint64_t Value = 0;
|
|
|
|
/// The array dimension being queried, or -1 if not used.
|
|
Expr *Dimension;
|
|
|
|
/// The location of the type trait keyword.
|
|
SourceLocation Loc;
|
|
|
|
/// The location of the closing paren.
|
|
SourceLocation RParen;
|
|
|
|
/// The type being queried.
|
|
TypeSourceInfo *QueriedType = nullptr;
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
|
|
ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
|
|
TypeSourceInfo *queried, uint64_t value, Expr *dimension,
|
|
SourceLocation rparen, QualType ty)
|
|
: Expr(ArrayTypeTraitExprClass, ty, VK_PRValue, OK_Ordinary), ATT(att),
|
|
Value(value), Dimension(dimension), Loc(loc), RParen(rparen),
|
|
QueriedType(queried) {
|
|
assert(att <= ATT_Last && "invalid enum value!");
|
|
assert(static_cast<unsigned>(att) == ATT && "ATT overflow!");
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
explicit ArrayTypeTraitExpr(EmptyShell Empty)
|
|
: Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
|
|
|
|
ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
|
|
|
|
QualType getQueriedType() const { return QueriedType->getType(); }
|
|
|
|
TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
|
|
|
|
uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
|
|
|
|
Expr *getDimensionExpression() const { return Dimension; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ArrayTypeTraitExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// An expression trait intrinsic.
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// __is_lvalue_expr(std::cout) == true
|
|
/// __is_lvalue_expr(1) == false
|
|
/// \endcode
|
|
class ExpressionTraitExpr : public Expr {
|
|
/// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
|
|
LLVM_PREFERRED_TYPE(ExpressionTrait)
|
|
unsigned ET : 31;
|
|
|
|
/// The value of the type trait. Unspecified if dependent.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned Value : 1;
|
|
|
|
/// The location of the type trait keyword.
|
|
SourceLocation Loc;
|
|
|
|
/// The location of the closing paren.
|
|
SourceLocation RParen;
|
|
|
|
/// The expression being queried.
|
|
Expr* QueriedExpression = nullptr;
|
|
|
|
public:
|
|
friend class ASTStmtReader;
|
|
|
|
ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, Expr *queried,
|
|
bool value, SourceLocation rparen, QualType resultType)
|
|
: Expr(ExpressionTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
|
|
ET(et), Value(value), Loc(loc), RParen(rparen),
|
|
QueriedExpression(queried) {
|
|
assert(et <= ET_Last && "invalid enum value!");
|
|
assert(static_cast<unsigned>(et) == ET && "ET overflow!");
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
explicit ExpressionTraitExpr(EmptyShell Empty)
|
|
: Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
|
|
|
|
ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
|
|
|
|
Expr *getQueriedExpression() const { return QueriedExpression; }
|
|
|
|
bool getValue() const { return Value; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ExpressionTraitExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// A reference to an overloaded function set, either an
|
|
/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
|
|
class OverloadExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
/// The common name of these declarations.
|
|
DeclarationNameInfo NameInfo;
|
|
|
|
/// The nested-name-specifier that qualifies the name, if any.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
protected:
|
|
OverloadExpr(StmtClass SC, const ASTContext &Context,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
|
|
bool KnownDependent, bool KnownInstantiationDependent,
|
|
bool KnownContainsUnexpandedParameterPack);
|
|
|
|
OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
|
|
bool HasTemplateKWAndArgsInfo);
|
|
|
|
/// Return the results. Defined after UnresolvedMemberExpr.
|
|
inline DeclAccessPair *getTrailingResults();
|
|
const DeclAccessPair *getTrailingResults() const {
|
|
return const_cast<OverloadExpr *>(this)->getTrailingResults();
|
|
}
|
|
|
|
/// Return the optional template keyword and arguments info.
|
|
/// Defined after UnresolvedMemberExpr.
|
|
inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
|
|
const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
|
|
return const_cast<OverloadExpr *>(this)
|
|
->getTrailingASTTemplateKWAndArgsInfo();
|
|
}
|
|
|
|
/// Return the optional template arguments. Defined after
|
|
/// UnresolvedMemberExpr.
|
|
inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
|
|
const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
|
|
return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
|
|
}
|
|
|
|
bool hasTemplateKWAndArgsInfo() const {
|
|
return OverloadExprBits.HasTemplateKWAndArgsInfo;
|
|
}
|
|
|
|
public:
|
|
struct FindResult {
|
|
OverloadExpr *Expression = nullptr;
|
|
bool IsAddressOfOperand = false;
|
|
bool IsAddressOfOperandWithParen = false;
|
|
bool HasFormOfMemberPointer = false;
|
|
};
|
|
|
|
/// Finds the overloaded expression in the given expression \p E of
|
|
/// OverloadTy.
|
|
///
|
|
/// \return the expression (which must be there) and true if it has
|
|
/// the particular form of a member pointer expression
|
|
static FindResult find(Expr *E) {
|
|
assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
|
|
|
|
FindResult Result;
|
|
bool HasParen = isa<ParenExpr>(E);
|
|
|
|
E = E->IgnoreParens();
|
|
if (isa<UnaryOperator>(E)) {
|
|
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
|
|
E = cast<UnaryOperator>(E)->getSubExpr();
|
|
auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
|
|
|
|
Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
|
|
Result.IsAddressOfOperand = true;
|
|
Result.IsAddressOfOperandWithParen = HasParen;
|
|
Result.Expression = Ovl;
|
|
} else {
|
|
Result.Expression = cast<OverloadExpr>(E);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Gets the naming class of this lookup, if any.
|
|
/// Defined after UnresolvedMemberExpr.
|
|
inline CXXRecordDecl *getNamingClass();
|
|
const CXXRecordDecl *getNamingClass() const {
|
|
return const_cast<OverloadExpr *>(this)->getNamingClass();
|
|
}
|
|
|
|
using decls_iterator = UnresolvedSetImpl::iterator;
|
|
|
|
decls_iterator decls_begin() const {
|
|
return UnresolvedSetIterator(getTrailingResults());
|
|
}
|
|
decls_iterator decls_end() const {
|
|
return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
|
|
}
|
|
llvm::iterator_range<decls_iterator> decls() const {
|
|
return llvm::make_range(decls_begin(), decls_end());
|
|
}
|
|
|
|
/// Gets the number of declarations in the unresolved set.
|
|
unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
|
|
|
|
/// Gets the full name info.
|
|
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
|
|
|
|
/// Gets the name looked up.
|
|
DeclarationName getName() const { return NameInfo.getName(); }
|
|
|
|
/// Gets the location of the name.
|
|
SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
|
|
|
|
/// Fetches the nested-name qualifier, if one was given.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
/// Fetches the nested-name qualifier with source-location
|
|
/// information, if one was given.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// Retrieve the location of the template keyword preceding
|
|
/// this name, if any.
|
|
SourceLocation getTemplateKeywordLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the left angle bracket starting the
|
|
/// explicit template argument list following the name, if any.
|
|
SourceLocation getLAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the right angle bracket ending the
|
|
/// explicit template argument list following the name, if any.
|
|
SourceLocation getRAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
|
|
}
|
|
|
|
/// Determines whether the name was preceded by the template keyword.
|
|
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
|
|
|
|
/// Determines whether this expression had explicit template arguments.
|
|
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
|
|
|
|
TemplateArgumentLoc const *getTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return nullptr;
|
|
return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
|
|
}
|
|
|
|
unsigned getNumTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return 0;
|
|
|
|
return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
|
|
}
|
|
|
|
ArrayRef<TemplateArgumentLoc> template_arguments() const {
|
|
return {getTemplateArgs(), getNumTemplateArgs()};
|
|
}
|
|
|
|
/// Copies the template arguments into the given structure.
|
|
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
|
|
if (hasExplicitTemplateArgs())
|
|
getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == UnresolvedLookupExprClass ||
|
|
T->getStmtClass() == UnresolvedMemberExprClass;
|
|
}
|
|
};
|
|
|
|
/// A reference to a name which we were able to look up during
|
|
/// parsing but could not resolve to a specific declaration.
|
|
///
|
|
/// This arises in several ways:
|
|
/// * we might be waiting for argument-dependent lookup;
|
|
/// * the name might resolve to an overloaded function;
|
|
/// * the name might resolve to a non-function template; for example, in the
|
|
/// following snippet, the return expression of the member function
|
|
/// 'foo()' might remain unresolved until instantiation:
|
|
///
|
|
/// \code
|
|
/// struct P {
|
|
/// template <class T> using I = T;
|
|
/// };
|
|
///
|
|
/// struct Q {
|
|
/// template <class T> int foo() {
|
|
/// return T::template I<int>;
|
|
/// }
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// ...which is distinct from modeling function overloads, and therefore we use
|
|
/// a different builtin type 'UnresolvedTemplate' to avoid confusion. This is
|
|
/// done in Sema::BuildTemplateIdExpr.
|
|
///
|
|
/// and eventually:
|
|
/// * the lookup might have included a function template.
|
|
/// * the unresolved template gets transformed in an instantiation or gets
|
|
/// diagnosed for its direct use.
|
|
///
|
|
/// These never include UnresolvedUsingValueDecls, which are always class
|
|
/// members and therefore appear only in UnresolvedMemberLookupExprs.
|
|
class UnresolvedLookupExpr final
|
|
: public OverloadExpr,
|
|
private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
|
|
ASTTemplateKWAndArgsInfo,
|
|
TemplateArgumentLoc> {
|
|
friend class ASTStmtReader;
|
|
friend class OverloadExpr;
|
|
friend TrailingObjects;
|
|
|
|
/// The naming class (C++ [class.access.base]p5) of the lookup, if
|
|
/// any. This can generally be recalculated from the context chain,
|
|
/// but that can be fairly expensive for unqualified lookups.
|
|
CXXRecordDecl *NamingClass;
|
|
|
|
// UnresolvedLookupExpr is followed by several trailing objects.
|
|
// They are in order:
|
|
//
|
|
// * An array of getNumResults() DeclAccessPair for the results. These are
|
|
// undesugared, which is to say, they may include UsingShadowDecls.
|
|
// Access is relative to the naming class.
|
|
//
|
|
// * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
|
|
// template keyword and arguments. Present if and only if
|
|
// hasTemplateKWAndArgsInfo().
|
|
//
|
|
// * An array of getNumTemplateArgs() TemplateArgumentLoc containing
|
|
// location information for the explicitly specified template arguments.
|
|
|
|
UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo, bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
|
|
bool KnownDependent, bool KnownInstantiationDependent);
|
|
|
|
UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
|
|
bool HasTemplateKWAndArgsInfo);
|
|
|
|
unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
|
|
return getNumDecls();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
|
|
return hasTemplateKWAndArgsInfo();
|
|
}
|
|
|
|
public:
|
|
static UnresolvedLookupExpr *
|
|
Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const DeclarationNameInfo &NameInfo, bool RequiresADL,
|
|
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
|
|
bool KnownDependent, bool KnownInstantiationDependent);
|
|
|
|
// After canonicalization, there may be dependent template arguments in
|
|
// CanonicalConverted But none of Args is dependent. When any of
|
|
// CanonicalConverted dependent, KnownDependent is true.
|
|
static UnresolvedLookupExpr *
|
|
Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
|
|
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo, bool RequiresADL,
|
|
const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
|
|
UnresolvedSetIterator End, bool KnownDependent,
|
|
bool KnownInstantiationDependent);
|
|
|
|
static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned NumResults,
|
|
bool HasTemplateKWAndArgsInfo,
|
|
unsigned NumTemplateArgs);
|
|
|
|
/// True if this declaration should be extended by
|
|
/// argument-dependent lookup.
|
|
bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
|
|
|
|
/// Gets the 'naming class' (in the sense of C++0x
|
|
/// [class.access.base]p5) of the lookup. This is the scope
|
|
/// that was looked in to find these results.
|
|
CXXRecordDecl *getNamingClass() { return NamingClass; }
|
|
const CXXRecordDecl *getNamingClass() const { return NamingClass; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
if (NestedNameSpecifierLoc l = getQualifierLoc())
|
|
return l.getBeginLoc();
|
|
return getNameInfo().getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (hasExplicitTemplateArgs())
|
|
return getRAngleLoc();
|
|
return getNameInfo().getEndLoc();
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == UnresolvedLookupExprClass;
|
|
}
|
|
};
|
|
|
|
/// A qualified reference to a name whose declaration cannot
|
|
/// yet be resolved.
|
|
///
|
|
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
|
|
/// it expresses a reference to a declaration such as
|
|
/// X<T>::value. The difference, however, is that an
|
|
/// DependentScopeDeclRefExpr node is used only within C++ templates when
|
|
/// the qualification (e.g., X<T>::) refers to a dependent type. In
|
|
/// this case, X<T>::value cannot resolve to a declaration because the
|
|
/// declaration will differ from one instantiation of X<T> to the
|
|
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
|
|
/// qualifier (X<T>::) and the name of the entity being referenced
|
|
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
|
|
/// declaration can be found.
|
|
class DependentScopeDeclRefExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<DependentScopeDeclRefExpr,
|
|
ASTTemplateKWAndArgsInfo,
|
|
TemplateArgumentLoc> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// The nested-name-specifier that qualifies this unresolved
|
|
/// declaration name.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// The name of the entity we will be referencing.
|
|
DeclarationNameInfo NameInfo;
|
|
|
|
DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *Args);
|
|
|
|
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
|
|
return hasTemplateKWAndArgsInfo();
|
|
}
|
|
|
|
bool hasTemplateKWAndArgsInfo() const {
|
|
return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
|
|
}
|
|
|
|
public:
|
|
static DependentScopeDeclRefExpr *
|
|
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
|
|
bool HasTemplateKWAndArgsInfo,
|
|
unsigned NumTemplateArgs);
|
|
|
|
/// Retrieve the name that this expression refers to.
|
|
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
|
|
|
|
/// Retrieve the name that this expression refers to.
|
|
DeclarationName getDeclName() const { return NameInfo.getName(); }
|
|
|
|
/// Retrieve the location of the name within the expression.
|
|
///
|
|
/// For example, in "X<T>::value" this is the location of "value".
|
|
SourceLocation getLocation() const { return NameInfo.getLoc(); }
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies the
|
|
/// name, with source location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies this
|
|
/// declaration.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
/// Retrieve the location of the template keyword preceding
|
|
/// this name, if any.
|
|
SourceLocation getTemplateKeywordLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the left angle bracket starting the
|
|
/// explicit template argument list following the name, if any.
|
|
SourceLocation getLAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the right angle bracket ending the
|
|
/// explicit template argument list following the name, if any.
|
|
SourceLocation getRAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
|
|
}
|
|
|
|
/// Determines whether the name was preceded by the template keyword.
|
|
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
|
|
|
|
/// Determines whether this lookup had explicit template arguments.
|
|
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
|
|
|
|
/// Copies the template arguments (if present) into the given
|
|
/// structure.
|
|
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
|
|
if (hasExplicitTemplateArgs())
|
|
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
|
|
getTrailingObjects<TemplateArgumentLoc>(), List);
|
|
}
|
|
|
|
TemplateArgumentLoc const *getTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return nullptr;
|
|
|
|
return getTrailingObjects<TemplateArgumentLoc>();
|
|
}
|
|
|
|
unsigned getNumTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return 0;
|
|
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
|
|
}
|
|
|
|
ArrayRef<TemplateArgumentLoc> template_arguments() const {
|
|
return {getTemplateArgs(), getNumTemplateArgs()};
|
|
}
|
|
|
|
/// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
|
|
/// and differs from getLocation().getStart().
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return QualifierLoc.getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (hasExplicitTemplateArgs())
|
|
return getRAngleLoc();
|
|
return getLocation();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DependentScopeDeclRefExprClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Represents an expression -- generally a full-expression -- that
|
|
/// introduces cleanups to be run at the end of the sub-expression's
|
|
/// evaluation. The most common source of expression-introduced
|
|
/// cleanups is temporary objects in C++, but several other kinds of
|
|
/// expressions can create cleanups, including basically every
|
|
/// call in ARC that returns an Objective-C pointer.
|
|
///
|
|
/// This expression also tracks whether the sub-expression contains a
|
|
/// potentially-evaluated block literal. The lifetime of a block
|
|
/// literal is the extent of the enclosing scope.
|
|
class ExprWithCleanups final
|
|
: public FullExpr,
|
|
private llvm::TrailingObjects<
|
|
ExprWithCleanups,
|
|
llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>> {
|
|
public:
|
|
/// The type of objects that are kept in the cleanup.
|
|
/// It's useful to remember the set of blocks and block-scoped compound
|
|
/// literals; we could also remember the set of temporaries, but there's
|
|
/// currently no need.
|
|
using CleanupObject = llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>;
|
|
|
|
private:
|
|
friend class ASTStmtReader;
|
|
friend TrailingObjects;
|
|
|
|
ExprWithCleanups(EmptyShell, unsigned NumObjects);
|
|
ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
|
|
ArrayRef<CleanupObject> Objects);
|
|
|
|
public:
|
|
static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
|
|
unsigned numObjects);
|
|
|
|
static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
|
|
bool CleanupsHaveSideEffects,
|
|
ArrayRef<CleanupObject> objects);
|
|
|
|
ArrayRef<CleanupObject> getObjects() const {
|
|
return llvm::ArrayRef(getTrailingObjects<CleanupObject>(), getNumObjects());
|
|
}
|
|
|
|
unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
|
|
|
|
CleanupObject getObject(unsigned i) const {
|
|
assert(i < getNumObjects() && "Index out of range");
|
|
return getObjects()[i];
|
|
}
|
|
|
|
bool cleanupsHaveSideEffects() const {
|
|
return ExprWithCleanupsBits.CleanupsHaveSideEffects;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return SubExpr->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return SubExpr->getEndLoc();
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ExprWithCleanupsClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&SubExpr, &SubExpr + 1);
|
|
}
|
|
};
|
|
|
|
/// Describes an explicit type conversion that uses functional
|
|
/// notion but could not be resolved because one or more arguments are
|
|
/// type-dependent.
|
|
///
|
|
/// The explicit type conversions expressed by
|
|
/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
|
|
/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
|
|
/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
|
|
/// type-dependent. For example, this would occur in a template such
|
|
/// as:
|
|
///
|
|
/// \code
|
|
/// template<typename T, typename A1>
|
|
/// inline T make_a(const A1& a1) {
|
|
/// return T(a1);
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// When the returned expression is instantiated, it may resolve to a
|
|
/// constructor call, conversion function call, or some kind of type
|
|
/// conversion.
|
|
class CXXUnresolvedConstructExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
|
|
friend class ASTStmtReader;
|
|
friend TrailingObjects;
|
|
|
|
/// The type being constructed, and whether the construct expression models
|
|
/// list initialization or not.
|
|
llvm::PointerIntPair<TypeSourceInfo *, 1> TypeAndInitForm;
|
|
|
|
/// The location of the left parentheses ('(').
|
|
SourceLocation LParenLoc;
|
|
|
|
/// The location of the right parentheses (')').
|
|
SourceLocation RParenLoc;
|
|
|
|
CXXUnresolvedConstructExpr(QualType T, TypeSourceInfo *TSI,
|
|
SourceLocation LParenLoc, ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc, bool IsListInit);
|
|
|
|
CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
|
|
: Expr(CXXUnresolvedConstructExprClass, Empty) {
|
|
CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
|
|
}
|
|
|
|
public:
|
|
static CXXUnresolvedConstructExpr *
|
|
Create(const ASTContext &Context, QualType T, TypeSourceInfo *TSI,
|
|
SourceLocation LParenLoc, ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc, bool IsListInit);
|
|
|
|
static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned NumArgs);
|
|
|
|
/// Retrieve the type that is being constructed, as specified
|
|
/// in the source code.
|
|
QualType getTypeAsWritten() const { return getTypeSourceInfo()->getType(); }
|
|
|
|
/// Retrieve the type source information for the type being
|
|
/// constructed.
|
|
TypeSourceInfo *getTypeSourceInfo() const {
|
|
return TypeAndInitForm.getPointer();
|
|
}
|
|
|
|
/// Retrieve the location of the left parentheses ('(') that
|
|
/// precedes the argument list.
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
|
|
|
|
/// Retrieve the location of the right parentheses (')') that
|
|
/// follows the argument list.
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
|
|
|
|
/// Determine whether this expression models list-initialization.
|
|
/// If so, there will be exactly one subexpression, which will be
|
|
/// an InitListExpr.
|
|
bool isListInitialization() const { return TypeAndInitForm.getInt(); }
|
|
|
|
/// Retrieve the number of arguments.
|
|
unsigned getNumArgs() const { return CXXUnresolvedConstructExprBits.NumArgs; }
|
|
|
|
using arg_iterator = Expr **;
|
|
using arg_range = llvm::iterator_range<arg_iterator>;
|
|
|
|
arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
|
|
arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
|
|
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
|
|
|
|
using const_arg_iterator = const Expr* const *;
|
|
using const_arg_range = llvm::iterator_range<const_arg_iterator>;
|
|
|
|
const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
|
|
const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
|
|
const_arg_range arguments() const {
|
|
return const_arg_range(arg_begin(), arg_end());
|
|
}
|
|
|
|
Expr *getArg(unsigned I) {
|
|
assert(I < getNumArgs() && "Argument index out-of-range");
|
|
return arg_begin()[I];
|
|
}
|
|
|
|
const Expr *getArg(unsigned I) const {
|
|
assert(I < getNumArgs() && "Argument index out-of-range");
|
|
return arg_begin()[I];
|
|
}
|
|
|
|
void setArg(unsigned I, Expr *E) {
|
|
assert(I < getNumArgs() && "Argument index out-of-range");
|
|
arg_begin()[I] = E;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY;
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (!RParenLoc.isValid() && getNumArgs() > 0)
|
|
return getArg(getNumArgs() - 1)->getEndLoc();
|
|
return RParenLoc;
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXUnresolvedConstructExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
auto **begin = reinterpret_cast<Stmt **>(arg_begin());
|
|
return child_range(begin, begin + getNumArgs());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
auto **begin = reinterpret_cast<Stmt **>(
|
|
const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
|
|
return const_child_range(begin, begin + getNumArgs());
|
|
}
|
|
};
|
|
|
|
/// Represents a C++ member access expression where the actual
|
|
/// member referenced could not be resolved because the base
|
|
/// expression or the member name was dependent.
|
|
///
|
|
/// Like UnresolvedMemberExprs, these can be either implicit or
|
|
/// explicit accesses. It is only possible to get one of these with
|
|
/// an implicit access if a qualifier is provided.
|
|
class CXXDependentScopeMemberExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
|
|
ASTTemplateKWAndArgsInfo,
|
|
TemplateArgumentLoc, NamedDecl *> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// The expression for the base pointer or class reference,
|
|
/// e.g., the \c x in x.f. Can be null in implicit accesses.
|
|
Stmt *Base;
|
|
|
|
/// The type of the base expression. Never null, even for
|
|
/// implicit accesses.
|
|
QualType BaseType;
|
|
|
|
/// The nested-name-specifier that precedes the member name, if any.
|
|
/// FIXME: This could be in principle store as a trailing object.
|
|
/// However the performance impact of doing so should be investigated first.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
|
|
/// The member to which this member expression refers, which
|
|
/// can be name, overloaded operator, or destructor.
|
|
///
|
|
/// FIXME: could also be a template-id
|
|
DeclarationNameInfo MemberNameInfo;
|
|
|
|
// CXXDependentScopeMemberExpr is followed by several trailing objects,
|
|
// some of which optional. They are in order:
|
|
//
|
|
// * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
|
|
// template keyword and arguments. Present if and only if
|
|
// hasTemplateKWAndArgsInfo().
|
|
//
|
|
// * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
|
|
// information for the explicitly specified template arguments.
|
|
//
|
|
// * An optional NamedDecl *. In a qualified member access expression such
|
|
// as t->Base::f, this member stores the resolves of name lookup in the
|
|
// context of the member access expression, to be used at instantiation
|
|
// time. Present if and only if hasFirstQualifierFoundInScope().
|
|
|
|
bool hasTemplateKWAndArgsInfo() const {
|
|
return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo;
|
|
}
|
|
|
|
bool hasFirstQualifierFoundInScope() const {
|
|
return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope;
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
|
|
return hasTemplateKWAndArgsInfo();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
|
|
return getNumTemplateArgs();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const {
|
|
return hasFirstQualifierFoundInScope();
|
|
}
|
|
|
|
CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base,
|
|
QualType BaseType, bool IsArrow,
|
|
SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierFoundInScope,
|
|
DeclarationNameInfo MemberNameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
|
|
bool HasFirstQualifierFoundInScope);
|
|
|
|
public:
|
|
static CXXDependentScopeMemberExpr *
|
|
Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
|
|
SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
|
|
DeclarationNameInfo MemberNameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
static CXXDependentScopeMemberExpr *
|
|
CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
|
|
unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);
|
|
|
|
/// True if this is an implicit access, i.e. one in which the
|
|
/// member being accessed was not written in the source. The source
|
|
/// location of the operator is invalid in this case.
|
|
bool isImplicitAccess() const {
|
|
if (!Base)
|
|
return true;
|
|
return cast<Expr>(Base)->isImplicitCXXThis();
|
|
}
|
|
|
|
/// Retrieve the base object of this member expressions,
|
|
/// e.g., the \c x in \c x.m.
|
|
Expr *getBase() const {
|
|
assert(!isImplicitAccess());
|
|
return cast<Expr>(Base);
|
|
}
|
|
|
|
QualType getBaseType() const { return BaseType; }
|
|
|
|
/// Determine whether this member expression used the '->'
|
|
/// operator; otherwise, it used the '.' operator.
|
|
bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }
|
|
|
|
/// Retrieve the location of the '->' or '.' operator.
|
|
SourceLocation getOperatorLoc() const {
|
|
return CXXDependentScopeMemberExprBits.OperatorLoc;
|
|
}
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies the member name.
|
|
NestedNameSpecifier *getQualifier() const {
|
|
return QualifierLoc.getNestedNameSpecifier();
|
|
}
|
|
|
|
/// Retrieve the nested-name-specifier that qualifies the member
|
|
/// name, with source location information.
|
|
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
|
|
|
|
/// Retrieve the first part of the nested-name-specifier that was
|
|
/// found in the scope of the member access expression when the member access
|
|
/// was initially parsed.
|
|
///
|
|
/// This function only returns a useful result when member access expression
|
|
/// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
|
|
/// returned by this function describes what was found by unqualified name
|
|
/// lookup for the identifier "Base" within the scope of the member access
|
|
/// expression itself. At template instantiation time, this information is
|
|
/// combined with the results of name lookup into the type of the object
|
|
/// expression itself (the class type of x).
|
|
NamedDecl *getFirstQualifierFoundInScope() const {
|
|
if (!hasFirstQualifierFoundInScope())
|
|
return nullptr;
|
|
return *getTrailingObjects<NamedDecl *>();
|
|
}
|
|
|
|
/// Retrieve the name of the member that this expression refers to.
|
|
const DeclarationNameInfo &getMemberNameInfo() const {
|
|
return MemberNameInfo;
|
|
}
|
|
|
|
/// Retrieve the name of the member that this expression refers to.
|
|
DeclarationName getMember() const { return MemberNameInfo.getName(); }
|
|
|
|
// Retrieve the location of the name of the member that this
|
|
// expression refers to.
|
|
SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
|
|
|
|
/// Retrieve the location of the template keyword preceding the
|
|
/// member name, if any.
|
|
SourceLocation getTemplateKeywordLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the left angle bracket starting the
|
|
/// explicit template argument list following the member name, if any.
|
|
SourceLocation getLAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
|
|
}
|
|
|
|
/// Retrieve the location of the right angle bracket ending the
|
|
/// explicit template argument list following the member name, if any.
|
|
SourceLocation getRAngleLoc() const {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return SourceLocation();
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
|
|
}
|
|
|
|
/// Determines whether the member name was preceded by the template keyword.
|
|
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
|
|
|
|
/// Determines whether this member expression actually had a C++
|
|
/// template argument list explicitly specified, e.g., x.f<int>.
|
|
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
|
|
|
|
/// Copies the template arguments (if present) into the given
|
|
/// structure.
|
|
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
|
|
if (hasExplicitTemplateArgs())
|
|
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
|
|
getTrailingObjects<TemplateArgumentLoc>(), List);
|
|
}
|
|
|
|
/// Retrieve the template arguments provided as part of this
|
|
/// template-id.
|
|
const TemplateArgumentLoc *getTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return nullptr;
|
|
|
|
return getTrailingObjects<TemplateArgumentLoc>();
|
|
}
|
|
|
|
/// Retrieve the number of template arguments provided as part of this
|
|
/// template-id.
|
|
unsigned getNumTemplateArgs() const {
|
|
if (!hasExplicitTemplateArgs())
|
|
return 0;
|
|
|
|
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
|
|
}
|
|
|
|
ArrayRef<TemplateArgumentLoc> template_arguments() const {
|
|
return {getTemplateArgs(), getNumTemplateArgs()};
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
if (!isImplicitAccess())
|
|
return Base->getBeginLoc();
|
|
if (getQualifier())
|
|
return getQualifierLoc().getBeginLoc();
|
|
return MemberNameInfo.getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (hasExplicitTemplateArgs())
|
|
return getRAngleLoc();
|
|
return MemberNameInfo.getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXDependentScopeMemberExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
if (isImplicitAccess())
|
|
return child_range(child_iterator(), child_iterator());
|
|
return child_range(&Base, &Base + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
if (isImplicitAccess())
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
return const_child_range(&Base, &Base + 1);
|
|
}
|
|
};
|
|
|
|
/// Represents a C++ member access expression for which lookup
|
|
/// produced a set of overloaded functions.
|
|
///
|
|
/// The member access may be explicit or implicit:
|
|
/// \code
|
|
/// struct A {
|
|
/// int a, b;
|
|
/// int explicitAccess() { return this->a + this->A::b; }
|
|
/// int implicitAccess() { return a + A::b; }
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// In the final AST, an explicit access always becomes a MemberExpr.
|
|
/// An implicit access may become either a MemberExpr or a
|
|
/// DeclRefExpr, depending on whether the member is static.
|
|
class UnresolvedMemberExpr final
|
|
: public OverloadExpr,
|
|
private llvm::TrailingObjects<UnresolvedMemberExpr, DeclAccessPair,
|
|
ASTTemplateKWAndArgsInfo,
|
|
TemplateArgumentLoc> {
|
|
friend class ASTStmtReader;
|
|
friend class OverloadExpr;
|
|
friend TrailingObjects;
|
|
|
|
/// The expression for the base pointer or class reference,
|
|
/// e.g., the \c x in x.f.
|
|
///
|
|
/// This can be null if this is an 'unbased' member expression.
|
|
Stmt *Base;
|
|
|
|
/// The type of the base expression; never null.
|
|
QualType BaseType;
|
|
|
|
/// The location of the '->' or '.' operator.
|
|
SourceLocation OperatorLoc;
|
|
|
|
// UnresolvedMemberExpr is followed by several trailing objects.
|
|
// They are in order:
|
|
//
|
|
// * An array of getNumResults() DeclAccessPair for the results. These are
|
|
// undesugared, which is to say, they may include UsingShadowDecls.
|
|
// Access is relative to the naming class.
|
|
//
|
|
// * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
|
|
// template keyword and arguments. Present if and only if
|
|
// hasTemplateKWAndArgsInfo().
|
|
//
|
|
// * An array of getNumTemplateArgs() TemplateArgumentLoc containing
|
|
// location information for the explicitly specified template arguments.
|
|
|
|
UnresolvedMemberExpr(const ASTContext &Context, bool HasUnresolvedUsing,
|
|
Expr *Base, QualType BaseType, bool IsArrow,
|
|
SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
|
|
|
|
UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults,
|
|
bool HasTemplateKWAndArgsInfo);
|
|
|
|
unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
|
|
return getNumDecls();
|
|
}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
|
|
return hasTemplateKWAndArgsInfo();
|
|
}
|
|
|
|
public:
|
|
static UnresolvedMemberExpr *
|
|
Create(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
|
|
QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
|
|
|
|
static UnresolvedMemberExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned NumResults,
|
|
bool HasTemplateKWAndArgsInfo,
|
|
unsigned NumTemplateArgs);
|
|
|
|
/// True if this is an implicit access, i.e., one in which the
|
|
/// member being accessed was not written in the source.
|
|
///
|
|
/// The source location of the operator is invalid in this case.
|
|
bool isImplicitAccess() const;
|
|
|
|
/// Retrieve the base object of this member expressions,
|
|
/// e.g., the \c x in \c x.m.
|
|
Expr *getBase() {
|
|
assert(!isImplicitAccess());
|
|
return cast<Expr>(Base);
|
|
}
|
|
const Expr *getBase() const {
|
|
assert(!isImplicitAccess());
|
|
return cast<Expr>(Base);
|
|
}
|
|
|
|
QualType getBaseType() const { return BaseType; }
|
|
|
|
/// Determine whether the lookup results contain an unresolved using
|
|
/// declaration.
|
|
bool hasUnresolvedUsing() const {
|
|
return UnresolvedMemberExprBits.HasUnresolvedUsing;
|
|
}
|
|
|
|
/// Determine whether this member expression used the '->'
|
|
/// operator; otherwise, it used the '.' operator.
|
|
bool isArrow() const { return UnresolvedMemberExprBits.IsArrow; }
|
|
|
|
/// Retrieve the location of the '->' or '.' operator.
|
|
SourceLocation getOperatorLoc() const { return OperatorLoc; }
|
|
|
|
/// Retrieve the naming class of this lookup.
|
|
CXXRecordDecl *getNamingClass();
|
|
const CXXRecordDecl *getNamingClass() const {
|
|
return const_cast<UnresolvedMemberExpr *>(this)->getNamingClass();
|
|
}
|
|
|
|
/// Retrieve the full name info for the member that this expression
|
|
/// refers to.
|
|
const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
|
|
|
|
/// Retrieve the name of the member that this expression refers to.
|
|
DeclarationName getMemberName() const { return getName(); }
|
|
|
|
/// Retrieve the location of the name of the member that this
|
|
/// expression refers to.
|
|
SourceLocation getMemberLoc() const { return getNameLoc(); }
|
|
|
|
/// Return the preferred location (the member name) for the arrow when
|
|
/// diagnosing a problem with this expression.
|
|
SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
if (!isImplicitAccess())
|
|
return Base->getBeginLoc();
|
|
if (NestedNameSpecifierLoc l = getQualifierLoc())
|
|
return l.getBeginLoc();
|
|
return getMemberNameInfo().getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (hasExplicitTemplateArgs())
|
|
return getRAngleLoc();
|
|
return getMemberNameInfo().getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == UnresolvedMemberExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
if (isImplicitAccess())
|
|
return child_range(child_iterator(), child_iterator());
|
|
return child_range(&Base, &Base + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
if (isImplicitAccess())
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
return const_child_range(&Base, &Base + 1);
|
|
}
|
|
};
|
|
|
|
DeclAccessPair *OverloadExpr::getTrailingResults() {
|
|
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
|
|
return ULE->getTrailingObjects<DeclAccessPair>();
|
|
return cast<UnresolvedMemberExpr>(this)->getTrailingObjects<DeclAccessPair>();
|
|
}
|
|
|
|
ASTTemplateKWAndArgsInfo *OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() {
|
|
if (!hasTemplateKWAndArgsInfo())
|
|
return nullptr;
|
|
|
|
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
|
|
return ULE->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
|
|
return cast<UnresolvedMemberExpr>(this)
|
|
->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
|
|
}
|
|
|
|
TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() {
|
|
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
|
|
return ULE->getTrailingObjects<TemplateArgumentLoc>();
|
|
return cast<UnresolvedMemberExpr>(this)
|
|
->getTrailingObjects<TemplateArgumentLoc>();
|
|
}
|
|
|
|
CXXRecordDecl *OverloadExpr::getNamingClass() {
|
|
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
|
|
return ULE->getNamingClass();
|
|
return cast<UnresolvedMemberExpr>(this)->getNamingClass();
|
|
}
|
|
|
|
/// Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
|
|
///
|
|
/// The noexcept expression tests whether a given expression might throw. Its
|
|
/// result is a boolean constant.
|
|
class CXXNoexceptExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
Stmt *Operand;
|
|
SourceRange Range;
|
|
|
|
public:
|
|
CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
|
|
SourceLocation Keyword, SourceLocation RParen)
|
|
: Expr(CXXNoexceptExprClass, Ty, VK_PRValue, OK_Ordinary),
|
|
Operand(Operand), Range(Keyword, RParen) {
|
|
CXXNoexceptExprBits.Value = Val == CT_Cannot;
|
|
setDependence(computeDependence(this, Val));
|
|
}
|
|
|
|
CXXNoexceptExpr(EmptyShell Empty) : Expr(CXXNoexceptExprClass, Empty) {}
|
|
|
|
Expr *getOperand() const { return static_cast<Expr *>(Operand); }
|
|
|
|
SourceLocation getBeginLoc() const { return Range.getBegin(); }
|
|
SourceLocation getEndLoc() const { return Range.getEnd(); }
|
|
SourceRange getSourceRange() const { return Range; }
|
|
|
|
bool getValue() const { return CXXNoexceptExprBits.Value; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXNoexceptExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&Operand, &Operand + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Operand, &Operand + 1);
|
|
}
|
|
};
|
|
|
|
/// Represents a C++11 pack expansion that produces a sequence of
|
|
/// expressions.
|
|
///
|
|
/// A pack expansion expression contains a pattern (which itself is an
|
|
/// expression) followed by an ellipsis. For example:
|
|
///
|
|
/// \code
|
|
/// template<typename F, typename ...Types>
|
|
/// void forward(F f, Types &&...args) {
|
|
/// f(static_cast<Types&&>(args)...);
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Here, the argument to the function object \c f is a pack expansion whose
|
|
/// pattern is \c static_cast<Types&&>(args). When the \c forward function
|
|
/// template is instantiated, the pack expansion will instantiate to zero or
|
|
/// or more function arguments to the function object \c f.
|
|
class PackExpansionExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
SourceLocation EllipsisLoc;
|
|
|
|
/// The number of expansions that will be produced by this pack
|
|
/// expansion expression, if known.
|
|
///
|
|
/// When zero, the number of expansions is not known. Otherwise, this value
|
|
/// is the number of expansions + 1.
|
|
unsigned NumExpansions;
|
|
|
|
Stmt *Pattern;
|
|
|
|
public:
|
|
PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
|
|
std::optional<unsigned> NumExpansions)
|
|
: Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
|
|
Pattern->getObjectKind()),
|
|
EllipsisLoc(EllipsisLoc),
|
|
NumExpansions(NumExpansions ? *NumExpansions + 1 : 0),
|
|
Pattern(Pattern) {
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) {}
|
|
|
|
/// Retrieve the pattern of the pack expansion.
|
|
Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
|
|
|
|
/// Retrieve the pattern of the pack expansion.
|
|
const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
|
|
|
|
/// Retrieve the location of the ellipsis that describes this pack
|
|
/// expansion.
|
|
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
|
|
|
|
/// Determine the number of expansions that will be produced when
|
|
/// this pack expansion is instantiated, if already known.
|
|
std::optional<unsigned> getNumExpansions() const {
|
|
if (NumExpansions)
|
|
return NumExpansions - 1;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return Pattern->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return EllipsisLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == PackExpansionExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(&Pattern, &Pattern + 1);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Pattern, &Pattern + 1);
|
|
}
|
|
};
|
|
|
|
/// Represents an expression that computes the length of a parameter
|
|
/// pack.
|
|
///
|
|
/// \code
|
|
/// template<typename ...Types>
|
|
/// struct count {
|
|
/// static const unsigned value = sizeof...(Types);
|
|
/// };
|
|
/// \endcode
|
|
class SizeOfPackExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
/// The location of the \c sizeof keyword.
|
|
SourceLocation OperatorLoc;
|
|
|
|
/// The location of the name of the parameter pack.
|
|
SourceLocation PackLoc;
|
|
|
|
/// The location of the closing parenthesis.
|
|
SourceLocation RParenLoc;
|
|
|
|
/// The length of the parameter pack, if known.
|
|
///
|
|
/// When this expression is not value-dependent, this is the length of
|
|
/// the pack. When the expression was parsed rather than instantiated
|
|
/// (and thus is value-dependent), this is zero.
|
|
///
|
|
/// After partial substitution into a sizeof...(X) expression (for instance,
|
|
/// within an alias template or during function template argument deduction),
|
|
/// we store a trailing array of partially-substituted TemplateArguments,
|
|
/// and this is the length of that array.
|
|
unsigned Length;
|
|
|
|
/// The parameter pack.
|
|
NamedDecl *Pack = nullptr;
|
|
|
|
/// Create an expression that computes the length of
|
|
/// the given parameter pack.
|
|
SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
|
|
SourceLocation PackLoc, SourceLocation RParenLoc,
|
|
std::optional<unsigned> Length,
|
|
ArrayRef<TemplateArgument> PartialArgs)
|
|
: Expr(SizeOfPackExprClass, SizeType, VK_PRValue, OK_Ordinary),
|
|
OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
|
|
Length(Length ? *Length : PartialArgs.size()), Pack(Pack) {
|
|
assert((!Length || PartialArgs.empty()) &&
|
|
"have partial args for non-dependent sizeof... expression");
|
|
auto *Args = getTrailingObjects<TemplateArgument>();
|
|
std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args);
|
|
setDependence(Length ? ExprDependence::None
|
|
: ExprDependence::ValueInstantiation);
|
|
}
|
|
|
|
/// Create an empty expression.
|
|
SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs)
|
|
: Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs) {}
|
|
|
|
public:
|
|
static SizeOfPackExpr *
|
|
Create(ASTContext &Context, SourceLocation OperatorLoc, NamedDecl *Pack,
|
|
SourceLocation PackLoc, SourceLocation RParenLoc,
|
|
std::optional<unsigned> Length = std::nullopt,
|
|
ArrayRef<TemplateArgument> PartialArgs = std::nullopt);
|
|
static SizeOfPackExpr *CreateDeserialized(ASTContext &Context,
|
|
unsigned NumPartialArgs);
|
|
|
|
/// Determine the location of the 'sizeof' keyword.
|
|
SourceLocation getOperatorLoc() const { return OperatorLoc; }
|
|
|
|
/// Determine the location of the parameter pack.
|
|
SourceLocation getPackLoc() const { return PackLoc; }
|
|
|
|
/// Determine the location of the right parenthesis.
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
|
|
/// Retrieve the parameter pack.
|
|
NamedDecl *getPack() const { return Pack; }
|
|
|
|
/// Retrieve the length of the parameter pack.
|
|
///
|
|
/// This routine may only be invoked when the expression is not
|
|
/// value-dependent.
|
|
unsigned getPackLength() const {
|
|
assert(!isValueDependent() &&
|
|
"Cannot get the length of a value-dependent pack size expression");
|
|
return Length;
|
|
}
|
|
|
|
/// Determine whether this represents a partially-substituted sizeof...
|
|
/// expression, such as is produced for:
|
|
///
|
|
/// template<typename ...Ts> using X = int[sizeof...(Ts)];
|
|
/// template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>);
|
|
bool isPartiallySubstituted() const {
|
|
return isValueDependent() && Length;
|
|
}
|
|
|
|
/// Get
|
|
ArrayRef<TemplateArgument> getPartialArguments() const {
|
|
assert(isPartiallySubstituted());
|
|
const auto *Args = getTrailingObjects<TemplateArgument>();
|
|
return llvm::ArrayRef(Args, Args + Length);
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SizeOfPackExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
class PackIndexingExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<PackIndexingExpr, Expr *> {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
friend TrailingObjects;
|
|
|
|
SourceLocation EllipsisLoc;
|
|
|
|
// The location of the closing bracket
|
|
SourceLocation RSquareLoc;
|
|
|
|
// The pack being indexed, followed by the index
|
|
Stmt *SubExprs[2];
|
|
|
|
// The size of the trailing expressions.
|
|
unsigned TransformedExpressions : 31;
|
|
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned ExpandedToEmptyPack : 1;
|
|
|
|
PackIndexingExpr(QualType Type, SourceLocation EllipsisLoc,
|
|
SourceLocation RSquareLoc, Expr *PackIdExpr, Expr *IndexExpr,
|
|
ArrayRef<Expr *> SubstitutedExprs = {},
|
|
bool ExpandedToEmptyPack = false)
|
|
: Expr(PackIndexingExprClass, Type, VK_LValue, OK_Ordinary),
|
|
EllipsisLoc(EllipsisLoc), RSquareLoc(RSquareLoc),
|
|
SubExprs{PackIdExpr, IndexExpr},
|
|
TransformedExpressions(SubstitutedExprs.size()),
|
|
ExpandedToEmptyPack(ExpandedToEmptyPack) {
|
|
|
|
auto *Exprs = getTrailingObjects<Expr *>();
|
|
std::uninitialized_copy(SubstitutedExprs.begin(), SubstitutedExprs.end(),
|
|
Exprs);
|
|
|
|
setDependence(computeDependence(this));
|
|
if (!isInstantiationDependent())
|
|
setValueKind(getSelectedExpr()->getValueKind());
|
|
}
|
|
|
|
/// Create an empty expression.
|
|
PackIndexingExpr(EmptyShell Empty) : Expr(PackIndexingExprClass, Empty) {}
|
|
|
|
unsigned numTrailingObjects(OverloadToken<Expr *>) const {
|
|
return TransformedExpressions;
|
|
}
|
|
|
|
public:
|
|
static PackIndexingExpr *Create(ASTContext &Context,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation RSquareLoc, Expr *PackIdExpr,
|
|
Expr *IndexExpr, std::optional<int64_t> Index,
|
|
ArrayRef<Expr *> SubstitutedExprs = {},
|
|
bool ExpandedToEmptyPack = false);
|
|
static PackIndexingExpr *CreateDeserialized(ASTContext &Context,
|
|
unsigned NumTransformedExprs);
|
|
|
|
/// Determine if the expression was expanded to empty.
|
|
bool expandsToEmptyPack() const { return ExpandedToEmptyPack; }
|
|
|
|
/// Determine the location of the 'sizeof' keyword.
|
|
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
|
|
|
|
/// Determine the location of the parameter pack.
|
|
SourceLocation getPackLoc() const { return SubExprs[0]->getBeginLoc(); }
|
|
|
|
/// Determine the location of the right parenthesis.
|
|
SourceLocation getRSquareLoc() const { return RSquareLoc; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return getPackLoc(); }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RSquareLoc; }
|
|
|
|
Expr *getPackIdExpression() const { return cast<Expr>(SubExprs[0]); }
|
|
|
|
NamedDecl *getPackDecl() const;
|
|
|
|
Expr *getIndexExpr() const { return cast<Expr>(SubExprs[1]); }
|
|
|
|
std::optional<unsigned> getSelectedIndex() const {
|
|
if (isInstantiationDependent())
|
|
return std::nullopt;
|
|
ConstantExpr *CE = cast<ConstantExpr>(getIndexExpr());
|
|
auto Index = CE->getResultAsAPSInt();
|
|
assert(Index.isNonNegative() && "Invalid index");
|
|
return static_cast<unsigned>(Index.getExtValue());
|
|
}
|
|
|
|
Expr *getSelectedExpr() const {
|
|
std::optional<unsigned> Index = getSelectedIndex();
|
|
assert(Index && "extracting the indexed expression of a dependant pack");
|
|
return getTrailingObjects<Expr *>()[*Index];
|
|
}
|
|
|
|
/// Return the trailing expressions, regardless of the expansion.
|
|
ArrayRef<Expr *> getExpressions() const {
|
|
return {getTrailingObjects<Expr *>(), TransformedExpressions};
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == PackIndexingExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(SubExprs, SubExprs + 2); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(SubExprs, SubExprs + 2);
|
|
}
|
|
};
|
|
|
|
/// Represents a reference to a non-type template parameter
|
|
/// that has been substituted with a template argument.
|
|
class SubstNonTypeTemplateParmExpr : public Expr {
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
|
|
/// The replacement expression.
|
|
Stmt *Replacement;
|
|
|
|
/// The associated declaration and a flag indicating if it was a reference
|
|
/// parameter. For class NTTPs, we can't determine that based on the value
|
|
/// category alone.
|
|
llvm::PointerIntPair<Decl *, 1, bool> AssociatedDeclAndRef;
|
|
|
|
unsigned Index : 15;
|
|
unsigned PackIndex : 16;
|
|
|
|
explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
|
|
: Expr(SubstNonTypeTemplateParmExprClass, Empty) {}
|
|
|
|
public:
|
|
SubstNonTypeTemplateParmExpr(QualType Ty, ExprValueKind ValueKind,
|
|
SourceLocation Loc, Expr *Replacement,
|
|
Decl *AssociatedDecl, unsigned Index,
|
|
std::optional<unsigned> PackIndex, bool RefParam)
|
|
: Expr(SubstNonTypeTemplateParmExprClass, Ty, ValueKind, OK_Ordinary),
|
|
Replacement(Replacement),
|
|
AssociatedDeclAndRef(AssociatedDecl, RefParam), Index(Index),
|
|
PackIndex(PackIndex ? *PackIndex + 1 : 0) {
|
|
assert(AssociatedDecl != nullptr);
|
|
SubstNonTypeTemplateParmExprBits.NameLoc = Loc;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
SourceLocation getNameLoc() const {
|
|
return SubstNonTypeTemplateParmExprBits.NameLoc;
|
|
}
|
|
SourceLocation getBeginLoc() const { return getNameLoc(); }
|
|
SourceLocation getEndLoc() const { return getNameLoc(); }
|
|
|
|
Expr *getReplacement() const { return cast<Expr>(Replacement); }
|
|
|
|
/// A template-like entity which owns the whole pattern being substituted.
|
|
/// This will own a set of template parameters.
|
|
Decl *getAssociatedDecl() const { return AssociatedDeclAndRef.getPointer(); }
|
|
|
|
/// Returns the index of the replaced parameter in the associated declaration.
|
|
/// This should match the result of `getParameter()->getIndex()`.
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
std::optional<unsigned> getPackIndex() const {
|
|
if (PackIndex == 0)
|
|
return std::nullopt;
|
|
return PackIndex - 1;
|
|
}
|
|
|
|
NonTypeTemplateParmDecl *getParameter() const;
|
|
|
|
bool isReferenceParameter() const { return AssociatedDeclAndRef.getInt(); }
|
|
|
|
/// Determine the substituted type of the template parameter.
|
|
QualType getParameterType(const ASTContext &Ctx) const;
|
|
|
|
static bool classof(const Stmt *s) {
|
|
return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() { return child_range(&Replacement, &Replacement + 1); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(&Replacement, &Replacement + 1);
|
|
}
|
|
};
|
|
|
|
/// Represents a reference to a non-type template parameter pack that
|
|
/// has been substituted with a non-template argument pack.
|
|
///
|
|
/// When a pack expansion in the source code contains multiple parameter packs
|
|
/// and those parameter packs correspond to different levels of template
|
|
/// parameter lists, this node is used to represent a non-type template
|
|
/// parameter pack from an outer level, which has already had its argument pack
|
|
/// substituted but that still lives within a pack expansion that itself
|
|
/// could not be instantiated. When actually performing a substitution into
|
|
/// that pack expansion (e.g., when all template parameters have corresponding
|
|
/// arguments), this type will be replaced with the appropriate underlying
|
|
/// expression at the current pack substitution index.
|
|
class SubstNonTypeTemplateParmPackExpr : public Expr {
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
|
|
/// The non-type template parameter pack itself.
|
|
Decl *AssociatedDecl;
|
|
|
|
/// A pointer to the set of template arguments that this
|
|
/// parameter pack is instantiated with.
|
|
const TemplateArgument *Arguments;
|
|
|
|
/// The number of template arguments in \c Arguments.
|
|
unsigned NumArguments : 16;
|
|
|
|
unsigned Index : 16;
|
|
|
|
/// The location of the non-type template parameter pack reference.
|
|
SourceLocation NameLoc;
|
|
|
|
explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
|
|
: Expr(SubstNonTypeTemplateParmPackExprClass, Empty) {}
|
|
|
|
public:
|
|
SubstNonTypeTemplateParmPackExpr(QualType T, ExprValueKind ValueKind,
|
|
SourceLocation NameLoc,
|
|
const TemplateArgument &ArgPack,
|
|
Decl *AssociatedDecl, unsigned Index);
|
|
|
|
/// A template-like entity which owns the whole pattern being substituted.
|
|
/// This will own a set of template parameters.
|
|
Decl *getAssociatedDecl() const { return AssociatedDecl; }
|
|
|
|
/// Returns the index of the replaced parameter in the associated declaration.
|
|
/// This should match the result of `getParameterPack()->getIndex()`.
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
/// Retrieve the non-type template parameter pack being substituted.
|
|
NonTypeTemplateParmDecl *getParameterPack() const;
|
|
|
|
/// Retrieve the location of the parameter pack name.
|
|
SourceLocation getParameterPackLocation() const { return NameLoc; }
|
|
|
|
/// Retrieve the template argument pack containing the substituted
|
|
/// template arguments.
|
|
TemplateArgument getArgumentPack() const;
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Represents a reference to a function parameter pack or init-capture pack
|
|
/// that has been substituted but not yet expanded.
|
|
///
|
|
/// When a pack expansion contains multiple parameter packs at different levels,
|
|
/// this node is used to represent a function parameter pack at an outer level
|
|
/// which we have already substituted to refer to expanded parameters, but where
|
|
/// the containing pack expansion cannot yet be expanded.
|
|
///
|
|
/// \code
|
|
/// template<typename...Ts> struct S {
|
|
/// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
|
|
/// };
|
|
/// template struct S<int, int>;
|
|
/// \endcode
|
|
class FunctionParmPackExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<FunctionParmPackExpr, VarDecl *> {
|
|
friend class ASTReader;
|
|
friend class ASTStmtReader;
|
|
friend TrailingObjects;
|
|
|
|
/// The function parameter pack which was referenced.
|
|
VarDecl *ParamPack;
|
|
|
|
/// The location of the function parameter pack reference.
|
|
SourceLocation NameLoc;
|
|
|
|
/// The number of expansions of this pack.
|
|
unsigned NumParameters;
|
|
|
|
FunctionParmPackExpr(QualType T, VarDecl *ParamPack,
|
|
SourceLocation NameLoc, unsigned NumParams,
|
|
VarDecl *const *Params);
|
|
|
|
public:
|
|
static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
|
|
VarDecl *ParamPack,
|
|
SourceLocation NameLoc,
|
|
ArrayRef<VarDecl *> Params);
|
|
static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
|
|
unsigned NumParams);
|
|
|
|
/// Get the parameter pack which this expression refers to.
|
|
VarDecl *getParameterPack() const { return ParamPack; }
|
|
|
|
/// Get the location of the parameter pack.
|
|
SourceLocation getParameterPackLocation() const { return NameLoc; }
|
|
|
|
/// Iterators over the parameters which the parameter pack expanded
|
|
/// into.
|
|
using iterator = VarDecl * const *;
|
|
iterator begin() const { return getTrailingObjects<VarDecl *>(); }
|
|
iterator end() const { return begin() + NumParameters; }
|
|
|
|
/// Get the number of parameters in this parameter pack.
|
|
unsigned getNumExpansions() const { return NumParameters; }
|
|
|
|
/// Get an expansion of the parameter pack by index.
|
|
VarDecl *getExpansion(unsigned I) const { return begin()[I]; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == FunctionParmPackExprClass;
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(child_iterator(), child_iterator());
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(const_child_iterator(), const_child_iterator());
|
|
}
|
|
};
|
|
|
|
/// Represents a prvalue temporary that is written into memory so that
|
|
/// a reference can bind to it.
|
|
///
|
|
/// Prvalue expressions are materialized when they need to have an address
|
|
/// in memory for a reference to bind to. This happens when binding a
|
|
/// reference to the result of a conversion, e.g.,
|
|
///
|
|
/// \code
|
|
/// const int &r = 1.0;
|
|
/// \endcode
|
|
///
|
|
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
|
|
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
|
|
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
|
|
/// (either an lvalue or an xvalue, depending on the kind of reference binding
|
|
/// to it), maintaining the invariant that references always bind to glvalues.
|
|
///
|
|
/// Reference binding and copy-elision can both extend the lifetime of a
|
|
/// temporary. When either happens, the expression will also track the
|
|
/// declaration which is responsible for the lifetime extension.
|
|
class MaterializeTemporaryExpr : public Expr {
|
|
private:
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
llvm::PointerUnion<Stmt *, LifetimeExtendedTemporaryDecl *> State;
|
|
|
|
public:
|
|
MaterializeTemporaryExpr(QualType T, Expr *Temporary,
|
|
bool BoundToLvalueReference,
|
|
LifetimeExtendedTemporaryDecl *MTD = nullptr);
|
|
|
|
MaterializeTemporaryExpr(EmptyShell Empty)
|
|
: Expr(MaterializeTemporaryExprClass, Empty) {}
|
|
|
|
/// Retrieve the temporary-generating subexpression whose value will
|
|
/// be materialized into a glvalue.
|
|
Expr *getSubExpr() const {
|
|
return cast<Expr>(
|
|
State.is<Stmt *>()
|
|
? State.get<Stmt *>()
|
|
: State.get<LifetimeExtendedTemporaryDecl *>()->getTemporaryExpr());
|
|
}
|
|
|
|
/// Retrieve the storage duration for the materialized temporary.
|
|
StorageDuration getStorageDuration() const {
|
|
return State.is<Stmt *>() ? SD_FullExpression
|
|
: State.get<LifetimeExtendedTemporaryDecl *>()
|
|
->getStorageDuration();
|
|
}
|
|
|
|
/// Get the storage for the constant value of a materialized temporary
|
|
/// of static storage duration.
|
|
APValue *getOrCreateValue(bool MayCreate) const {
|
|
assert(State.is<LifetimeExtendedTemporaryDecl *>() &&
|
|
"the temporary has not been lifetime extended");
|
|
return State.get<LifetimeExtendedTemporaryDecl *>()->getOrCreateValue(
|
|
MayCreate);
|
|
}
|
|
|
|
LifetimeExtendedTemporaryDecl *getLifetimeExtendedTemporaryDecl() {
|
|
return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
|
|
}
|
|
const LifetimeExtendedTemporaryDecl *
|
|
getLifetimeExtendedTemporaryDecl() const {
|
|
return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
|
|
}
|
|
|
|
/// Get the declaration which triggered the lifetime-extension of this
|
|
/// temporary, if any.
|
|
ValueDecl *getExtendingDecl() {
|
|
return State.is<Stmt *>() ? nullptr
|
|
: State.get<LifetimeExtendedTemporaryDecl *>()
|
|
->getExtendingDecl();
|
|
}
|
|
const ValueDecl *getExtendingDecl() const {
|
|
return const_cast<MaterializeTemporaryExpr *>(this)->getExtendingDecl();
|
|
}
|
|
|
|
void setExtendingDecl(ValueDecl *ExtendedBy, unsigned ManglingNumber);
|
|
|
|
unsigned getManglingNumber() const {
|
|
return State.is<Stmt *>() ? 0
|
|
: State.get<LifetimeExtendedTemporaryDecl *>()
|
|
->getManglingNumber();
|
|
}
|
|
|
|
/// Determine whether this materialized temporary is bound to an
|
|
/// lvalue reference; otherwise, it's bound to an rvalue reference.
|
|
bool isBoundToLvalueReference() const { return isLValue(); }
|
|
|
|
/// Determine whether this temporary object is usable in constant
|
|
/// expressions, as specified in C++20 [expr.const]p4.
|
|
bool isUsableInConstantExpressions(const ASTContext &Context) const;
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return getSubExpr()->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return getSubExpr()->getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == MaterializeTemporaryExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return State.is<Stmt *>()
|
|
? child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1)
|
|
: State.get<LifetimeExtendedTemporaryDecl *>()->childrenExpr();
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return State.is<Stmt *>()
|
|
? const_child_range(State.getAddrOfPtr1(),
|
|
State.getAddrOfPtr1() + 1)
|
|
: const_cast<const LifetimeExtendedTemporaryDecl *>(
|
|
State.get<LifetimeExtendedTemporaryDecl *>())
|
|
->childrenExpr();
|
|
}
|
|
};
|
|
|
|
/// Represents a folding of a pack over an operator.
|
|
///
|
|
/// This expression is always dependent and represents a pack expansion of the
|
|
/// forms:
|
|
///
|
|
/// ( expr op ... )
|
|
/// ( ... op expr )
|
|
/// ( expr op ... op expr )
|
|
class CXXFoldExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
enum SubExpr { Callee, LHS, RHS, Count };
|
|
|
|
SourceLocation LParenLoc;
|
|
SourceLocation EllipsisLoc;
|
|
SourceLocation RParenLoc;
|
|
// When 0, the number of expansions is not known. Otherwise, this is one more
|
|
// than the number of expansions.
|
|
unsigned NumExpansions;
|
|
Stmt *SubExprs[SubExpr::Count];
|
|
BinaryOperatorKind Opcode;
|
|
|
|
public:
|
|
CXXFoldExpr(QualType T, UnresolvedLookupExpr *Callee,
|
|
SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Opcode,
|
|
SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc,
|
|
std::optional<unsigned> NumExpansions);
|
|
|
|
CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
|
|
|
|
UnresolvedLookupExpr *getCallee() const {
|
|
return static_cast<UnresolvedLookupExpr *>(SubExprs[SubExpr::Callee]);
|
|
}
|
|
Expr *getLHS() const { return static_cast<Expr*>(SubExprs[SubExpr::LHS]); }
|
|
Expr *getRHS() const { return static_cast<Expr*>(SubExprs[SubExpr::RHS]); }
|
|
|
|
/// Does this produce a right-associated sequence of operators?
|
|
bool isRightFold() const {
|
|
return getLHS() && getLHS()->containsUnexpandedParameterPack();
|
|
}
|
|
|
|
/// Does this produce a left-associated sequence of operators?
|
|
bool isLeftFold() const { return !isRightFold(); }
|
|
|
|
/// Get the pattern, that is, the operand that contains an unexpanded pack.
|
|
Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
|
|
|
|
/// Get the operand that doesn't contain a pack, for a binary fold.
|
|
Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
|
|
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
|
|
BinaryOperatorKind getOperator() const { return Opcode; }
|
|
|
|
std::optional<unsigned> getNumExpansions() const {
|
|
if (NumExpansions)
|
|
return NumExpansions - 1;
|
|
return std::nullopt;
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
if (LParenLoc.isValid())
|
|
return LParenLoc;
|
|
if (isLeftFold())
|
|
return getEllipsisLoc();
|
|
return getLHS()->getBeginLoc();
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
if (RParenLoc.isValid())
|
|
return RParenLoc;
|
|
if (isRightFold())
|
|
return getEllipsisLoc();
|
|
return getRHS()->getEndLoc();
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXFoldExprClass;
|
|
}
|
|
|
|
// Iterators
|
|
child_range children() {
|
|
return child_range(SubExprs, SubExprs + SubExpr::Count);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(SubExprs, SubExprs + SubExpr::Count);
|
|
}
|
|
};
|
|
|
|
/// Represents a list-initialization with parenthesis.
|
|
///
|
|
/// As per P0960R3, this is a C++20 feature that allows aggregate to
|
|
/// be initialized with a parenthesized list of values:
|
|
/// ```
|
|
/// struct A {
|
|
/// int a;
|
|
/// double b;
|
|
/// };
|
|
///
|
|
/// void foo() {
|
|
/// A a1(0); // Well-formed in C++20
|
|
/// A a2(1.5, 1.0); // Well-formed in C++20
|
|
/// }
|
|
/// ```
|
|
/// It has some sort of similiarity to braced
|
|
/// list-initialization, with some differences such as
|
|
/// it allows narrowing conversion whilst braced
|
|
/// list-initialization doesn't.
|
|
/// ```
|
|
/// struct A {
|
|
/// char a;
|
|
/// };
|
|
/// void foo() {
|
|
/// A a(1.5); // Well-formed in C++20
|
|
/// A b{1.5}; // Ill-formed !
|
|
/// }
|
|
/// ```
|
|
class CXXParenListInitExpr final
|
|
: public Expr,
|
|
private llvm::TrailingObjects<CXXParenListInitExpr, Expr *> {
|
|
friend class TrailingObjects;
|
|
friend class ASTStmtReader;
|
|
friend class ASTStmtWriter;
|
|
|
|
unsigned NumExprs;
|
|
unsigned NumUserSpecifiedExprs;
|
|
SourceLocation InitLoc, LParenLoc, RParenLoc;
|
|
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
|
|
|
|
CXXParenListInitExpr(ArrayRef<Expr *> Args, QualType T,
|
|
unsigned NumUserSpecifiedExprs, SourceLocation InitLoc,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc)
|
|
: Expr(CXXParenListInitExprClass, T, getValueKindForType(T), OK_Ordinary),
|
|
NumExprs(Args.size()), NumUserSpecifiedExprs(NumUserSpecifiedExprs),
|
|
InitLoc(InitLoc), LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
|
|
std::copy(Args.begin(), Args.end(), getTrailingObjects<Expr *>());
|
|
assert(NumExprs >= NumUserSpecifiedExprs &&
|
|
"number of user specified inits is greater than the number of "
|
|
"passed inits");
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
size_t numTrailingObjects(OverloadToken<Expr *>) const { return NumExprs; }
|
|
|
|
public:
|
|
static CXXParenListInitExpr *
|
|
Create(ASTContext &C, ArrayRef<Expr *> Args, QualType T,
|
|
unsigned NumUserSpecifiedExprs, SourceLocation InitLoc,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc);
|
|
|
|
static CXXParenListInitExpr *CreateEmpty(ASTContext &C, unsigned numExprs,
|
|
EmptyShell Empty);
|
|
|
|
explicit CXXParenListInitExpr(EmptyShell Empty, unsigned NumExprs)
|
|
: Expr(CXXParenListInitExprClass, Empty), NumExprs(NumExprs),
|
|
NumUserSpecifiedExprs(0) {}
|
|
|
|
void updateDependence() { setDependence(computeDependence(this)); }
|
|
|
|
ArrayRef<Expr *> getInitExprs() {
|
|
return ArrayRef(getTrailingObjects<Expr *>(), NumExprs);
|
|
}
|
|
|
|
const ArrayRef<Expr *> getInitExprs() const {
|
|
return ArrayRef(getTrailingObjects<Expr *>(), NumExprs);
|
|
}
|
|
|
|
ArrayRef<Expr *> getUserSpecifiedInitExprs() {
|
|
return ArrayRef(getTrailingObjects<Expr *>(), NumUserSpecifiedExprs);
|
|
}
|
|
|
|
const ArrayRef<Expr *> getUserSpecifiedInitExprs() const {
|
|
return ArrayRef(getTrailingObjects<Expr *>(), NumUserSpecifiedExprs);
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
SourceLocation getInitLoc() const LLVM_READONLY { return InitLoc; }
|
|
|
|
SourceRange getSourceRange() const LLVM_READONLY {
|
|
return SourceRange(getBeginLoc(), getEndLoc());
|
|
}
|
|
|
|
void setArrayFiller(Expr *E) { ArrayFillerOrUnionFieldInit = E; }
|
|
|
|
Expr *getArrayFiller() {
|
|
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
|
|
}
|
|
|
|
const Expr *getArrayFiller() const {
|
|
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
|
|
}
|
|
|
|
void setInitializedFieldInUnion(FieldDecl *FD) {
|
|
ArrayFillerOrUnionFieldInit = FD;
|
|
}
|
|
|
|
FieldDecl *getInitializedFieldInUnion() {
|
|
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
|
|
}
|
|
|
|
const FieldDecl *getInitializedFieldInUnion() const {
|
|
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
|
|
}
|
|
|
|
child_range children() {
|
|
Stmt **Begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
|
|
return child_range(Begin, Begin + NumExprs);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
Stmt *const *Begin =
|
|
reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
|
|
return const_child_range(Begin, Begin + NumExprs);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CXXParenListInitExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents an expression that might suspend coroutine execution;
|
|
/// either a co_await or co_yield expression.
|
|
///
|
|
/// Evaluation of this expression first evaluates its 'ready' expression. If
|
|
/// that returns 'false':
|
|
/// -- execution of the coroutine is suspended
|
|
/// -- the 'suspend' expression is evaluated
|
|
/// -- if the 'suspend' expression returns 'false', the coroutine is
|
|
/// resumed
|
|
/// -- otherwise, control passes back to the resumer.
|
|
/// If the coroutine is not suspended, or when it is resumed, the 'resume'
|
|
/// expression is evaluated, and its result is the result of the overall
|
|
/// expression.
|
|
class CoroutineSuspendExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
SourceLocation KeywordLoc;
|
|
|
|
enum SubExpr { Operand, Common, Ready, Suspend, Resume, Count };
|
|
|
|
Stmt *SubExprs[SubExpr::Count];
|
|
OpaqueValueExpr *OpaqueValue = nullptr;
|
|
|
|
public:
|
|
// These types correspond to the three C++ 'await_suspend' return variants
|
|
enum class SuspendReturnType { SuspendVoid, SuspendBool, SuspendHandle };
|
|
|
|
CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Operand,
|
|
Expr *Common, Expr *Ready, Expr *Suspend, Expr *Resume,
|
|
OpaqueValueExpr *OpaqueValue)
|
|
: Expr(SC, Resume->getType(), Resume->getValueKind(),
|
|
Resume->getObjectKind()),
|
|
KeywordLoc(KeywordLoc), OpaqueValue(OpaqueValue) {
|
|
SubExprs[SubExpr::Operand] = Operand;
|
|
SubExprs[SubExpr::Common] = Common;
|
|
SubExprs[SubExpr::Ready] = Ready;
|
|
SubExprs[SubExpr::Suspend] = Suspend;
|
|
SubExprs[SubExpr::Resume] = Resume;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty,
|
|
Expr *Operand, Expr *Common)
|
|
: Expr(SC, Ty, VK_PRValue, OK_Ordinary), KeywordLoc(KeywordLoc) {
|
|
assert(Common->isTypeDependent() && Ty->isDependentType() &&
|
|
"wrong constructor for non-dependent co_await/co_yield expression");
|
|
SubExprs[SubExpr::Operand] = Operand;
|
|
SubExprs[SubExpr::Common] = Common;
|
|
SubExprs[SubExpr::Ready] = nullptr;
|
|
SubExprs[SubExpr::Suspend] = nullptr;
|
|
SubExprs[SubExpr::Resume] = nullptr;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
|
|
SubExprs[SubExpr::Operand] = nullptr;
|
|
SubExprs[SubExpr::Common] = nullptr;
|
|
SubExprs[SubExpr::Ready] = nullptr;
|
|
SubExprs[SubExpr::Suspend] = nullptr;
|
|
SubExprs[SubExpr::Resume] = nullptr;
|
|
}
|
|
|
|
Expr *getCommonExpr() const {
|
|
return static_cast<Expr*>(SubExprs[SubExpr::Common]);
|
|
}
|
|
|
|
/// getOpaqueValue - Return the opaque value placeholder.
|
|
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
|
|
|
|
Expr *getReadyExpr() const {
|
|
return static_cast<Expr*>(SubExprs[SubExpr::Ready]);
|
|
}
|
|
|
|
Expr *getSuspendExpr() const {
|
|
return static_cast<Expr*>(SubExprs[SubExpr::Suspend]);
|
|
}
|
|
|
|
Expr *getResumeExpr() const {
|
|
return static_cast<Expr*>(SubExprs[SubExpr::Resume]);
|
|
}
|
|
|
|
// The syntactic operand written in the code
|
|
Expr *getOperand() const {
|
|
return static_cast<Expr *>(SubExprs[SubExpr::Operand]);
|
|
}
|
|
|
|
SuspendReturnType getSuspendReturnType() const {
|
|
auto *SuspendExpr = getSuspendExpr();
|
|
assert(SuspendExpr);
|
|
|
|
auto SuspendType = SuspendExpr->getType();
|
|
|
|
if (SuspendType->isVoidType())
|
|
return SuspendReturnType::SuspendVoid;
|
|
if (SuspendType->isBooleanType())
|
|
return SuspendReturnType::SuspendBool;
|
|
|
|
// Void pointer is the type of handle.address(), which is returned
|
|
// from the await suspend wrapper so that the temporary coroutine handle
|
|
// value won't go to the frame by mistake
|
|
assert(SuspendType->isVoidPointerType());
|
|
return SuspendReturnType::SuspendHandle;
|
|
}
|
|
|
|
SourceLocation getKeywordLoc() const { return KeywordLoc; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return getOperand()->getEndLoc();
|
|
}
|
|
|
|
child_range children() {
|
|
return child_range(SubExprs, SubExprs + SubExpr::Count);
|
|
}
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(SubExprs, SubExprs + SubExpr::Count);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CoawaitExprClass ||
|
|
T->getStmtClass() == CoyieldExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a 'co_await' expression.
|
|
class CoawaitExpr : public CoroutineSuspendExpr {
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Common,
|
|
Expr *Ready, Expr *Suspend, Expr *Resume,
|
|
OpaqueValueExpr *OpaqueValue, bool IsImplicit = false)
|
|
: CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Common,
|
|
Ready, Suspend, Resume, OpaqueValue) {
|
|
CoawaitBits.IsImplicit = IsImplicit;
|
|
}
|
|
|
|
CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand,
|
|
Expr *Common, bool IsImplicit = false)
|
|
: CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand,
|
|
Common) {
|
|
CoawaitBits.IsImplicit = IsImplicit;
|
|
}
|
|
|
|
CoawaitExpr(EmptyShell Empty)
|
|
: CoroutineSuspendExpr(CoawaitExprClass, Empty) {}
|
|
|
|
bool isImplicit() const { return CoawaitBits.IsImplicit; }
|
|
void setIsImplicit(bool value = true) { CoawaitBits.IsImplicit = value; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CoawaitExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a 'co_await' expression while the type of the promise
|
|
/// is dependent.
|
|
class DependentCoawaitExpr : public Expr {
|
|
friend class ASTStmtReader;
|
|
|
|
SourceLocation KeywordLoc;
|
|
Stmt *SubExprs[2];
|
|
|
|
public:
|
|
DependentCoawaitExpr(SourceLocation KeywordLoc, QualType Ty, Expr *Op,
|
|
UnresolvedLookupExpr *OpCoawait)
|
|
: Expr(DependentCoawaitExprClass, Ty, VK_PRValue, OK_Ordinary),
|
|
KeywordLoc(KeywordLoc) {
|
|
// NOTE: A co_await expression is dependent on the coroutines promise
|
|
// type and may be dependent even when the `Op` expression is not.
|
|
assert(Ty->isDependentType() &&
|
|
"wrong constructor for non-dependent co_await/co_yield expression");
|
|
SubExprs[0] = Op;
|
|
SubExprs[1] = OpCoawait;
|
|
setDependence(computeDependence(this));
|
|
}
|
|
|
|
DependentCoawaitExpr(EmptyShell Empty)
|
|
: Expr(DependentCoawaitExprClass, Empty) {}
|
|
|
|
Expr *getOperand() const { return cast<Expr>(SubExprs[0]); }
|
|
|
|
UnresolvedLookupExpr *getOperatorCoawaitLookup() const {
|
|
return cast<UnresolvedLookupExpr>(SubExprs[1]);
|
|
}
|
|
|
|
SourceLocation getKeywordLoc() const { return KeywordLoc; }
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY {
|
|
return getOperand()->getEndLoc();
|
|
}
|
|
|
|
child_range children() { return child_range(SubExprs, SubExprs + 2); }
|
|
|
|
const_child_range children() const {
|
|
return const_child_range(SubExprs, SubExprs + 2);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DependentCoawaitExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a 'co_yield' expression.
|
|
class CoyieldExpr : public CoroutineSuspendExpr {
|
|
friend class ASTStmtReader;
|
|
|
|
public:
|
|
CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Common,
|
|
Expr *Ready, Expr *Suspend, Expr *Resume,
|
|
OpaqueValueExpr *OpaqueValue)
|
|
: CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Common,
|
|
Ready, Suspend, Resume, OpaqueValue) {}
|
|
CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand,
|
|
Expr *Common)
|
|
: CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand,
|
|
Common) {}
|
|
CoyieldExpr(EmptyShell Empty)
|
|
: CoroutineSuspendExpr(CoyieldExprClass, Empty) {}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CoyieldExprClass;
|
|
}
|
|
};
|
|
|
|
/// Represents a C++2a __builtin_bit_cast(T, v) expression. Used to implement
|
|
/// std::bit_cast. These can sometimes be evaluated as part of a constant
|
|
/// expression, but otherwise CodeGen to a simple memcpy in general.
|
|
class BuiltinBitCastExpr final
|
|
: public ExplicitCastExpr,
|
|
private llvm::TrailingObjects<BuiltinBitCastExpr, CXXBaseSpecifier *> {
|
|
friend class ASTStmtReader;
|
|
friend class CastExpr;
|
|
friend TrailingObjects;
|
|
|
|
SourceLocation KWLoc;
|
|
SourceLocation RParenLoc;
|
|
|
|
public:
|
|
BuiltinBitCastExpr(QualType T, ExprValueKind VK, CastKind CK, Expr *SrcExpr,
|
|
TypeSourceInfo *DstType, SourceLocation KWLoc,
|
|
SourceLocation RParenLoc)
|
|
: ExplicitCastExpr(BuiltinBitCastExprClass, T, VK, CK, SrcExpr, 0, false,
|
|
DstType),
|
|
KWLoc(KWLoc), RParenLoc(RParenLoc) {}
|
|
BuiltinBitCastExpr(EmptyShell Empty)
|
|
: ExplicitCastExpr(BuiltinBitCastExprClass, Empty, 0, false) {}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY { return KWLoc; }
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == BuiltinBitCastExprClass;
|
|
}
|
|
};
|
|
|
|
} // namespace clang
|
|
|
|
#endif // LLVM_CLANG_AST_EXPRCXX_H
|