Files
clang-r547379/include/clang/AST/Expr.h
Ryan Prichard 6024e5c395 Update prebuilt Clang to r547379 (20.0.0).
clang 20.0.0 (based on r547379) from build 12806354.

Bug: http://b/379133546
Test: N/A
Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b

Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
2025-11-26 14:59:46 -05:00

7147 lines
269 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/APNumericStorage.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/ComputeDependence.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TrailingObjects.h"
#include <optional>
namespace clang {
class APValue;
class ASTContext;
class BlockDecl;
class CXXBaseSpecifier;
class CXXMemberCallExpr;
class CXXOperatorCallExpr;
class CastExpr;
class Decl;
class IdentifierInfo;
class MaterializeTemporaryExpr;
class NamedDecl;
class ObjCPropertyRefExpr;
class OpaqueValueExpr;
class ParmVarDecl;
class StringLiteral;
class TargetInfo;
class ValueDecl;
/// A simple array of base specifiers.
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
/// An adjustment to be made to the temporary created when emitting a
/// reference binding, which accesses a particular subobject of that temporary.
struct SubobjectAdjustment {
enum {
DerivedToBaseAdjustment,
FieldAdjustment,
MemberPointerAdjustment
} Kind;
struct DTB {
const CastExpr *BasePath;
const CXXRecordDecl *DerivedClass;
};
struct P {
const MemberPointerType *MPT;
Expr *RHS;
};
union {
struct DTB DerivedToBase;
const FieldDecl *Field;
struct P Ptr;
};
SubobjectAdjustment(const CastExpr *BasePath,
const CXXRecordDecl *DerivedClass)
: Kind(DerivedToBaseAdjustment) {
DerivedToBase.BasePath = BasePath;
DerivedToBase.DerivedClass = DerivedClass;
}
SubobjectAdjustment(const FieldDecl *Field) : Kind(FieldAdjustment) {
this->Field = Field;
}
SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
: Kind(MemberPointerAdjustment) {
this->Ptr.MPT = MPT;
this->Ptr.RHS = RHS;
}
};
/// This represents one expression. Note that Expr's are subclasses of Stmt.
/// This allows an expression to be transparently used any place a Stmt is
/// required.
class Expr : public ValueStmt {
QualType TR;
public:
Expr() = delete;
Expr(const Expr&) = delete;
Expr(Expr &&) = delete;
Expr &operator=(const Expr&) = delete;
Expr &operator=(Expr&&) = delete;
protected:
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK)
: ValueStmt(SC) {
ExprBits.Dependent = 0;
ExprBits.ValueKind = VK;
ExprBits.ObjectKind = OK;
assert(ExprBits.ObjectKind == OK && "truncated kind");
setType(T);
}
/// Construct an empty expression.
explicit Expr(StmtClass SC, EmptyShell) : ValueStmt(SC) { }
/// Each concrete expr subclass is expected to compute its dependence and call
/// this in the constructor.
void setDependence(ExprDependence Deps) {
ExprBits.Dependent = static_cast<unsigned>(Deps);
}
friend class ASTImporter; // Sets dependence directly.
friend class ASTStmtReader; // Sets dependence directly.
public:
QualType getType() const { return TR; }
void setType(QualType t) {
// In C++, the type of an expression is always adjusted so that it
// will not have reference type (C++ [expr]p6). Use
// QualType::getNonReferenceType() to retrieve the non-reference
// type. Additionally, inspect Expr::isLvalue to determine whether
// an expression that is adjusted in this manner should be
// considered an lvalue.
assert((t.isNull() || !t->isReferenceType()) &&
"Expressions can't have reference type");
TR = t;
}
/// If this expression is an enumeration constant, return the
/// enumeration type under which said constant was declared.
/// Otherwise return the expression's type.
/// Note this effectively circumvents the weak typing of C's enum constants
QualType getEnumCoercedType(const ASTContext &Ctx) const;
ExprDependence getDependence() const {
return static_cast<ExprDependence>(ExprBits.Dependent);
}
/// Determines whether the value of this expression depends on
/// - a template parameter (C++ [temp.dep.constexpr])
/// - or an error, whose resolution is unknown
///
/// For example, the array bound of "Chars" in the following example is
/// value-dependent.
/// @code
/// template<int Size, char (&Chars)[Size]> struct meta_string;
/// @endcode
bool isValueDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Value);
}
/// Determines whether the type of this expression depends on
/// - a template parameter (C++ [temp.dep.expr], which means that its type
/// could change from one template instantiation to the next)
/// - or an error
///
/// For example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// @code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// @endcode
bool isTypeDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Type);
}
/// Whether this expression is instantiation-dependent, meaning that
/// it depends in some way on
/// - a template parameter (even if neither its type nor (constant) value
/// can change due to the template instantiation)
/// - or an error
///
/// In the following example, the expression \c sizeof(sizeof(T() + T())) is
/// instantiation-dependent (since it involves a template parameter \c T), but
/// is neither type- nor value-dependent, since the type of the inner
/// \c sizeof is known (\c std::size_t) and therefore the size of the outer
/// \c sizeof is known.
///
/// \code
/// template<typename T>
/// void f(T x, T y) {
/// sizeof(sizeof(T() + T());
/// }
/// \endcode
///
/// \code
/// void func(int) {
/// func(); // the expression is instantiation-dependent, because it depends
/// // on an error.
/// }
/// \endcode
bool isInstantiationDependent() const {
return static_cast<bool>(getDependence() & ExprDependence::Instantiation);
}
/// Whether this expression contains an unexpanded parameter
/// pack (for C++11 variadic templates).
///
/// Given the following function template:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(const F &f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// The expressions \c args and \c static_cast<Types&&>(args) both
/// contain parameter packs.
bool containsUnexpandedParameterPack() const {
return static_cast<bool>(getDependence() & ExprDependence::UnexpandedPack);
}
/// Whether this expression contains subexpressions which had errors, e.g. a
/// TypoExpr.
bool containsErrors() const {
return static_cast<bool>(getDependence() & ExprDependence::Error);
}
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
SourceLocation getExprLoc() const LLVM_READONLY;
/// Determine whether an lvalue-to-rvalue conversion should implicitly be
/// applied to this expression if it appears as a discarded-value expression
/// in C++11 onwards. This applies to certain forms of volatile glvalues.
bool isReadIfDiscardedInCPlusPlus11() const;
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in expr, location,
/// and ranges with expr to warn on and source locations/ranges appropriate
/// for a warning.
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const;
/// isLValue - True if this expression is an "l-value" according to
/// the rules of the current language. C and C++ give somewhat
/// different rules for this concept, but in general, the result of
/// an l-value expression identifies a specific object whereas the
/// result of an r-value expression is a value detached from any
/// specific storage.
///
/// C++11 divides the concept of "r-value" into pure r-values
/// ("pr-values") and so-called expiring values ("x-values"), which
/// identify specific objects that can be safely cannibalized for
/// their resources.
bool isLValue() const { return getValueKind() == VK_LValue; }
bool isPRValue() const { return getValueKind() == VK_PRValue; }
bool isXValue() const { return getValueKind() == VK_XValue; }
bool isGLValue() const { return getValueKind() != VK_PRValue; }
enum LValueClassification {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_InvalidExpression,
LV_InvalidMessageExpression,
LV_MemberFunction,
LV_SubObjCPropertySetting,
LV_ClassTemporary,
LV_ArrayTemporary
};
/// Reasons why an expression might not be an l-value.
LValueClassification ClassifyLValue(ASTContext &Ctx) const;
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_InvalidExpression,
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ConstQualifiedField,
MLV_ConstAddrSpace,
MLV_ArrayType,
MLV_NoSetterProperty,
MLV_MemberFunction,
MLV_SubObjCPropertySetting,
MLV_InvalidMessageExpression,
MLV_ClassTemporary,
MLV_ArrayTemporary
};
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
///
/// \param Loc [in,out] - A source location which *may* be filled
/// in with the location of the expression making this a
/// non-modifiable lvalue, if specified.
isModifiableLvalueResult
isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
/// The return type of classify(). Represents the C++11 expression
/// taxonomy.
class Classification {
public:
/// The various classification results. Most of these mean prvalue.
enum Kinds {
CL_LValue,
CL_XValue,
CL_Function, // Functions cannot be lvalues in C.
CL_Void, // Void cannot be an lvalue in C.
CL_AddressableVoid, // Void expression whose address can be taken in C.
CL_DuplicateVectorComponents, // A vector shuffle with dupes.
CL_MemberFunction, // An expression referring to a member function
CL_SubObjCPropertySetting,
CL_ClassTemporary, // A temporary of class type, or subobject thereof.
CL_ArrayTemporary, // A temporary of array type.
CL_ObjCMessageRValue, // ObjC message is an rvalue
CL_PRValue // A prvalue for any other reason, of any other type
};
/// The results of modification testing.
enum ModifiableType {
CM_Untested, // testModifiable was false.
CM_Modifiable,
CM_RValue, // Not modifiable because it's an rvalue
CM_Function, // Not modifiable because it's a function; C++ only
CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
CM_ConstQualified,
CM_ConstQualifiedField,
CM_ConstAddrSpace,
CM_ArrayType,
CM_IncompleteType
};
private:
friend class Expr;
unsigned short Kind;
unsigned short Modifiable;
explicit Classification(Kinds k, ModifiableType m)
: Kind(k), Modifiable(m)
{}
public:
Classification() {}
Kinds getKind() const { return static_cast<Kinds>(Kind); }
ModifiableType getModifiable() const {
assert(Modifiable != CM_Untested && "Did not test for modifiability.");
return static_cast<ModifiableType>(Modifiable);
}
bool isLValue() const { return Kind == CL_LValue; }
bool isXValue() const { return Kind == CL_XValue; }
bool isGLValue() const { return Kind <= CL_XValue; }
bool isPRValue() const { return Kind >= CL_Function; }
bool isRValue() const { return Kind >= CL_XValue; }
bool isModifiable() const { return getModifiable() == CM_Modifiable; }
/// Create a simple, modifiable lvalue
static Classification makeSimpleLValue() {
return Classification(CL_LValue, CM_Modifiable);
}
};
/// Classify - Classify this expression according to the C++11
/// expression taxonomy.
///
/// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
/// old lvalue vs rvalue. This function determines the type of expression this
/// is. There are three expression types:
/// - lvalues are classical lvalues as in C++03.
/// - prvalues are equivalent to rvalues in C++03.
/// - xvalues are expressions yielding unnamed rvalue references, e.g. a
/// function returning an rvalue reference.
/// lvalues and xvalues are collectively referred to as glvalues, while
/// prvalues and xvalues together form rvalues.
Classification Classify(ASTContext &Ctx) const {
return ClassifyImpl(Ctx, nullptr);
}
/// ClassifyModifiable - Classify this expression according to the
/// C++11 expression taxonomy, and see if it is valid on the left side
/// of an assignment.
///
/// This function extends classify in that it also tests whether the
/// expression is modifiable (C99 6.3.2.1p1).
/// \param Loc A source location that might be filled with a relevant location
/// if the expression is not modifiable.
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
return ClassifyImpl(Ctx, &Loc);
}
/// Returns the set of floating point options that apply to this expression.
/// Only meaningful for operations on floating point values.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const;
/// getValueKindForType - Given a formal return or parameter type,
/// give its value kind.
static ExprValueKind getValueKindForType(QualType T) {
if (const ReferenceType *RT = T->getAs<ReferenceType>())
return (isa<LValueReferenceType>(RT)
? VK_LValue
: (RT->getPointeeType()->isFunctionType()
? VK_LValue : VK_XValue));
return VK_PRValue;
}
/// getValueKind - The value kind that this expression produces.
ExprValueKind getValueKind() const {
return static_cast<ExprValueKind>(ExprBits.ValueKind);
}
/// getObjectKind - The object kind that this expression produces.
/// Object kinds are meaningful only for expressions that yield an
/// l-value or x-value.
ExprObjectKind getObjectKind() const {
return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
}
bool isOrdinaryOrBitFieldObject() const {
ExprObjectKind OK = getObjectKind();
return (OK == OK_Ordinary || OK == OK_BitField);
}
/// setValueKind - Set the value kind produced by this expression.
void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
/// setObjectKind - Set the object kind produced by this expression.
void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
private:
Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
public:
/// Returns true if this expression is a gl-value that
/// potentially refers to a bit-field.
///
/// In C++, whether a gl-value refers to a bitfield is essentially
/// an aspect of the value-kind type system.
bool refersToBitField() const { return getObjectKind() == OK_BitField; }
/// If this expression refers to a bit-field, retrieve the
/// declaration of that bit-field.
///
/// Note that this returns a non-null pointer in subtly different
/// places than refersToBitField returns true. In particular, this can
/// return a non-null pointer even for r-values loaded from
/// bit-fields, but it will return null for a conditional bit-field.
FieldDecl *getSourceBitField();
/// If this expression refers to an enum constant, retrieve its declaration
EnumConstantDecl *getEnumConstantDecl();
const EnumConstantDecl *getEnumConstantDecl() const {
return const_cast<Expr *>(this)->getEnumConstantDecl();
}
const FieldDecl *getSourceBitField() const {
return const_cast<Expr*>(this)->getSourceBitField();
}
Decl *getReferencedDeclOfCallee();
const Decl *getReferencedDeclOfCallee() const {
return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
}
/// If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *getObjCProperty() const;
/// Check if this expression is the ObjC 'self' implicit parameter.
bool isObjCSelfExpr() const;
/// Returns whether this expression refers to a vector element.
bool refersToVectorElement() const;
/// Returns whether this expression refers to a matrix element.
bool refersToMatrixElement() const {
return getObjectKind() == OK_MatrixComponent;
}
/// Returns whether this expression refers to a global register
/// variable.
bool refersToGlobalRegisterVar() const;
/// Returns whether this expression has a placeholder type.
bool hasPlaceholderType() const {
return getType()->isPlaceholderType();
}
/// Returns whether this expression has a specific placeholder type.
bool hasPlaceholderType(BuiltinType::Kind K) const {
assert(BuiltinType::isPlaceholderTypeKind(K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
return BT->getKind() == K;
return false;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
///
/// \param Semantic If true, only return true for expressions that are known
/// to be semantically boolean, which might not be true even for expressions
/// that are known to evaluate to 0/1. For instance, reading an unsigned
/// bit-field with width '1' will evaluate to 0/1, but doesn't necessarily
/// semantically correspond to a bool.
bool isKnownToHaveBooleanValue(bool Semantic = true) const;
/// Check whether this array fits the idiom of a flexible array member,
/// depending on the value of -fstrict-flex-array.
/// When IgnoreTemplateOrMacroSubstitution is set, it doesn't consider sizes
/// resulting from the substitution of a macro or a template as special sizes.
bool isFlexibleArrayMemberLike(
ASTContext &Context,
LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
bool IgnoreTemplateOrMacroSubstitution = false) const;
/// isIntegerConstantExpr - Return the value if this expression is a valid
/// integer constant expression. If not a valid i-c-e, return std::nullopt
/// and fill in Loc (if specified) with the location of the invalid
/// expression.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
std::optional<llvm::APSInt>
getIntegerConstantExpr(const ASTContext &Ctx,
SourceLocation *Loc = nullptr) const;
bool isIntegerConstantExpr(const ASTContext &Ctx,
SourceLocation *Loc = nullptr) const;
/// isCXX98IntegralConstantExpr - Return true if this expression is an
/// integral constant expression in C++98. Can only be used in C++.
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
/// isCXX11ConstantExpr - Return true if this expression is a constant
/// expression in C++11. Can only be used in C++.
///
/// Note: This does not perform the implicit conversions required by C++11
/// [expr.const]p5.
bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
SourceLocation *Loc = nullptr) const;
/// isPotentialConstantExpr - Return true if this function's definition
/// might be usable in a constant expression in C++11, if it were marked
/// constexpr. Return false if the function can never produce a constant
/// expression, along with diagnostics describing why not.
static bool isPotentialConstantExpr(const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isPotentialConstantExprUnevaluated - Return true if this expression might
/// be usable in a constant expression in C++11 in an unevaluated context, if
/// it were in function FD marked constexpr. Return false if the function can
/// never produce a constant expression, along with diagnostics describing
/// why not.
static bool isPotentialConstantExprUnevaluated(Expr *E,
const FunctionDecl *FD,
SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isConstantInitializer - Returns true if this expression can be emitted to
/// IR as a constant, and thus can be used as a constant initializer in C.
/// If this expression is not constant and Culprit is non-null,
/// it is used to store the address of first non constant expr.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
const Expr **Culprit = nullptr) const;
/// If this expression is an unambiguous reference to a single declaration,
/// in the style of __builtin_function_start, return that declaration. Note
/// that this may return a non-static member function or field in C++ if this
/// expression is a member pointer constant.
const ValueDecl *getAsBuiltinConstantDeclRef(const ASTContext &Context) const;
/// EvalStatus is a struct with detailed info about an evaluation in progress.
struct EvalStatus {
/// Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects = false;
/// Whether the evaluation hit undefined behavior.
/// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
/// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
bool HasUndefinedBehavior = false;
/// Diag - If this is non-null, it will be filled in with a stack of notes
/// indicating why evaluation failed (or why it failed to produce a constant
/// expression).
/// If the expression is unfoldable, the notes will indicate why it's not
/// foldable. If the expression is foldable, but not a constant expression,
/// the notes will describes why it isn't a constant expression. If the
/// expression *is* a constant expression, no notes will be produced.
///
/// FIXME: this causes significant performance concerns and should be
/// refactored at some point. Not all evaluations of the constant
/// expression interpreter will display the given diagnostics, this means
/// those kinds of uses are paying the expense of generating a diagnostic
/// (which may include expensive operations like converting APValue objects
/// to a string representation).
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr;
EvalStatus() = default;
// hasSideEffects - Return true if the evaluated expression has
// side effects.
bool hasSideEffects() const {
return HasSideEffects;
}
};
/// EvalResult is a struct with detailed info about an evaluated expression.
struct EvalResult : EvalStatus {
/// Val - This is the value the expression can be folded to.
APValue Val;
// isGlobalLValue - Return true if the evaluated lvalue expression
// is global.
bool isGlobalLValue() const;
};
/// EvaluateAsRValue - Return true if this is a constant which we can fold to
/// an rvalue using any crazy technique (that has nothing to do with language
/// standards) that we want to, even if the expression has side-effects. If
/// this function returns true, it returns the folded constant in Result. If
/// the expression is a glvalue, an lvalue-to-rvalue conversion will be
/// applied.
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
/// EvaluateAsBooleanCondition - Return true if this is a constant
/// which we can fold and convert to a boolean condition using
/// any crazy technique that we want to, even if the expression has
/// side-effects.
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
enum SideEffectsKind {
SE_NoSideEffects, ///< Strictly evaluate the expression.
SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
///< arbitrary unmodeled side effects.
SE_AllowSideEffects ///< Allow any unmodeled side effect.
};
/// EvaluateAsInt - Return true if this is a constant which we can fold and
/// convert to an integer, using any crazy technique that we want to.
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// EvaluateAsFloat - Return true if this is a constant which we can fold and
/// convert to a floating point value, using any crazy technique that we
/// want to.
bool EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// EvaluateAsFixedPoint - Return true if this is a constant which we can fold
/// and convert to a fixed point value.
bool EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects,
bool InConstantContext = false) const;
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded without side-effects, but discard the result.
bool isEvaluatable(const ASTContext &Ctx,
SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which have any effect other than producing a value. Example is a function
/// call, volatile variable read, or throwing an exception. If
/// IncludePossibleEffects is false, this call treats certain expressions with
/// potential side effects (such as function call-like expressions,
/// instantiation-dependent expressions, or invocations from a macro) as not
/// having side effects.
bool HasSideEffects(const ASTContext &Ctx,
bool IncludePossibleEffects = true) const;
/// Determine whether this expression involves a call to any function
/// that is not trivial.
bool hasNonTrivialCall(const ASTContext &Ctx) const;
/// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
/// integer. This must be called on an expression that constant folds to an
/// integer.
llvm::APSInt EvaluateKnownConstInt(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
llvm::APSInt EvaluateKnownConstIntCheckOverflow(
const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
void EvaluateForOverflow(const ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
/// lvalue with link time known address, with no side-effects.
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
bool InConstantContext = false) const;
/// EvaluateAsInitializer - Evaluate an expression as if it were the
/// initializer of the given declaration. Returns true if the initializer
/// can be folded to a constant, and produces any relevant notes. In C++11,
/// notes will be produced if the expression is not a constant expression.
bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
const VarDecl *VD,
SmallVectorImpl<PartialDiagnosticAt> &Notes,
bool IsConstantInitializer) const;
/// EvaluateWithSubstitution - Evaluate an expression as if from the context
/// of a call to the given function with the given arguments, inside an
/// unevaluated context. Returns true if the expression could be folded to a
/// constant.
bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
const FunctionDecl *Callee,
ArrayRef<const Expr*> Args,
const Expr *This = nullptr) const;
enum class ConstantExprKind {
/// An integer constant expression (an array bound, enumerator, case value,
/// bit-field width, or similar) or similar.
Normal,
/// A non-class template argument. Such a value is only used for mangling,
/// not for code generation, so can refer to dllimported functions.
NonClassTemplateArgument,
/// A class template argument. Such a value is used for code generation.
ClassTemplateArgument,
/// An immediate invocation. The destruction of the end result of this
/// evaluation is not part of the evaluation, but all other temporaries
/// are destroyed.
ImmediateInvocation,
};
/// Evaluate an expression that is required to be a constant expression. Does
/// not check the syntactic constraints for C and C++98 constant expressions.
bool EvaluateAsConstantExpr(
EvalResult &Result, const ASTContext &Ctx,
ConstantExprKind Kind = ConstantExprKind::Normal) const;
/// If the current Expr is a pointer, this will try to statically
/// determine the number of bytes available where the pointer is pointing.
/// Returns true if all of the above holds and we were able to figure out the
/// size, false otherwise.
///
/// \param Type - How to evaluate the size of the Expr, as defined by the
/// "type" parameter of __builtin_object_size
bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
unsigned Type) const;
/// If the current Expr is a pointer, this will try to statically
/// determine the strlen of the string pointed to.
/// Returns true if all of the above holds and we were able to figure out the
/// strlen, false otherwise.
bool tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const;
bool EvaluateCharRangeAsString(std::string &Result,
const Expr *SizeExpression,
const Expr *PtrExpression, ASTContext &Ctx,
EvalResult &Status) const;
/// If the current Expr can be evaluated to a pointer to a null-terminated
/// constant string, return the constant string (without the terminating
/// null).
std::optional<std::string> tryEvaluateString(ASTContext &Ctx) const;
/// Enumeration used to describe the kind of Null pointer constant
/// returned from \c isNullPointerConstant().
enum NullPointerConstantKind {
/// Expression is not a Null pointer constant.
NPCK_NotNull = 0,
/// Expression is a Null pointer constant built from a zero integer
/// expression that is not a simple, possibly parenthesized, zero literal.
/// C++ Core Issue 903 will classify these expressions as "not pointers"
/// once it is adopted.
/// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
NPCK_ZeroExpression,
/// Expression is a Null pointer constant built from a literal zero.
NPCK_ZeroLiteral,
/// Expression is a C++11 nullptr.
NPCK_CXX11_nullptr,
/// Expression is a GNU-style __null constant.
NPCK_GNUNull
};
/// Enumeration used to describe how \c isNullPointerConstant()
/// should cope with value-dependent expressions.
enum NullPointerConstantValueDependence {
/// Specifies that the expression should never be value-dependent.
NPC_NeverValueDependent = 0,
/// Specifies that a value-dependent expression of integral or
/// dependent type should be considered a null pointer constant.
NPC_ValueDependentIsNull,
/// Specifies that a value-dependent expression should be considered
/// to never be a null pointer constant.
NPC_ValueDependentIsNotNull
};
/// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
/// a Null pointer constant. The return value can further distinguish the
/// kind of NULL pointer constant that was detected.
NullPointerConstantKind isNullPointerConstant(
ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const;
/// isOBJCGCCandidate - Return true if this expression may be used in a read/
/// write barrier.
bool isOBJCGCCandidate(ASTContext &Ctx) const;
/// Returns true if this expression is a bound member function.
bool isBoundMemberFunction(ASTContext &Ctx) const;
/// Given an expression of bound-member type, find the type
/// of the member. Returns null if this is an *overloaded* bound
/// member expression.
static QualType findBoundMemberType(const Expr *expr);
/// Skip past any invisible AST nodes which might surround this
/// statement, such as ExprWithCleanups or ImplicitCastExpr nodes,
/// but also injected CXXMemberExpr and CXXConstructExpr which represent
/// implicit conversions.
Expr *IgnoreUnlessSpelledInSource();
const Expr *IgnoreUnlessSpelledInSource() const {
return const_cast<Expr *>(this)->IgnoreUnlessSpelledInSource();
}
/// Skip past any implicit casts which might surround this expression until
/// reaching a fixed point. Skips:
/// * ImplicitCastExpr
/// * FullExpr
Expr *IgnoreImpCasts() LLVM_READONLY;
const Expr *IgnoreImpCasts() const {
return const_cast<Expr *>(this)->IgnoreImpCasts();
}
/// Skip past any casts which might surround this expression until reaching
/// a fixed point. Skips:
/// * CastExpr
/// * FullExpr
/// * MaterializeTemporaryExpr
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreCasts() LLVM_READONLY;
const Expr *IgnoreCasts() const {
return const_cast<Expr *>(this)->IgnoreCasts();
}
/// Skip past any implicit AST nodes which might surround this expression
/// until reaching a fixed point. Skips:
/// * What IgnoreImpCasts() skips
/// * MaterializeTemporaryExpr
/// * CXXBindTemporaryExpr
Expr *IgnoreImplicit() LLVM_READONLY;
const Expr *IgnoreImplicit() const {
return const_cast<Expr *>(this)->IgnoreImplicit();
}
/// Skip past any implicit AST nodes which might surround this expression
/// until reaching a fixed point. Same as IgnoreImplicit, except that it
/// also skips over implicit calls to constructors and conversion functions.
///
/// FIXME: Should IgnoreImplicit do this?
Expr *IgnoreImplicitAsWritten() LLVM_READONLY;
const Expr *IgnoreImplicitAsWritten() const {
return const_cast<Expr *>(this)->IgnoreImplicitAsWritten();
}
/// Skip past any parentheses which might surround this expression until
/// reaching a fixed point. Skips:
/// * ParenExpr
/// * UnaryOperator if `UO_Extension`
/// * GenericSelectionExpr if `!isResultDependent()`
/// * ChooseExpr if `!isConditionDependent()`
/// * ConstantExpr
Expr *IgnoreParens() LLVM_READONLY;
const Expr *IgnoreParens() const {
return const_cast<Expr *>(this)->IgnoreParens();
}
/// Skip past any parentheses and implicit casts which might surround this
/// expression until reaching a fixed point.
/// FIXME: IgnoreParenImpCasts really ought to be equivalent to
/// IgnoreParens() + IgnoreImpCasts() until reaching a fixed point. However
/// this is currently not the case. Instead IgnoreParenImpCasts() skips:
/// * What IgnoreParens() skips
/// * What IgnoreImpCasts() skips
/// * MaterializeTemporaryExpr
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreParenImpCasts() LLVM_READONLY;
const Expr *IgnoreParenImpCasts() const {
return const_cast<Expr *>(this)->IgnoreParenImpCasts();
}
/// Skip past any parentheses and casts which might surround this expression
/// until reaching a fixed point. Skips:
/// * What IgnoreParens() skips
/// * What IgnoreCasts() skips
Expr *IgnoreParenCasts() LLVM_READONLY;
const Expr *IgnoreParenCasts() const {
return const_cast<Expr *>(this)->IgnoreParenCasts();
}
/// Skip conversion operators. If this Expr is a call to a conversion
/// operator, return the argument.
Expr *IgnoreConversionOperatorSingleStep() LLVM_READONLY;
const Expr *IgnoreConversionOperatorSingleStep() const {
return const_cast<Expr *>(this)->IgnoreConversionOperatorSingleStep();
}
/// Skip past any parentheses and lvalue casts which might surround this
/// expression until reaching a fixed point. Skips:
/// * What IgnoreParens() skips
/// * What IgnoreCasts() skips, except that only lvalue-to-rvalue
/// casts are skipped
/// FIXME: This is intended purely as a temporary workaround for code
/// that hasn't yet been rewritten to do the right thing about those
/// casts, and may disappear along with the last internal use.
Expr *IgnoreParenLValueCasts() LLVM_READONLY;
const Expr *IgnoreParenLValueCasts() const {
return const_cast<Expr *>(this)->IgnoreParenLValueCasts();
}
/// Skip past any parentheses and casts which do not change the value
/// (including ptr->int casts of the same size) until reaching a fixed point.
/// Skips:
/// * What IgnoreParens() skips
/// * CastExpr which do not change the value
/// * SubstNonTypeTemplateParmExpr
Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY;
const Expr *IgnoreParenNoopCasts(const ASTContext &Ctx) const {
return const_cast<Expr *>(this)->IgnoreParenNoopCasts(Ctx);
}
/// Skip past any parentheses and derived-to-base casts until reaching a
/// fixed point. Skips:
/// * What IgnoreParens() skips
/// * CastExpr which represent a derived-to-base cast (CK_DerivedToBase,
/// CK_UncheckedDerivedToBase and CK_NoOp)
Expr *IgnoreParenBaseCasts() LLVM_READONLY;
const Expr *IgnoreParenBaseCasts() const {
return const_cast<Expr *>(this)->IgnoreParenBaseCasts();
}
/// Determine whether this expression is a default function argument.
///
/// Default arguments are implicitly generated in the abstract syntax tree
/// by semantic analysis for function calls, object constructions, etc. in
/// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
/// this routine also looks through any implicit casts to determine whether
/// the expression is a default argument.
bool isDefaultArgument() const;
/// Determine whether the result of this expression is a
/// temporary object of the given class type.
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
/// Whether this expression is an implicit reference to 'this' in C++.
bool isImplicitCXXThis() const;
static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
/// For an expression of class type or pointer to class type,
/// return the most derived class decl the expression is known to refer to.
///
/// If this expression is a cast, this method looks through it to find the
/// most derived decl that can be inferred from the expression.
/// This is valid because derived-to-base conversions have undefined
/// behavior if the object isn't dynamically of the derived type.
const CXXRecordDecl *getBestDynamicClassType() const;
/// Get the inner expression that determines the best dynamic class.
/// If this is a prvalue, we guarantee that it is of the most-derived type
/// for the object itself.
const Expr *getBestDynamicClassTypeExpr() const;
/// Walk outwards from an expression we want to bind a reference to and
/// find the expression whose lifetime needs to be extended. Record
/// the LHSs of comma expressions and adjustments needed along the path.
const Expr *skipRValueSubobjectAdjustments(
SmallVectorImpl<const Expr *> &CommaLHS,
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
const Expr *skipRValueSubobjectAdjustments() const {
SmallVector<const Expr *, 8> CommaLHSs;
SmallVector<SubobjectAdjustment, 8> Adjustments;
return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
}
/// Checks that the two Expr's will refer to the same value as a comparison
/// operand. The caller must ensure that the values referenced by the Expr's
/// are not modified between E1 and E2 or the result my be invalid.
static bool isSameComparisonOperand(const Expr* E1, const Expr* E2);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
};
// PointerLikeTypeTraits is specialized so it can be used with a forward-decl of
// Expr. Verify that we got it right.
static_assert(llvm::PointerLikeTypeTraits<Expr *>::NumLowBitsAvailable <=
llvm::detail::ConstantLog2<alignof(Expr)>::value,
"PointerLikeTypeTraits<Expr*> assumes too much alignment.");
using ConstantExprKind = Expr::ConstantExprKind;
//===----------------------------------------------------------------------===//
// Wrapper Expressions.
//===----------------------------------------------------------------------===//
/// FullExpr - Represents a "full-expression" node.
class FullExpr : public Expr {
protected:
Stmt *SubExpr;
FullExpr(StmtClass SC, Expr *subexpr)
: Expr(SC, subexpr->getType(), subexpr->getValueKind(),
subexpr->getObjectKind()),
SubExpr(subexpr) {
setDependence(computeDependence(this));
}
FullExpr(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) {}
public:
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
/// As with any mutator of the AST, be very careful when modifying an
/// existing AST to preserve its invariants.
void setSubExpr(Expr *E) { SubExpr = E; }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstFullExprConstant &&
T->getStmtClass() <= lastFullExprConstant;
}
};
/// Describes the kind of result that can be tail-allocated.
enum class ConstantResultStorageKind { None, Int64, APValue };
/// ConstantExpr - An expression that occurs in a constant context and
/// optionally the result of evaluating the expression.
class ConstantExpr final
: public FullExpr,
private llvm::TrailingObjects<ConstantExpr, APValue, uint64_t> {
static_assert(std::is_same<uint64_t, llvm::APInt::WordType>::value,
"ConstantExpr assumes that llvm::APInt::WordType is uint64_t "
"for tail-allocated storage");
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
size_t numTrailingObjects(OverloadToken<APValue>) const {
return getResultStorageKind() == ConstantResultStorageKind::APValue;
}
size_t numTrailingObjects(OverloadToken<uint64_t>) const {
return getResultStorageKind() == ConstantResultStorageKind::Int64;
}
uint64_t &Int64Result() {
assert(getResultStorageKind() == ConstantResultStorageKind::Int64 &&
"invalid accessor");
return *getTrailingObjects<uint64_t>();
}
const uint64_t &Int64Result() const {
return const_cast<ConstantExpr *>(this)->Int64Result();
}
APValue &APValueResult() {
assert(getResultStorageKind() == ConstantResultStorageKind::APValue &&
"invalid accessor");
return *getTrailingObjects<APValue>();
}
APValue &APValueResult() const {
return const_cast<ConstantExpr *>(this)->APValueResult();
}
ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
bool IsImmediateInvocation);
ConstantExpr(EmptyShell Empty, ConstantResultStorageKind StorageKind);
public:
static ConstantExpr *Create(const ASTContext &Context, Expr *E,
const APValue &Result);
static ConstantExpr *
Create(const ASTContext &Context, Expr *E,
ConstantResultStorageKind Storage = ConstantResultStorageKind::None,
bool IsImmediateInvocation = false);
static ConstantExpr *CreateEmpty(const ASTContext &Context,
ConstantResultStorageKind StorageKind);
static ConstantResultStorageKind getStorageKind(const APValue &Value);
static ConstantResultStorageKind getStorageKind(const Type *T,
const ASTContext &Context);
SourceLocation getBeginLoc() const LLVM_READONLY {
return SubExpr->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SubExpr->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConstantExprClass;
}
void SetResult(APValue Value, const ASTContext &Context) {
MoveIntoResult(Value, Context);
}
void MoveIntoResult(APValue &Value, const ASTContext &Context);
APValue::ValueKind getResultAPValueKind() const {
return static_cast<APValue::ValueKind>(ConstantExprBits.APValueKind);
}
ConstantResultStorageKind getResultStorageKind() const {
return static_cast<ConstantResultStorageKind>(ConstantExprBits.ResultKind);
}
bool isImmediateInvocation() const {
return ConstantExprBits.IsImmediateInvocation;
}
bool hasAPValueResult() const {
return ConstantExprBits.APValueKind != APValue::None;
}
APValue getAPValueResult() const;
llvm::APSInt getResultAsAPSInt() const;
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr+1); }
const_child_range children() const {
return const_child_range(&SubExpr, &SubExpr + 1);
}
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// OpaqueValueExpr - An expression referring to an opaque object of a
/// fixed type and value class. These don't correspond to concrete
/// syntax; instead they're used to express operations (usually copy
/// operations) on values whose source is generally obvious from
/// context.
class OpaqueValueExpr : public Expr {
friend class ASTStmtReader;
Expr *SourceExpr;
public:
OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
ExprObjectKind OK = OK_Ordinary, Expr *SourceExpr = nullptr)
: Expr(OpaqueValueExprClass, T, VK, OK), SourceExpr(SourceExpr) {
setIsUnique(false);
OpaqueValueExprBits.Loc = Loc;
setDependence(computeDependence(this));
}
/// Given an expression which invokes a copy constructor --- i.e. a
/// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
/// find the OpaqueValueExpr that's the source of the construction.
static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
explicit OpaqueValueExpr(EmptyShell Empty)
: Expr(OpaqueValueExprClass, Empty) {}
/// Retrieve the location of this expression.
SourceLocation getLocation() const { return OpaqueValueExprBits.Loc; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getBeginLoc() : getLocation();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getEndLoc() : getLocation();
}
SourceLocation getExprLoc() const LLVM_READONLY {
return SourceExpr ? SourceExpr->getExprLoc() : getLocation();
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
/// The source expression of an opaque value expression is the
/// expression which originally generated the value. This is
/// provided as a convenience for analyses that don't wish to
/// precisely model the execution behavior of the program.
///
/// The source expression is typically set when building the
/// expression which binds the opaque value expression in the first
/// place.
Expr *getSourceExpr() const { return SourceExpr; }
void setIsUnique(bool V) {
assert((!V || SourceExpr) &&
"unique OVEs are expected to have source expressions");
OpaqueValueExprBits.IsUnique = V;
}
bool isUnique() const { return OpaqueValueExprBits.IsUnique; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OpaqueValueExprClass;
}
};
/// A reference to a declared variable, function, enum, etc.
/// [C99 6.5.1p2]
///
/// This encodes all the information about how a declaration is referenced
/// within an expression.
///
/// There are several optional constructs attached to DeclRefExprs only when
/// they apply in order to conserve memory. These are laid out past the end of
/// the object, and flags in the DeclRefExprBitfield track whether they exist:
///
/// DeclRefExprBits.HasQualifier:
/// Specifies when this declaration reference expression has a C++
/// nested-name-specifier.
/// DeclRefExprBits.HasFoundDecl:
/// Specifies when this declaration reference expression has a record of
/// a NamedDecl (different from the referenced ValueDecl) which was found
/// during name lookup and/or overload resolution.
/// DeclRefExprBits.HasTemplateKWAndArgsInfo:
/// Specifies when this declaration reference expression has an explicit
/// C++ template keyword and/or template argument list.
/// DeclRefExprBits.RefersToEnclosingVariableOrCapture
/// Specifies when this declaration reference expression (validly)
/// refers to an enclosed local or a captured variable.
class DeclRefExpr final
: public Expr,
private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
NamedDecl *, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// The declaration that we are referencing.
ValueDecl *D;
/// Provides source/type location info for the declaration name
/// embedded in D.
DeclarationNameLoc DNLoc;
size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
return hasQualifier();
}
size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
return hasFoundDecl();
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return hasTemplateKWAndArgsInfo();
}
/// Test whether there is a distinct FoundDecl attached to the end of
/// this DRE.
bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs, QualType T,
ExprValueKind VK, NonOdrUseReason NOUR);
/// Construct an empty declaration reference expression.
explicit DeclRefExpr(EmptyShell Empty) : Expr(DeclRefExprClass, Empty) {}
public:
DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, QualType T,
ExprValueKind VK, SourceLocation L,
const DeclarationNameLoc &LocInfo = DeclarationNameLoc(),
NonOdrUseReason NOUR = NOUR_None);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
NonOdrUseReason NOUR = NOUR_None);
static DeclRefExpr *
Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *D,
bool RefersToEnclosingVariableOrCapture,
const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
NamedDecl *FoundD = nullptr,
const TemplateArgumentListInfo *TemplateArgs = nullptr,
NonOdrUseReason NOUR = NOUR_None);
/// Construct an empty declaration reference expression.
static DeclRefExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
void setDecl(ValueDecl *NewD);
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDecl()->getDeclName(), getLocation(), DNLoc);
}
SourceLocation getLocation() const { return DeclRefExprBits.Loc; }
void setLocation(SourceLocation L) { DeclRefExprBits.Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Determine whether this declaration reference was preceded by a
/// C++ nested-name-specifier, e.g., \c N::foo.
bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return *getTrailingObjects<NestedNameSpecifierLoc>();
}
/// If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name. Otherwise, returns NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Get the NamedDecl through which this reference occurred.
///
/// This Decl may be different from the ValueDecl actually referred to in the
/// presence of using declarations, etc. It always returns non-NULL, and may
/// simple return the ValueDecl when appropriate.
NamedDecl *getFoundDecl() {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
/// Get the NamedDecl through which this reference occurred.
/// See non-const variant.
const NamedDecl *getFoundDecl() const {
return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
}
bool hasTemplateKWAndArgsInfo() const {
return DeclRefExprBits.HasTemplateKWAndArgsInfo;
}
/// Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the name in this declaration reference
/// was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this declaration reference was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Returns true if this expression refers to a function that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return DeclRefExprBits.HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a function that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
DeclRefExprBits.HadMultipleCandidates = V;
}
/// Is this expression a non-odr-use reference, and if so, why?
NonOdrUseReason isNonOdrUse() const {
return static_cast<NonOdrUseReason>(DeclRefExprBits.NonOdrUseReason);
}
/// Does this DeclRefExpr refer to an enclosing local or a captured
/// variable?
bool refersToEnclosingVariableOrCapture() const {
return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
}
bool isImmediateEscalating() const {
return DeclRefExprBits.IsImmediateEscalating;
}
void setIsImmediateEscalating(bool Set) {
DeclRefExprBits.IsImmediateEscalating = Set;
}
bool isCapturedByCopyInLambdaWithExplicitObjectParameter() const {
return DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter;
}
void setCapturedByCopyInLambdaWithExplicitObjectParameter(
bool Set, const ASTContext &Context) {
DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = Set;
setDependence(computeDependence(this, Context));
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class IntegerLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
/// Construct an empty integer literal.
explicit IntegerLiteral(EmptyShell Empty)
: Expr(IntegerLiteralClass, Empty) { }
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l);
/// Returns a new integer literal with value 'V' and type 'type'.
/// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
/// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
/// \param V - the value that the returned integer literal contains.
static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l);
/// Returns a new empty integer literal.
static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FixedPointLiteral : public Expr, public APIntStorage {
SourceLocation Loc;
unsigned Scale;
/// \brief Construct an empty fixed-point literal.
explicit FixedPointLiteral(EmptyShell Empty)
: Expr(FixedPointLiteralClass, Empty) {}
public:
FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
SourceLocation l, unsigned Scale);
// Store the int as is without any bit shifting.
static FixedPointLiteral *CreateFromRawInt(const ASTContext &C,
const llvm::APInt &V,
QualType type, SourceLocation l,
unsigned Scale);
/// Returns an empty fixed-point literal.
static FixedPointLiteral *Create(const ASTContext &C, EmptyShell Empty);
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
/// \brief Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Location) { Loc = Location; }
unsigned getScale() const { return Scale; }
void setScale(unsigned S) { Scale = S; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FixedPointLiteralClass;
}
std::string getValueAsString(unsigned Radix) const;
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
enum class CharacterLiteralKind { Ascii, Wide, UTF8, UTF16, UTF32 };
class CharacterLiteral : public Expr {
unsigned Value;
SourceLocation Loc;
public:
// type should be IntTy
CharacterLiteral(unsigned value, CharacterLiteralKind kind, QualType type,
SourceLocation l)
: Expr(CharacterLiteralClass, type, VK_PRValue, OK_Ordinary),
Value(value), Loc(l) {
CharacterLiteralBits.Kind = llvm::to_underlying(kind);
setDependence(ExprDependence::None);
}
/// Construct an empty character literal.
CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
SourceLocation getLocation() const { return Loc; }
CharacterLiteralKind getKind() const {
return static_cast<CharacterLiteralKind>(CharacterLiteralBits.Kind);
}
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
unsigned getValue() const { return Value; }
void setLocation(SourceLocation Location) { Loc = Location; }
void setKind(CharacterLiteralKind kind) {
CharacterLiteralBits.Kind = llvm::to_underlying(kind);
}
void setValue(unsigned Val) { Value = Val; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
static void print(unsigned val, CharacterLiteralKind Kind, raw_ostream &OS);
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class FloatingLiteral : public Expr, private APFloatStorage {
SourceLocation Loc;
FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
QualType Type, SourceLocation L);
/// Construct an empty floating-point literal.
explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
public:
static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L);
static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
llvm::APFloat getValue() const {
return APFloatStorage::getValue(getSemantics());
}
void setValue(const ASTContext &C, const llvm::APFloat &Val) {
assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
APFloatStorage::setValue(C, Val);
}
/// Get a raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialization.
llvm::APFloatBase::Semantics getRawSemantics() const {
return static_cast<llvm::APFloatBase::Semantics>(
FloatingLiteralBits.Semantics);
}
/// Set the raw enumeration value representing the floating-point semantics of
/// this literal (32-bit IEEE, x87, ...), suitable for serialization.
void setRawSemantics(llvm::APFloatBase::Semantics Sem) {
FloatingLiteralBits.Semantics = Sem;
}
/// Return the APFloat semantics this literal uses.
const llvm::fltSemantics &getSemantics() const {
return llvm::APFloatBase::EnumToSemantics(
static_cast<llvm::APFloatBase::Semantics>(
FloatingLiteralBits.Semantics));
}
/// Set the APFloat semantics this literal uses.
void setSemantics(const llvm::fltSemantics &Sem) {
FloatingLiteralBits.Semantics = llvm::APFloatBase::SemanticsToEnum(Sem);
}
bool isExact() const { return FloatingLiteralBits.IsExact; }
void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double getValueAsApproximateDouble() const;
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Stmt *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty, VK_PRValue, OK_Ordinary), Val(val) {
setDependence(ExprDependence::None);
}
/// Build an empty imaginary literal.
explicit ImaginaryLiteral(EmptyShell Empty)
: Expr(ImaginaryLiteralClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return Val->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return Val->getEndLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
enum class StringLiteralKind {
Ordinary,
Wide,
UTF8,
UTF16,
UTF32,
Unevaluated
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string data can be obtained with
/// getBytes() and is NOT null-terminated. The length of the string data is
/// determined by calling getByteLength().
///
/// The C type for a string is always a ConstantArrayType. In C++, the char
/// type is const qualified, in C it is not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
/// char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral final
: public Expr,
private llvm::TrailingObjects<StringLiteral, unsigned, SourceLocation,
char> {
friend class ASTStmtReader;
friend TrailingObjects;
/// StringLiteral is followed by several trailing objects. They are in order:
///
/// * A single unsigned storing the length in characters of this string. The
/// length in bytes is this length times the width of a single character.
/// Always present and stored as a trailing objects because storing it in
/// StringLiteral would increase the size of StringLiteral by sizeof(void *)
/// due to alignment requirements. If you add some data to StringLiteral,
/// consider moving it inside StringLiteral.
///
/// * An array of getNumConcatenated() SourceLocation, one for each of the
/// token this string is made of.
///
/// * An array of getByteLength() char used to store the string data.
unsigned numTrailingObjects(OverloadToken<unsigned>) const { return 1; }
unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
return getNumConcatenated();
}
unsigned numTrailingObjects(OverloadToken<char>) const {
return getByteLength();
}
char *getStrDataAsChar() { return getTrailingObjects<char>(); }
const char *getStrDataAsChar() const { return getTrailingObjects<char>(); }
const uint16_t *getStrDataAsUInt16() const {
return reinterpret_cast<const uint16_t *>(getTrailingObjects<char>());
}
const uint32_t *getStrDataAsUInt32() const {
return reinterpret_cast<const uint32_t *>(getTrailingObjects<char>());
}
/// Build a string literal.
StringLiteral(const ASTContext &Ctx, StringRef Str, StringLiteralKind Kind,
bool Pascal, QualType Ty, const SourceLocation *Loc,
unsigned NumConcatenated);
/// Build an empty string literal.
StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length,
unsigned CharByteWidth);
/// Map a target and string kind to the appropriate character width.
static unsigned mapCharByteWidth(TargetInfo const &Target,
StringLiteralKind SK);
/// Set one of the string literal token.
void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
assert(TokNum < getNumConcatenated() && "Invalid tok number");
getTrailingObjects<SourceLocation>()[TokNum] = L;
}
public:
/// This is the "fully general" constructor that allows representation of
/// strings formed from multiple concatenated tokens.
static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
StringLiteralKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumConcatenated);
/// Simple constructor for string literals made from one token.
static StringLiteral *Create(const ASTContext &Ctx, StringRef Str,
StringLiteralKind Kind, bool Pascal, QualType Ty,
SourceLocation Loc) {
return Create(Ctx, Str, Kind, Pascal, Ty, &Loc, 1);
}
/// Construct an empty string literal.
static StringLiteral *CreateEmpty(const ASTContext &Ctx,
unsigned NumConcatenated, unsigned Length,
unsigned CharByteWidth);
StringRef getString() const {
assert((isUnevaluated() || getCharByteWidth() == 1) &&
"This function is used in places that assume strings use char");
return StringRef(getStrDataAsChar(), getByteLength());
}
/// Allow access to clients that need the byte representation, such as
/// ASTWriterStmt::VisitStringLiteral().
StringRef getBytes() const {
// FIXME: StringRef may not be the right type to use as a result for this.
return StringRef(getStrDataAsChar(), getByteLength());
}
void outputString(raw_ostream &OS) const;
uint32_t getCodeUnit(size_t i) const {
assert(i < getLength() && "out of bounds access");
switch (getCharByteWidth()) {
case 1:
return static_cast<unsigned char>(getStrDataAsChar()[i]);
case 2:
return getStrDataAsUInt16()[i];
case 4:
return getStrDataAsUInt32()[i];
}
llvm_unreachable("Unsupported character width!");
}
// Get code unit but preserve sign info.
int64_t getCodeUnitS(size_t I, uint64_t BitWidth) const {
int64_t V = getCodeUnit(I);
if (isOrdinary() || isWide()) {
unsigned Width = getCharByteWidth() * BitWidth;
llvm::APInt AInt(Width, (uint64_t)V);
V = AInt.getSExtValue();
}
return V;
}
unsigned getByteLength() const { return getCharByteWidth() * getLength(); }
unsigned getLength() const { return *getTrailingObjects<unsigned>(); }
unsigned getCharByteWidth() const { return StringLiteralBits.CharByteWidth; }
StringLiteralKind getKind() const {
return static_cast<StringLiteralKind>(StringLiteralBits.Kind);
}
bool isOrdinary() const { return getKind() == StringLiteralKind::Ordinary; }
bool isWide() const { return getKind() == StringLiteralKind::Wide; }
bool isUTF8() const { return getKind() == StringLiteralKind::UTF8; }
bool isUTF16() const { return getKind() == StringLiteralKind::UTF16; }
bool isUTF32() const { return getKind() == StringLiteralKind::UTF32; }
bool isUnevaluated() const { return getKind() == StringLiteralKind::Unevaluated; }
bool isPascal() const { return StringLiteralBits.IsPascal; }
bool containsNonAscii() const {
for (auto c : getString())
if (!isASCII(c))
return true;
return false;
}
bool containsNonAsciiOrNull() const {
for (auto c : getString())
if (!isASCII(c) || !c)
return true;
return false;
}
/// getNumConcatenated - Get the number of string literal tokens that were
/// concatenated in translation phase #6 to form this string literal.
unsigned getNumConcatenated() const {
return StringLiteralBits.NumConcatenated;
}
/// Get one of the string literal token.
SourceLocation getStrTokenLoc(unsigned TokNum) const {
assert(TokNum < getNumConcatenated() && "Invalid tok number");
return getTrailingObjects<SourceLocation>()[TokNum];
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens
/// and can have escape sequences in them in addition to the usual trigraph
/// and escaped newline business. This routine handles this complexity.
///
SourceLocation
getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features, const TargetInfo &Target,
unsigned *StartToken = nullptr,
unsigned *StartTokenByteOffset = nullptr) const;
typedef const SourceLocation *tokloc_iterator;
tokloc_iterator tokloc_begin() const {
return getTrailingObjects<SourceLocation>();
}
tokloc_iterator tokloc_end() const {
return getTrailingObjects<SourceLocation>() + getNumConcatenated();
}
SourceLocation getBeginLoc() const LLVM_READONLY { return *tokloc_begin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return *(tokloc_end() - 1); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
enum class PredefinedIdentKind {
Func,
Function,
LFunction, // Same as Function, but as wide string.
FuncDName,
FuncSig,
LFuncSig, // Same as FuncSig, but as wide string
PrettyFunction,
/// The same as PrettyFunction, except that the
/// 'virtual' keyword is omitted for virtual member functions.
PrettyFunctionNoVirtual
};
/// [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr final
: public Expr,
private llvm::TrailingObjects<PredefinedExpr, Stmt *> {
friend class ASTStmtReader;
friend TrailingObjects;
// PredefinedExpr is optionally followed by a single trailing
// "Stmt *" for the predefined identifier. It is present if and only if
// hasFunctionName() is true and is always a "StringLiteral *".
PredefinedExpr(SourceLocation L, QualType FNTy, PredefinedIdentKind IK,
bool IsTransparent, StringLiteral *SL);
explicit PredefinedExpr(EmptyShell Empty, bool HasFunctionName);
/// True if this PredefinedExpr has storage for a function name.
bool hasFunctionName() const { return PredefinedExprBits.HasFunctionName; }
void setFunctionName(StringLiteral *SL) {
assert(hasFunctionName() &&
"This PredefinedExpr has no storage for a function name!");
*getTrailingObjects<Stmt *>() = SL;
}
public:
/// Create a PredefinedExpr.
///
/// If IsTransparent, the PredefinedExpr is transparently handled as a
/// StringLiteral.
static PredefinedExpr *Create(const ASTContext &Ctx, SourceLocation L,
QualType FNTy, PredefinedIdentKind IK,
bool IsTransparent, StringLiteral *SL);
/// Create an empty PredefinedExpr.
static PredefinedExpr *CreateEmpty(const ASTContext &Ctx,
bool HasFunctionName);
PredefinedIdentKind getIdentKind() const {
return static_cast<PredefinedIdentKind>(PredefinedExprBits.Kind);
}
bool isTransparent() const { return PredefinedExprBits.IsTransparent; }
SourceLocation getLocation() const { return PredefinedExprBits.Loc; }
void setLocation(SourceLocation L) { PredefinedExprBits.Loc = L; }
StringLiteral *getFunctionName() {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
const StringLiteral *getFunctionName() const {
return hasFunctionName()
? static_cast<StringLiteral *>(*getTrailingObjects<Stmt *>())
: nullptr;
}
static StringRef getIdentKindName(PredefinedIdentKind IK);
StringRef getIdentKindName() const {
return getIdentKindName(getIdentKind());
}
static std::string ComputeName(PredefinedIdentKind IK,
const Decl *CurrentDecl,
bool ForceElaboratedPrinting = false);
SourceLocation getBeginLoc() const { return getLocation(); }
SourceLocation getEndLoc() const { return getLocation(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PredefinedExprClass;
}
// Iterators
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + hasFunctionName());
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + hasFunctionName());
}
};
// This represents a use of the __builtin_sycl_unique_stable_name, which takes a
// type-id, and at CodeGen time emits a unique string representation of the
// type in a way that permits us to properly encode information about the SYCL
// kernels.
class SYCLUniqueStableNameExpr final : public Expr {
friend class ASTStmtReader;
SourceLocation OpLoc, LParen, RParen;
TypeSourceInfo *TypeInfo;
SYCLUniqueStableNameExpr(EmptyShell Empty, QualType ResultTy);
SYCLUniqueStableNameExpr(SourceLocation OpLoc, SourceLocation LParen,
SourceLocation RParen, QualType ResultTy,
TypeSourceInfo *TSI);
void setTypeSourceInfo(TypeSourceInfo *Ty) { TypeInfo = Ty; }
void setLocation(SourceLocation L) { OpLoc = L; }
void setLParenLocation(SourceLocation L) { LParen = L; }
void setRParenLocation(SourceLocation L) { RParen = L; }
public:
TypeSourceInfo *getTypeSourceInfo() { return TypeInfo; }
const TypeSourceInfo *getTypeSourceInfo() const { return TypeInfo; }
static SYCLUniqueStableNameExpr *
Create(const ASTContext &Ctx, SourceLocation OpLoc, SourceLocation LParen,
SourceLocation RParen, TypeSourceInfo *TSI);
static SYCLUniqueStableNameExpr *CreateEmpty(const ASTContext &Ctx);
SourceLocation getBeginLoc() const { return getLocation(); }
SourceLocation getEndLoc() const { return RParen; }
SourceLocation getLocation() const { return OpLoc; }
SourceLocation getLParenLocation() const { return LParen; }
SourceLocation getRParenLocation() const { return RParen; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SYCLUniqueStableNameExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
// Convenience function to generate the name of the currently stored type.
std::string ComputeName(ASTContext &Context) const;
// Get the generated name of the type. Note that this only works after all
// kernels have been instantiated.
static std::string ComputeName(ASTContext &Context, QualType Ty);
};
/// ParenExpr - This represents a parenthesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Stmt *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType(), val->getValueKind(),
val->getObjectKind()),
L(l), R(r), Val(val) {
setDependence(computeDependence(this));
}
/// Construct an empty parenthesized expression.
explicit ParenExpr(EmptyShell Empty)
: Expr(ParenExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
SourceLocation getBeginLoc() const LLVM_READONLY { return L; }
SourceLocation getEndLoc() const LLVM_READONLY { return R; }
/// Get the location of the left parentheses '('.
SourceLocation getLParen() const { return L; }
void setLParen(SourceLocation Loc) { L = Loc; }
/// Get the location of the right parentheses ')'.
SourceLocation getRParen() const { return R; }
void setRParen(SourceLocation Loc) { R = Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
class UnaryOperator final
: public Expr,
private llvm::TrailingObjects<UnaryOperator, FPOptionsOverride> {
Stmt *Val;
size_t numTrailingObjects(OverloadToken<FPOptionsOverride>) const {
return UnaryOperatorBits.HasFPFeatures ? 1 : 0;
}
FPOptionsOverride &getTrailingFPFeatures() {
assert(UnaryOperatorBits.HasFPFeatures);
return *getTrailingObjects<FPOptionsOverride>();
}
const FPOptionsOverride &getTrailingFPFeatures() const {
assert(UnaryOperatorBits.HasFPFeatures);
return *getTrailingObjects<FPOptionsOverride>();
}
public:
typedef UnaryOperatorKind Opcode;
protected:
UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, QualType type,
ExprValueKind VK, ExprObjectKind OK, SourceLocation l,
bool CanOverflow, FPOptionsOverride FPFeatures);
/// Build an empty unary operator.
explicit UnaryOperator(bool HasFPFeatures, EmptyShell Empty)
: Expr(UnaryOperatorClass, Empty) {
UnaryOperatorBits.Opc = UO_AddrOf;
UnaryOperatorBits.HasFPFeatures = HasFPFeatures;
}
public:
static UnaryOperator *CreateEmpty(const ASTContext &C, bool hasFPFeatures);
static UnaryOperator *Create(const ASTContext &C, Expr *input, Opcode opc,
QualType type, ExprValueKind VK,
ExprObjectKind OK, SourceLocation l,
bool CanOverflow, FPOptionsOverride FPFeatures);
Opcode getOpcode() const {
return static_cast<Opcode>(UnaryOperatorBits.Opc);
}
void setOpcode(Opcode Opc) { UnaryOperatorBits.Opc = Opc; }
Expr *getSubExpr() const { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return UnaryOperatorBits.Loc; }
void setOperatorLoc(SourceLocation L) { UnaryOperatorBits.Loc = L; }
/// Returns true if the unary operator can cause an overflow. For instance,
/// signed int i = INT_MAX; i++;
/// signed char c = CHAR_MAX; c++;
/// Due to integer promotions, c++ is promoted to an int before the postfix
/// increment, and the result is an int that cannot overflow. However, i++
/// can overflow.
bool canOverflow() const { return UnaryOperatorBits.CanOverflow; }
void setCanOverflow(bool C) { UnaryOperatorBits.CanOverflow = C; }
/// Get the FP contractibility status of this operator. Only meaningful for
/// operations on floating point types.
bool isFPContractableWithinStatement(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).allowFPContractWithinStatement();
}
/// Get the FENV_ACCESS status of this operator. Only meaningful for
/// operations on floating point types.
bool isFEnvAccessOn(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).getAllowFEnvAccess();
}
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op) {
return Op == UO_PostInc || Op == UO_PostDec;
}
/// isPrefix - Return true if this is a prefix operation, like --x.
static bool isPrefix(Opcode Op) {
return Op == UO_PreInc || Op == UO_PreDec;
}
bool isPrefix() const { return isPrefix(getOpcode()); }
bool isPostfix() const { return isPostfix(getOpcode()); }
static bool isIncrementOp(Opcode Op) {
return Op == UO_PreInc || Op == UO_PostInc;
}
bool isIncrementOp() const {
return isIncrementOp(getOpcode());
}
static bool isDecrementOp(Opcode Op) {
return Op == UO_PreDec || Op == UO_PostDec;
}
bool isDecrementOp() const {
return isDecrementOp(getOpcode());
}
static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
bool isIncrementDecrementOp() const {
return isIncrementDecrementOp(getOpcode());
}
static bool isArithmeticOp(Opcode Op) {
return Op >= UO_Plus && Op <= UO_LNot;
}
bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static StringRef getOpcodeStr(Opcode Op);
/// Retrieve the unary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
/// Retrieve the overloaded operator kind that corresponds to
/// the given unary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
SourceLocation getBeginLoc() const LLVM_READONLY {
return isPostfix() ? Val->getBeginLoc() : getOperatorLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return isPostfix() ? getOperatorLoc() : Val->getEndLoc();
}
SourceLocation getExprLoc() const { return getOperatorLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
/// Is FPFeatures in Trailing Storage?
bool hasStoredFPFeatures() const { return UnaryOperatorBits.HasFPFeatures; }
/// Get FPFeatures from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
return getTrailingFPFeatures();
}
/// Get the store FPOptionsOverride or default if not stored.
FPOptionsOverride getStoredFPFeaturesOrDefault() const {
return hasStoredFPFeatures() ? getStoredFPFeatures() : FPOptionsOverride();
}
protected:
/// Set FPFeatures in trailing storage, used by Serialization & ASTImporter.
void setStoredFPFeatures(FPOptionsOverride F) { getTrailingFPFeatures() = F; }
public:
/// Get the FP features status of this operator. Only meaningful for
/// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (UnaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPOptionsOverride() const {
if (UnaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures();
return FPOptionsOverride();
}
friend TrailingObjects;
friend class ASTNodeImporter;
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Helper class for OffsetOfExpr.
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
/// The kind of offsetof node we have.
enum Kind {
/// An index into an array.
Array = 0x00,
/// A field.
Field = 0x01,
/// A field in a dependent type, known only by its name.
Identifier = 0x02,
/// An implicit indirection through a C++ base class, when the
/// field found is in a base class.
Base = 0x03
};
private:
enum { MaskBits = 2, Mask = 0x03 };
/// The source range that covers this part of the designator.
SourceRange Range;
/// The data describing the designator, which comes in three
/// different forms, depending on the lower two bits.
/// - An unsigned index into the array of Expr*'s stored after this node
/// in memory, for [constant-expression] designators.
/// - A FieldDecl*, for references to a known field.
/// - An IdentifierInfo*, for references to a field with a given name
/// when the class type is dependent.
/// - A CXXBaseSpecifier*, for references that look at a field in a
/// base class.
uintptr_t Data;
public:
/// Create an offsetof node that refers to an array element.
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
SourceLocation RBracketLoc)
: Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
/// Create an offsetof node that refers to a field.
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field, SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
/// Create an offsetof node that refers to an identifier.
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
SourceLocation NameLoc)
: Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
/// Create an offsetof node that refers into a C++ base class.
explicit OffsetOfNode(const CXXBaseSpecifier *Base)
: Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
/// Determine what kind of offsetof node this is.
Kind getKind() const { return static_cast<Kind>(Data & Mask); }
/// For an array element node, returns the index into the array
/// of expressions.
unsigned getArrayExprIndex() const {
assert(getKind() == Array);
return Data >> 2;
}
/// For a field offsetof node, returns the field.
FieldDecl *getField() const {
assert(getKind() == Field);
return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
}
/// For a field or identifier offsetof node, returns the name of
/// the field.
IdentifierInfo *getFieldName() const;
/// For a base class node, returns the base specifier.
CXXBaseSpecifier *getBase() const {
assert(getKind() == Base);
return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
}
/// Retrieve the source range that covers this offsetof node.
///
/// For an array element node, the source range contains the locations of
/// the square brackets. For a field or identifier node, the source range
/// contains the location of the period (if there is one) and the
/// identifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
};
/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
/// float f;
/// double d;
/// };
/// struct T {
/// int i;
/// struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
class OffsetOfExpr final
: public Expr,
private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
SourceLocation OperatorLoc, RParenLoc;
// Base type;
TypeSourceInfo *TSInfo;
// Number of sub-components (i.e. instances of OffsetOfNode).
unsigned NumComps;
// Number of sub-expressions (i.e. array subscript expressions).
unsigned NumExprs;
size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
return NumComps;
}
OffsetOfExpr(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc);
explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
: Expr(OffsetOfExprClass, EmptyShell()),
TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
public:
static OffsetOfExpr *Create(const ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
static OffsetOfExpr *CreateEmpty(const ASTContext &C,
unsigned NumComps, unsigned NumExprs);
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// Return the location of the right parentheses.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation R) { RParenLoc = R; }
TypeSourceInfo *getTypeSourceInfo() const {
return TSInfo;
}
void setTypeSourceInfo(TypeSourceInfo *tsi) {
TSInfo = tsi;
}
const OffsetOfNode &getComponent(unsigned Idx) const {
assert(Idx < NumComps && "Subscript out of range");
return getTrailingObjects<OffsetOfNode>()[Idx];
}
void setComponent(unsigned Idx, OffsetOfNode ON) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<OffsetOfNode>()[Idx] = ON;
}
unsigned getNumComponents() const {
return NumComps;
}
Expr* getIndexExpr(unsigned Idx) {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
const Expr *getIndexExpr(unsigned Idx) const {
assert(Idx < NumExprs && "Subscript out of range");
return getTrailingObjects<Expr *>()[Idx];
}
void setIndexExpr(unsigned Idx, Expr* E) {
assert(Idx < NumComps && "Subscript out of range");
getTrailingObjects<Expr *>()[Idx] = E;
}
unsigned getNumExpressions() const {
return NumExprs;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == OffsetOfExprClass;
}
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
return child_range(begin, begin + NumExprs);
}
const_child_range children() const {
Stmt *const *begin =
reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
return const_child_range(begin, begin + NumExprs);
}
friend TrailingObjects;
};
/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
/// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
/// vec_step (OpenCL 1.1 6.11.12).
class UnaryExprOrTypeTraitExpr : public Expr {
union {
TypeSourceInfo *Ty;
Stmt *Ex;
} Argument;
SourceLocation OpLoc, RParenLoc;
public:
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
QualType resultType, SourceLocation op,
SourceLocation rp)
: Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue,
OK_Ordinary),
OpLoc(op), RParenLoc(rp) {
assert(ExprKind <= UETT_Last && "invalid enum value!");
UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
assert(static_cast<unsigned>(ExprKind) ==
UnaryExprOrTypeTraitExprBits.Kind &&
"UnaryExprOrTypeTraitExprBits.Kind overflow!");
UnaryExprOrTypeTraitExprBits.IsType = true;
Argument.Ty = TInfo;
setDependence(computeDependence(this));
}
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
QualType resultType, SourceLocation op,
SourceLocation rp);
/// Construct an empty sizeof/alignof expression.
explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
: Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
UnaryExprOrTypeTrait getKind() const {
return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
}
void setKind(UnaryExprOrTypeTrait K) {
assert(K <= UETT_Last && "invalid enum value!");
UnaryExprOrTypeTraitExprBits.Kind = K;
assert(static_cast<unsigned>(K) == UnaryExprOrTypeTraitExprBits.Kind &&
"UnaryExprOrTypeTraitExprBits.Kind overflow!");
}
bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
QualType getArgumentType() const {
return getArgumentTypeInfo()->getType();
}
TypeSourceInfo *getArgumentTypeInfo() const {
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
return Argument.Ty;
}
Expr *getArgumentExpr() {
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
return static_cast<Expr*>(Argument.Ex);
}
const Expr *getArgumentExpr() const {
return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
}
void setArgument(Expr *E) {
Argument.Ex = E;
UnaryExprOrTypeTraitExprBits.IsType = false;
}
void setArgument(TypeSourceInfo *TInfo) {
Argument.Ty = TInfo;
UnaryExprOrTypeTraitExprBits.IsType = true;
}
/// Gets the argument type, or the type of the argument expression, whichever
/// is appropriate.
QualType getTypeOfArgument() const {
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
}
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return OpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
}
// Iterators
child_range children();
const_child_range children() const;
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR };
Stmt *SubExprs[END_EXPR];
bool lhsIsBase() const { return getRHS()->getType()->isIntegerType(); }
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t, ExprValueKind VK,
ExprObjectKind OK, SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t, VK, OK) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
ArrayOrMatrixSubscriptExprBits.RBracketLoc = rbracketloc;
setDependence(computeDependence(this));
}
/// Create an empty array subscript expression.
explicit ArraySubscriptExpr(EmptyShell Shell)
: Expr(ArraySubscriptExprClass, Shell) { }
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
/// Note: Because vector element access is also written A[4] we must
/// predicate the format conversion in getBase and getIdx only on the
/// the type of the RHS, as it is possible for the LHS to be a vector of
/// integer type
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getBase() { return lhsIsBase() ? getLHS() : getRHS(); }
const Expr *getBase() const { return lhsIsBase() ? getLHS() : getRHS(); }
Expr *getIdx() { return lhsIsBase() ? getRHS() : getLHS(); }
const Expr *getIdx() const { return lhsIsBase() ? getRHS() : getLHS(); }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const { return getRBracketLoc(); }
SourceLocation getRBracketLoc() const {
return ArrayOrMatrixSubscriptExprBits.RBracketLoc;
}
void setRBracketLoc(SourceLocation L) {
ArrayOrMatrixSubscriptExprBits.RBracketLoc = L;
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// MatrixSubscriptExpr - Matrix subscript expression for the MatrixType
/// extension.
/// MatrixSubscriptExpr can be either incomplete (only Base and RowIdx are set
/// so far, the type is IncompleteMatrixIdx) or complete (Base, RowIdx and
/// ColumnIdx refer to valid expressions). Incomplete matrix expressions only
/// exist during the initial construction of the AST.
class MatrixSubscriptExpr : public Expr {
enum { BASE, ROW_IDX, COLUMN_IDX, END_EXPR };
Stmt *SubExprs[END_EXPR];
public:
MatrixSubscriptExpr(Expr *Base, Expr *RowIdx, Expr *ColumnIdx, QualType T,
SourceLocation RBracketLoc)
: Expr(MatrixSubscriptExprClass, T, Base->getValueKind(),
OK_MatrixComponent) {
SubExprs[BASE] = Base;
SubExprs[ROW_IDX] = RowIdx;
SubExprs[COLUMN_IDX] = ColumnIdx;
ArrayOrMatrixSubscriptExprBits.RBracketLoc = RBracketLoc;
setDependence(computeDependence(this));
}
/// Create an empty matrix subscript expression.
explicit MatrixSubscriptExpr(EmptyShell Shell)
: Expr(MatrixSubscriptExprClass, Shell) {}
bool isIncomplete() const {
bool IsIncomplete = hasPlaceholderType(BuiltinType::IncompleteMatrixIdx);
assert((SubExprs[COLUMN_IDX] || IsIncomplete) &&
"expressions without column index must be marked as incomplete");
return IsIncomplete;
}
Expr *getBase() { return cast<Expr>(SubExprs[BASE]); }
const Expr *getBase() const { return cast<Expr>(SubExprs[BASE]); }
void setBase(Expr *E) { SubExprs[BASE] = E; }
Expr *getRowIdx() { return cast<Expr>(SubExprs[ROW_IDX]); }
const Expr *getRowIdx() const { return cast<Expr>(SubExprs[ROW_IDX]); }
void setRowIdx(Expr *E) { SubExprs[ROW_IDX] = E; }
Expr *getColumnIdx() { return cast_or_null<Expr>(SubExprs[COLUMN_IDX]); }
const Expr *getColumnIdx() const {
assert(!isIncomplete() &&
"cannot get the column index of an incomplete expression");
return cast<Expr>(SubExprs[COLUMN_IDX]);
}
void setColumnIdx(Expr *E) { SubExprs[COLUMN_IDX] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const { return getRBracketLoc(); }
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
SourceLocation getRBracketLoc() const {
return ArrayOrMatrixSubscriptExprBits.RBracketLoc;
}
void setRBracketLoc(SourceLocation L) {
ArrayOrMatrixSubscriptExprBits.RBracketLoc = L;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MatrixSubscriptExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
enum { FN = 0, PREARGS_START = 1 };
/// The number of arguments in the call expression.
unsigned NumArgs;
/// The location of the right parentheses. This has a different meaning for
/// the derived classes of CallExpr.
SourceLocation RParenLoc;
// CallExpr store some data in trailing objects. However since CallExpr
// is used a base of other expression classes we cannot use
// llvm::TrailingObjects. Instead we manually perform the pointer arithmetic
// and casts.
//
// The trailing objects are in order:
//
// * A single "Stmt *" for the callee expression.
//
// * An array of getNumPreArgs() "Stmt *" for the pre-argument expressions.
//
// * An array of getNumArgs() "Stmt *" for the argument expressions.
//
// * An optional of type FPOptionsOverride.
//
// Note that we store the offset in bytes from the this pointer to the start
// of the trailing objects. It would be perfectly possible to compute it
// based on the dynamic kind of the CallExpr. However 1.) we have plenty of
// space in the bit-fields of Stmt. 2.) It was benchmarked to be faster to
// compute this once and then load the offset from the bit-fields of Stmt,
// instead of re-computing the offset each time the trailing objects are
// accessed.
/// Return a pointer to the start of the trailing array of "Stmt *".
Stmt **getTrailingStmts() {
return reinterpret_cast<Stmt **>(reinterpret_cast<char *>(this) +
CallExprBits.OffsetToTrailingObjects);
}
Stmt *const *getTrailingStmts() const {
return const_cast<CallExpr *>(this)->getTrailingStmts();
}
/// Map a statement class to the appropriate offset in bytes from the
/// this pointer to the trailing objects.
static unsigned offsetToTrailingObjects(StmtClass SC);
unsigned getSizeOfTrailingStmts() const {
return (1 + getNumPreArgs() + getNumArgs()) * sizeof(Stmt *);
}
size_t getOffsetOfTrailingFPFeatures() const {
assert(hasStoredFPFeatures());
return CallExprBits.OffsetToTrailingObjects + getSizeOfTrailingStmts();
}
public:
enum class ADLCallKind : bool { NotADL, UsesADL };
static constexpr ADLCallKind NotADL = ADLCallKind::NotADL;
static constexpr ADLCallKind UsesADL = ADLCallKind::UsesADL;
protected:
/// Build a call expression, assuming that appropriate storage has been
/// allocated for the trailing objects.
CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
unsigned MinNumArgs, ADLCallKind UsesADL);
/// Build an empty call expression, for deserialization.
CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
bool hasFPFeatures, EmptyShell Empty);
/// Return the size in bytes needed for the trailing objects.
/// Used by the derived classes to allocate the right amount of storage.
static unsigned sizeOfTrailingObjects(unsigned NumPreArgs, unsigned NumArgs,
bool HasFPFeatures) {
return (1 + NumPreArgs + NumArgs) * sizeof(Stmt *) +
HasFPFeatures * sizeof(FPOptionsOverride);
}
Stmt *getPreArg(unsigned I) {
assert(I < getNumPreArgs() && "Prearg access out of range!");
return getTrailingStmts()[PREARGS_START + I];
}
const Stmt *getPreArg(unsigned I) const {
assert(I < getNumPreArgs() && "Prearg access out of range!");
return getTrailingStmts()[PREARGS_START + I];
}
void setPreArg(unsigned I, Stmt *PreArg) {
assert(I < getNumPreArgs() && "Prearg access out of range!");
getTrailingStmts()[PREARGS_START + I] = PreArg;
}
unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
/// Return a pointer to the trailing FPOptions
FPOptionsOverride *getTrailingFPFeatures() {
assert(hasStoredFPFeatures());
return reinterpret_cast<FPOptionsOverride *>(
reinterpret_cast<char *>(this) + CallExprBits.OffsetToTrailingObjects +
getSizeOfTrailingStmts());
}
const FPOptionsOverride *getTrailingFPFeatures() const {
assert(hasStoredFPFeatures());
return reinterpret_cast<const FPOptionsOverride *>(
reinterpret_cast<const char *>(this) +
CallExprBits.OffsetToTrailingObjects + getSizeOfTrailingStmts());
}
public:
/// Create a call expression.
/// \param Fn The callee expression,
/// \param Args The argument array,
/// \param Ty The type of the call expression (which is *not* the return
/// type in general),
/// \param VK The value kind of the call expression (lvalue, rvalue, ...),
/// \param RParenLoc The location of the right parenthesis in the call
/// expression.
/// \param FPFeatures Floating-point features associated with the call,
/// \param MinNumArgs Specifies the minimum number of arguments. The actual
/// number of arguments will be the greater of Args.size()
/// and MinNumArgs. This is used in a few places to allocate
/// enough storage for the default arguments.
/// \param UsesADL Specifies whether the callee was found through
/// argument-dependent lookup.
///
/// Note that you can use CreateTemporary if you need a temporary call
/// expression on the stack.
static CallExpr *Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RParenLoc,
FPOptionsOverride FPFeatures, unsigned MinNumArgs = 0,
ADLCallKind UsesADL = NotADL);
/// Create a temporary call expression with no arguments in the memory
/// pointed to by Mem. Mem must points to at least sizeof(CallExpr)
/// + sizeof(Stmt *) bytes of storage, aligned to alignof(CallExpr):
///
/// \code{.cpp}
/// alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
/// CallExpr *TheCall = CallExpr::CreateTemporary(Buffer, etc);
/// \endcode
static CallExpr *CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
ExprValueKind VK, SourceLocation RParenLoc,
ADLCallKind UsesADL = NotADL);
/// Create an empty call expression, for deserialization.
static CallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
bool HasFPFeatures, EmptyShell Empty);
Expr *getCallee() { return cast<Expr>(getTrailingStmts()[FN]); }
const Expr *getCallee() const { return cast<Expr>(getTrailingStmts()[FN]); }
void setCallee(Expr *F) { getTrailingStmts()[FN] = F; }
ADLCallKind getADLCallKind() const {
return static_cast<ADLCallKind>(CallExprBits.UsesADL);
}
void setADLCallKind(ADLCallKind V = UsesADL) {
CallExprBits.UsesADL = static_cast<bool>(V);
}
bool usesADL() const { return getADLCallKind() == UsesADL; }
bool hasStoredFPFeatures() const { return CallExprBits.HasFPFeatures; }
Decl *getCalleeDecl() { return getCallee()->getReferencedDeclOfCallee(); }
const Decl *getCalleeDecl() const {
return getCallee()->getReferencedDeclOfCallee();
}
/// If the callee is a FunctionDecl, return it. Otherwise return null.
FunctionDecl *getDirectCallee() {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
const FunctionDecl *getDirectCallee() const {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
/// getNumArgs - Return the number of actual arguments to this call.
unsigned getNumArgs() const { return NumArgs; }
/// Retrieve the call arguments.
Expr **getArgs() {
return reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START +
getNumPreArgs());
}
const Expr *const *getArgs() const {
return reinterpret_cast<const Expr *const *>(
getTrailingStmts() + PREARGS_START + getNumPreArgs());
}
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < getNumArgs() && "Arg access out of range!");
return getArgs()[Arg];
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < getNumArgs() && "Arg access out of range!");
return getArgs()[Arg];
}
/// setArg - Set the specified argument.
/// ! the dependence bits might be stale after calling this setter, it is
/// *caller*'s responsibility to recompute them by calling
/// computeDependence().
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < getNumArgs() && "Arg access out of range!");
getArgs()[Arg] = ArgExpr;
}
/// Compute and set dependence bits.
void computeDependence() {
setDependence(clang::computeDependence(
this, llvm::ArrayRef(
reinterpret_cast<Expr **>(getTrailingStmts() + PREARGS_START),
getNumPreArgs())));
}
/// Reduce the number of arguments in this call expression. This is used for
/// example during error recovery to drop extra arguments. There is no way
/// to perform the opposite because: 1.) We don't track how much storage
/// we have for the argument array 2.) This would potentially require growing
/// the argument array, something we cannot support since the arguments are
/// stored in a trailing array.
void shrinkNumArgs(unsigned NewNumArgs) {
assert((NewNumArgs <= getNumArgs()) &&
"shrinkNumArgs cannot increase the number of arguments!");
NumArgs = NewNumArgs;
}
/// Bluntly set a new number of arguments without doing any checks whatsoever.
/// Only used during construction of a CallExpr in a few places in Sema.
/// FIXME: Find a way to remove it.
void setNumArgsUnsafe(unsigned NewNumArgs) { NumArgs = NewNumArgs; }
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
typedef llvm::iterator_range<arg_iterator> arg_range;
typedef llvm::iterator_range<const_arg_iterator> const_arg_range;
arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
const_arg_range arguments() const {
return const_arg_range(arg_begin(), arg_end());
}
arg_iterator arg_begin() {
return getTrailingStmts() + PREARGS_START + getNumPreArgs();
}
arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
const_arg_iterator arg_begin() const {
return getTrailingStmts() + PREARGS_START + getNumPreArgs();
}
const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
/// This method provides fast access to all the subexpressions of
/// a CallExpr without going through the slower virtual child_iterator
/// interface. This provides efficient reverse iteration of the
/// subexpressions. This is currently used for CFG construction.
ArrayRef<Stmt *> getRawSubExprs() {
return llvm::ArrayRef(getTrailingStmts(),
PREARGS_START + getNumPreArgs() + getNumArgs());
}
/// Get FPOptionsOverride from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
/// Set FPOptionsOverride in trailing storage. Used only by Serialization.
void setStoredFPFeatures(FPOptionsOverride F) {
assert(hasStoredFPFeatures());
*getTrailingFPFeatures() = F;
}
/// Get the store FPOptionsOverride or default if not stored.
FPOptionsOverride getStoredFPFeaturesOrDefault() const {
return hasStoredFPFeatures() ? getStoredFPFeatures() : FPOptionsOverride();
}
/// Get the FP features status of this operator. Only meaningful for
/// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (hasStoredFPFeatures())
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPFeatures() const {
if (hasStoredFPFeatures())
return getStoredFPFeatures();
return FPOptionsOverride();
}
/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
/// of the callee. If not, return 0.
unsigned getBuiltinCallee() const;
/// Returns \c true if this is a call to a builtin which does not
/// evaluate side-effects within its arguments.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
/// getCallReturnType - Get the return type of the call expr. This is not
/// always the type of the expr itself, if the return type is a reference
/// type.
QualType getCallReturnType(const ASTContext &Ctx) const;
/// Returns the WarnUnusedResultAttr that is either declared on the called
/// function, or its return type declaration.
const Attr *getUnusedResultAttr(const ASTContext &Ctx) const;
/// Returns true if this call expression should warn on unused results.
bool hasUnusedResultAttr(const ASTContext &Ctx) const {
return getUnusedResultAttr(Ctx) != nullptr;
}
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
/// Return true if this is a call to __assume() or __builtin_assume() with
/// a non-value-dependent constant parameter evaluating as false.
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
/// Used by Sema to implement MSVC-compatible delayed name lookup.
/// (Usually Exprs themselves should set dependence).
void markDependentForPostponedNameLookup() {
setDependence(getDependence() | ExprDependence::TypeValueInstantiation);
}
bool isCallToStdMove() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCallExprConstant &&
T->getStmtClass() <= lastCallExprConstant;
}
// Iterators
child_range children() {
return child_range(getTrailingStmts(), getTrailingStmts() + PREARGS_START +
getNumPreArgs() + getNumArgs());
}
const_child_range children() const {
return const_child_range(getTrailingStmts(),
getTrailingStmts() + PREARGS_START +
getNumPreArgs() + getNumArgs());
}
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
///
class MemberExpr final
: public Expr,
private llvm::TrailingObjects<MemberExpr, NestedNameSpecifierLoc,
DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc> {
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// Base - the expression for the base pointer or structure references. In
/// X.F, this is "X".
Stmt *Base;
/// MemberDecl - This is the decl being referenced by the field/member name.
/// In X.F, this is the decl referenced by F.
ValueDecl *MemberDecl;
/// MemberDNLoc - Provides source/type location info for the
/// declaration name embedded in MemberDecl.
DeclarationNameLoc MemberDNLoc;
/// MemberLoc - This is the location of the member name.
SourceLocation MemberLoc;
size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
return hasQualifier();
}
size_t numTrailingObjects(OverloadToken<DeclAccessPair>) const {
return hasFoundDecl();
}
size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
return hasTemplateKWAndArgsInfo();
}
bool hasFoundDecl() const { return MemberExprBits.HasFoundDecl; }
bool hasTemplateKWAndArgsInfo() const {
return MemberExprBits.HasTemplateKWAndArgsInfo;
}
MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs, QualType T,
ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR);
MemberExpr(EmptyShell Empty)
: Expr(MemberExprClass, Empty), Base(), MemberDecl() {}
public:
static MemberExpr *Create(const ASTContext &C, Expr *Base, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
DeclAccessPair FoundDecl,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK, ExprObjectKind OK,
NonOdrUseReason NOUR);
/// Create an implicit MemberExpr, with no location, qualifier, template
/// arguments, and so on. Suitable only for non-static member access.
static MemberExpr *CreateImplicit(const ASTContext &C, Expr *Base,
bool IsArrow, ValueDecl *MemberDecl,
QualType T, ExprValueKind VK,
ExprObjectKind OK) {
return Create(C, Base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
SourceLocation(), MemberDecl,
DeclAccessPair::make(MemberDecl, MemberDecl->getAccess()),
DeclarationNameInfo(), nullptr, T, VK, OK, NOUR_None);
}
static MemberExpr *CreateEmpty(const ASTContext &Context, bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// Retrieve the member declaration to which this expression refers.
///
/// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
/// static data members), a CXXMethodDecl, or an EnumConstantDecl.
ValueDecl *getMemberDecl() const { return MemberDecl; }
void setMemberDecl(ValueDecl *D);
/// Retrieves the declaration found by lookup.
DeclAccessPair getFoundDecl() const {
if (!hasFoundDecl())
return DeclAccessPair::make(getMemberDecl(),
getMemberDecl()->getAccess());
return *getTrailingObjects<DeclAccessPair>();
}
/// Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return MemberExprBits.HasQualifier; }
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name, with source-location
/// information.
NestedNameSpecifierLoc getQualifierLoc() const {
if (!hasQualifier())
return NestedNameSpecifierLoc();
return *getTrailingObjects<NestedNameSpecifierLoc>();
}
/// If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
return getQualifierLoc().getNestedNameSpecifier();
}
/// Retrieve the location of the template keyword preceding
/// the member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
}
/// Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
}
/// Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!hasTemplateKWAndArgsInfo())
return SourceLocation();
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether the member name was followed by an
/// explicit template argument list.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
getTrailingObjects<TemplateArgumentLoc>(), List);
}
/// Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return nullptr;
return getTrailingObjects<TemplateArgumentLoc>();
}
/// Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
}
ArrayRef<TemplateArgumentLoc> template_arguments() const {
return {getTemplateArgs(), getNumTemplateArgs()};
}
/// Retrieve the member declaration name info.
DeclarationNameInfo getMemberNameInfo() const {
return DeclarationNameInfo(MemberDecl->getDeclName(),
MemberLoc, MemberDNLoc);
}
SourceLocation getOperatorLoc() const { return MemberExprBits.OperatorLoc; }
bool isArrow() const { return MemberExprBits.IsArrow; }
void setArrow(bool A) { MemberExprBits.IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
/// Determine whether the base of this explicit is implicit.
bool isImplicitAccess() const {
return getBase() && getBase()->isImplicitCXXThis();
}
/// Returns true if this member expression refers to a method that
/// was resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const {
return MemberExprBits.HadMultipleCandidates;
}
/// Sets the flag telling whether this expression refers to
/// a method that was resolved from an overloaded set having size
/// greater than 1.
void setHadMultipleCandidates(bool V = true) {
MemberExprBits.HadMultipleCandidates = V;
}
/// Returns true if virtual dispatch is performed.
/// If the member access is fully qualified, (i.e. X::f()), virtual
/// dispatching is not performed. In -fapple-kext mode qualified
/// calls to virtual method will still go through the vtable.
bool performsVirtualDispatch(const LangOptions &LO) const {
return LO.AppleKext || !hasQualifier();
}
/// Is this expression a non-odr-use reference, and if so, why?
/// This is only meaningful if the named member is a static member.
NonOdrUseReason isNonOdrUse() const {
return static_cast<NonOdrUseReason>(MemberExprBits.NonOdrUseReason);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
/// LParenLoc - If non-null, this is the location of the left paren in a
/// compound literal like "(int){4}". This can be null if this is a
/// synthesized compound expression.
SourceLocation LParenLoc;
/// The type as written. This can be an incomplete array type, in
/// which case the actual expression type will be different.
/// The int part of the pair stores whether this expr is file scope.
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
Stmt *Init;
public:
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
QualType T, ExprValueKind VK, Expr *init, bool fileScope)
: Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary),
LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {
setDependence(computeDependence(this));
}
/// Construct an empty compound literal.
explicit CompoundLiteralExpr(EmptyShell Empty)
: Expr(CompoundLiteralExprClass, Empty) { }
const Expr *getInitializer() const { return cast<Expr>(Init); }
Expr *getInitializer() { return cast<Expr>(Init); }
void setInitializer(Expr *E) { Init = E; }
bool isFileScope() const { return TInfoAndScope.getInt(); }
void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const {
return TInfoAndScope.getPointer();
}
void setTypeSourceInfo(TypeSourceInfo *tinfo) {
TInfoAndScope.setPointer(tinfo);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
if (LParenLoc.isInvalid())
return Init->getBeginLoc();
return LParenLoc;
}
SourceLocation getEndLoc() const LLVM_READONLY {
// FIXME: Init should never be null.
if (!Init)
return SourceLocation();
return Init->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
// Iterators
child_range children() { return child_range(&Init, &Init+1); }
const_child_range children() const {
return const_child_range(&Init, &Init + 1);
}
};
/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
Stmt *Op;
bool CastConsistency() const;
const CXXBaseSpecifier * const *path_buffer() const {
return const_cast<CastExpr*>(this)->path_buffer();
}
CXXBaseSpecifier **path_buffer();
friend class ASTStmtReader;
protected:
CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
Expr *op, unsigned BasePathSize, bool HasFPFeatures)
: Expr(SC, ty, VK, OK_Ordinary), Op(op) {
CastExprBits.Kind = kind;
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathSize = BasePathSize;
assert((CastExprBits.BasePathSize == BasePathSize) &&
"BasePathSize overflow!");
assert(CastConsistency());
CastExprBits.HasFPFeatures = HasFPFeatures;
}
/// Construct an empty cast.
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize,
bool HasFPFeatures)
: Expr(SC, Empty) {
CastExprBits.PartOfExplicitCast = false;
CastExprBits.BasePathSize = BasePathSize;
CastExprBits.HasFPFeatures = HasFPFeatures;
assert((CastExprBits.BasePathSize == BasePathSize) &&
"BasePathSize overflow!");
}
/// Return a pointer to the trailing FPOptions.
/// \pre hasStoredFPFeatures() == true
FPOptionsOverride *getTrailingFPFeatures();
const FPOptionsOverride *getTrailingFPFeatures() const {
return const_cast<CastExpr *>(this)->getTrailingFPFeatures();
}
public:
CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
void setCastKind(CastKind K) { CastExprBits.Kind = K; }
static const char *getCastKindName(CastKind CK);
const char *getCastKindName() const { return getCastKindName(getCastKind()); }
Expr *getSubExpr() { return cast<Expr>(Op); }
const Expr *getSubExpr() const { return cast<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
/// Retrieve the cast subexpression as it was written in the source
/// code, looking through any implicit casts or other intermediate nodes
/// introduced by semantic analysis.
Expr *getSubExprAsWritten();
const Expr *getSubExprAsWritten() const {
return const_cast<CastExpr *>(this)->getSubExprAsWritten();
}
/// If this cast applies a user-defined conversion, retrieve the conversion
/// function that it invokes.
NamedDecl *getConversionFunction() const;
typedef CXXBaseSpecifier **path_iterator;
typedef const CXXBaseSpecifier *const *path_const_iterator;
bool path_empty() const { return path_size() == 0; }
unsigned path_size() const { return CastExprBits.BasePathSize; }
path_iterator path_begin() { return path_buffer(); }
path_iterator path_end() { return path_buffer() + path_size(); }
path_const_iterator path_begin() const { return path_buffer(); }
path_const_iterator path_end() const { return path_buffer() + path_size(); }
/// Path through the class hierarchy taken by casts between base and derived
/// classes (see implementation of `CastConsistency()` for a full list of
/// cast kinds that have a path).
///
/// For each derived-to-base edge in the path, the path contains a
/// `CXXBaseSpecifier` for the base class of that edge; the entries are
/// ordered from derived class to base class.
///
/// For example, given classes `Base`, `Intermediate : public Base` and
/// `Derived : public Intermediate`, the path for a cast from `Derived *` to
/// `Base *` contains two entries: One for `Intermediate`, and one for `Base`,
/// in that order.
llvm::iterator_range<path_iterator> path() {
return llvm::make_range(path_begin(), path_end());
}
llvm::iterator_range<path_const_iterator> path() const {
return llvm::make_range(path_begin(), path_end());
}
const FieldDecl *getTargetUnionField() const {
assert(getCastKind() == CK_ToUnion);
return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
}
bool hasStoredFPFeatures() const { return CastExprBits.HasFPFeatures; }
/// Get FPOptionsOverride from trailing storage.
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
/// Get the store FPOptionsOverride or default if not stored.
FPOptionsOverride getStoredFPFeaturesOrDefault() const {
return hasStoredFPFeatures() ? getStoredFPFeatures() : FPOptionsOverride();
}
/// Get the FP features status of this operation. Only meaningful for
/// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (hasStoredFPFeatures())
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
FPOptionsOverride getFPFeatures() const {
if (hasStoredFPFeatures())
return getStoredFPFeatures();
return FPOptionsOverride();
}
/// Return
// True : if this conversion changes the volatile-ness of a gl-value.
// Qualification conversions on gl-values currently use CK_NoOp, but
// it's important to recognize volatile-changing conversions in
// clients code generation that normally eagerly peephole loads. Note
// that the query is answering for this specific node; Sema may
// produce multiple cast nodes for any particular conversion sequence.
// False : Otherwise.
bool changesVolatileQualification() const {
return (isGLValue() && (getType().isVolatileQualified() !=
getSubExpr()->getType().isVolatileQualified()));
}
static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
QualType opType);
static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
QualType opType);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCastExprConstant &&
T->getStmtClass() <= lastCastExprConstant;
}
// Iterators
child_range children() { return child_range(&Op, &Op+1); }
const_child_range children() const { return const_child_range(&Op, &Op + 1); }
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
/// Base& b = d; // initializer is an ImplicitCastExpr
/// // to an lvalue of type Base
/// Base&& r = ref(); // initializer is an ImplicitCastExpr
/// // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr final
: public CastExpr,
private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *,
FPOptionsOverride> {
ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
unsigned BasePathLength, FPOptionsOverride FPO,
ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength,
FPO.requiresTrailingStorage()) {
setDependence(computeDependence(this));
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
/// Construct an empty implicit cast.
explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: CastExpr(ImplicitCastExprClass, Shell, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
return path_size();
}
public:
enum OnStack_t { OnStack };
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
ExprValueKind VK, FPOptionsOverride FPO)
: CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0,
FPO.requiresTrailingStorage()) {
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
bool isPartOfExplicitCast() const { return CastExprBits.PartOfExplicitCast; }
void setIsPartOfExplicitCast(bool PartOfExplicitCast) {
CastExprBits.PartOfExplicitCast = PartOfExplicitCast;
}
static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind Cat, FPOptionsOverride FPO);
static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize, bool HasFPFeatures);
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSubExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
/// TInfo - Source type info for the (written) type
/// this expression is casting to.
TypeSourceInfo *TInfo;
protected:
ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
bool HasFPFeatures, TypeSourceInfo *writtenTy)
: CastExpr(SC, exprTy, VK, kind, op, PathSize, HasFPFeatures),
TInfo(writtenTy) {
setDependence(computeDependence(this));
}
/// Construct an empty explicit cast.
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: CastExpr(SC, Shell, PathSize, HasFPFeatures) {}
public:
/// getTypeInfoAsWritten - Returns the type source info for the type
/// that this expression is casting to.
TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
/// getTypeAsWritten - Returns the type that this expression is
/// casting to, as written in the source code.
QualType getTypeAsWritten() const { return TInfo->getType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExplicitCastExprConstant &&
T->getStmtClass() <= lastExplicitCastExprConstant;
}
};
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr final
: public ExplicitCastExpr,
private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *,
FPOptionsOverride> {
SourceLocation LPLoc; // the location of the left paren
SourceLocation RPLoc; // the location of the right paren
CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
unsigned PathSize, FPOptionsOverride FPO,
TypeSourceInfo *writtenTy, SourceLocation l, SourceLocation r)
: ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
FPO.requiresTrailingStorage(), writtenTy),
LPLoc(l), RPLoc(r) {
if (hasStoredFPFeatures())
*getTrailingFPFeatures() = FPO;
}
/// Construct an empty C-style explicit cast.
explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize,
bool HasFPFeatures)
: ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize, HasFPFeatures) {}
unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
return path_size();
}
public:
static CStyleCastExpr *
Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K,
Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO,
TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R);
static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
unsigned PathSize, bool HasFPFeatures);
SourceLocation getLParenLoc() const { return LPLoc; }
void setLParenLoc(SourceLocation L) { LPLoc = L; }
SourceLocation getRParenLoc() const { return RPLoc; }
void setRParenLoc(SourceLocation L) { RPLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LPLoc; }
SourceLocation getEndLoc() const LLVM_READONLY {
return getSubExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CStyleCastExprClass;
}
friend TrailingObjects;
friend class CastExpr;
};
/// A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
enum { LHS, RHS, END_EXPR };
Stmt *SubExprs[END_EXPR];
public:
typedef BinaryOperatorKind Opcode;
protected:
size_t offsetOfTrailingStorage() const;
/// Return a pointer to the trailing FPOptions
FPOptionsOverride *getTrailingFPFeatures() {
assert(BinaryOperatorBits.HasFPFeatures);
return reinterpret_cast<FPOptionsOverride *>(
reinterpret_cast<char *>(this) + offsetOfTrailingStorage());
}
const FPOptionsOverride *getTrailingFPFeatures() const {
assert(BinaryOperatorBits.HasFPFeatures);
return reinterpret_cast<const FPOptionsOverride *>(
reinterpret_cast<const char *>(this) + offsetOfTrailingStorage());
}
/// Build a binary operator, assuming that appropriate storage has been
/// allocated for the trailing objects when needed.
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResTy, ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptionsOverride FPFeatures);
/// Construct an empty binary operator.
explicit BinaryOperator(EmptyShell Empty) : Expr(BinaryOperatorClass, Empty) {
BinaryOperatorBits.Opc = BO_Comma;
BinaryOperatorBits.ExcludedOverflowPattern = false;
}
public:
static BinaryOperator *CreateEmpty(const ASTContext &C, bool hasFPFeatures);
static BinaryOperator *Create(const ASTContext &C, Expr *lhs, Expr *rhs,
Opcode opc, QualType ResTy, ExprValueKind VK,
ExprObjectKind OK, SourceLocation opLoc,
FPOptionsOverride FPFeatures);
SourceLocation getExprLoc() const { return getOperatorLoc(); }
SourceLocation getOperatorLoc() const { return BinaryOperatorBits.OpLoc; }
void setOperatorLoc(SourceLocation L) { BinaryOperatorBits.OpLoc = L; }
Opcode getOpcode() const {
return static_cast<Opcode>(BinaryOperatorBits.Opc);
}
void setOpcode(Opcode Opc) { BinaryOperatorBits.Opc = Opc; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getLHS()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static StringRef getOpcodeStr(Opcode Op);
StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
/// Retrieve the binary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
/// Retrieve the overloaded operator kind that corresponds to
/// the given binary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
/// predicates to categorize the respective opcodes.
static bool isPtrMemOp(Opcode Opc) {
return Opc == BO_PtrMemD || Opc == BO_PtrMemI;
}
bool isPtrMemOp() const { return isPtrMemOp(getOpcode()); }
static bool isMultiplicativeOp(Opcode Opc) {
return Opc >= BO_Mul && Opc <= BO_Rem;
}
bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
bool isShiftOp() const { return isShiftOp(getOpcode()); }
static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
static bool isCommaOp(Opcode Opc) { return Opc == BO_Comma; }
bool isCommaOp() const { return isCommaOp(getOpcode()); }
static Opcode negateComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GE;
case BO_GT: return BO_LE;
case BO_LE: return BO_GT;
case BO_GE: return BO_LT;
case BO_EQ: return BO_NE;
case BO_NE: return BO_EQ;
}
}
static Opcode reverseComparisonOp(Opcode Opc) {
switch (Opc) {
default:
llvm_unreachable("Not a comparison operator.");
case BO_LT: return BO_GT;
case BO_GT: return BO_LT;
case BO_LE: return BO_GE;
case BO_GE: return BO_LE;
case BO_EQ:
case BO_NE:
return Opc;
}
}
static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
static bool isAssignmentOp(Opcode Opc) {
return Opc >= BO_Assign && Opc <= BO_OrAssign;
}
bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
static bool isCompoundAssignmentOp(Opcode Opc) {
return Opc > BO_Assign && Opc <= BO_OrAssign;
}
bool isCompoundAssignmentOp() const {
return isCompoundAssignmentOp(getOpcode());
}
static Opcode getOpForCompoundAssignment(Opcode Opc) {
assert(isCompoundAssignmentOp(Opc));
if (Opc >= BO_AndAssign)
return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
else
return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
}
static bool isShiftAssignOp(Opcode Opc) {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
}
bool isShiftAssignOp() const {
return isShiftAssignOp(getOpcode());
}
/// Return true if a binary operator using the specified opcode and operands
/// would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
/// integer to a pointer.
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
const Expr *LHS,
const Expr *RHS);
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstBinaryOperatorConstant &&
S->getStmtClass() <= lastBinaryOperatorConstant;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
/// Set and fetch the bit that shows whether FPFeatures needs to be
/// allocated in Trailing Storage
void setHasStoredFPFeatures(bool B) { BinaryOperatorBits.HasFPFeatures = B; }
bool hasStoredFPFeatures() const { return BinaryOperatorBits.HasFPFeatures; }
/// Set and get the bit that informs arithmetic overflow sanitizers whether
/// or not they should exclude certain BinaryOperators from instrumentation
void setExcludedOverflowPattern(bool B) {
BinaryOperatorBits.ExcludedOverflowPattern = B;
}
bool hasExcludedOverflowPattern() const {
return BinaryOperatorBits.ExcludedOverflowPattern;
}
/// Get FPFeatures from trailing storage
FPOptionsOverride getStoredFPFeatures() const {
assert(hasStoredFPFeatures());
return *getTrailingFPFeatures();
}
/// Set FPFeatures in trailing storage, used only by Serialization
void setStoredFPFeatures(FPOptionsOverride F) {
assert(BinaryOperatorBits.HasFPFeatures);
*getTrailingFPFeatures() = F;
}
/// Get the store FPOptionsOverride or default if not stored.
FPOptionsOverride getStoredFPFeaturesOrDefault() const {
return hasStoredFPFeatures() ? getStoredFPFeatures() : FPOptionsOverride();
}
/// Get the FP features status of this operator. Only meaningful for
/// operations on floating point types.
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const {
if (BinaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures().applyOverrides(LO);
return FPOptions::defaultWithoutTrailingStorage(LO);
}
// This is used in ASTImporter
FPOptionsOverride getFPFeatures() const {
if (BinaryOperatorBits.HasFPFeatures)
return getStoredFPFeatures();
return FPOptionsOverride();
}
/// Get the FP contractibility status of this operator. Only meaningful for
/// operations on floating point types.
bool isFPContractableWithinStatement(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).allowFPContractWithinStatement();
}
/// Get the FENV_ACCESS status of this operator. Only meaningful for
/// operations on floating point types.
bool isFEnvAccessOn(const LangOptions &LO) const {
return getFPFeaturesInEffect(LO).getAllowFEnvAccess();
}
protected:
BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResTy, ExprValueKind VK, ExprObjectKind OK,
SourceLocation opLoc, FPOptionsOverride FPFeatures,
bool dead2);
/// Construct an empty BinaryOperator, SC is CompoundAssignOperator.
BinaryOperator(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
BinaryOperatorBits.Opc = BO_MulAssign;
}
/// Return the size in bytes needed for the trailing objects.
/// Used to allocate the right amount of storage.
static unsigned sizeOfTrailingObjects(bool HasFPFeatures) {
return HasFPFeatures * sizeof(FPOptionsOverride);
}
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the arithmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationLHSType;
QualType ComputationResultType;
/// Construct an empty CompoundAssignOperator.
explicit CompoundAssignOperator(const ASTContext &C, EmptyShell Empty,
bool hasFPFeatures)
: BinaryOperator(CompoundAssignOperatorClass, Empty) {}
protected:
CompoundAssignOperator(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc,
QualType ResType, ExprValueKind VK, ExprObjectKind OK,
SourceLocation OpLoc, FPOptionsOverride FPFeatures,
QualType CompLHSType, QualType CompResultType)
: BinaryOperator(C, lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
true),
ComputationLHSType(CompLHSType), ComputationResultType(CompResultType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
public:
static CompoundAssignOperator *CreateEmpty(const ASTContext &C,
bool hasFPFeatures);
static CompoundAssignOperator *
Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc,
FPOptionsOverride FPFeatures, QualType CompLHSType = QualType(),
QualType CompResultType = QualType());
// The two computation types are the type the LHS is converted
// to for the computation and the type of the result; the two are
// distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
QualType getComputationLHSType() const { return ComputationLHSType; }
void setComputationLHSType(QualType T) { ComputationLHSType = T; }
QualType getComputationResultType() const { return ComputationResultType; }
void setComputationResultType(QualType T) { ComputationResultType = T; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
inline size_t BinaryOperator::offsetOfTrailingStorage() const {
assert(BinaryOperatorBits.HasFPFeatures);
return isa<CompoundAssignOperator>(this) ? sizeof(CompoundAssignOperator)
: sizeof(BinaryOperator);
}
/// AbstractConditionalOperator - An abstract base class for
/// ConditionalOperator and BinaryConditionalOperator.
class AbstractConditionalOperator : public Expr {
SourceLocation QuestionLoc, ColonLoc;
friend class ASTStmtReader;
protected:
AbstractConditionalOperator(StmtClass SC, QualType T, ExprValueKind VK,
ExprObjectKind OK, SourceLocation qloc,
SourceLocation cloc)
: Expr(SC, T, VK, OK), QuestionLoc(qloc), ColonLoc(cloc) {}
AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty) { }
public:
/// getCond - Return the expression representing the condition for
/// the ?: operator.
Expr *getCond() const;
/// getTrueExpr - Return the subexpression representing the value of
/// the expression if the condition evaluates to true.
Expr *getTrueExpr() const;
/// getFalseExpr - Return the subexpression representing the value of
/// the expression if the condition evaluates to false. This is
/// the same as getRHS.
Expr *getFalseExpr() const;
SourceLocation getQuestionLoc() const { return QuestionLoc; }
SourceLocation getColonLoc() const { return ColonLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass ||
T->getStmtClass() == BinaryConditionalOperatorClass;
}
};
/// ConditionalOperator - The ?: ternary operator. The GNU "missing
/// middle" extension is a BinaryConditionalOperator.
class ConditionalOperator : public AbstractConditionalOperator {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
friend class ASTStmtReader;
public:
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
SourceLocation CLoc, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK, QLoc,
CLoc) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
setDependence(computeDependence(this));
}
/// Build an empty conditional operator.
explicit ConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
/// getCond - Return the expression representing the condition for
/// the ?: operator.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
/// getTrueExpr - Return the subexpression representing the value of
/// the expression if the condition evaluates to true.
Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
/// getFalseExpr - Return the subexpression representing the value of
/// the expression if the condition evaluates to false. This is
/// the same as getRHS.
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCond()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getRHS()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// BinaryConditionalOperator - The GNU extension to the conditional
/// operator which allows the middle operand to be omitted.
///
/// This is a different expression kind on the assumption that almost
/// every client ends up needing to know that these are different.
class BinaryConditionalOperator : public AbstractConditionalOperator {
enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
/// - the common condition/left-hand-side expression, which will be
/// evaluated as the opaque value
/// - the condition, expressed in terms of the opaque value
/// - the left-hand-side, expressed in terms of the opaque value
/// - the right-hand-side
Stmt *SubExprs[NUM_SUBEXPRS];
OpaqueValueExpr *OpaqueValue;
friend class ASTStmtReader;
public:
BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
Expr *cond, Expr *lhs, Expr *rhs,
SourceLocation qloc, SourceLocation cloc,
QualType t, ExprValueKind VK, ExprObjectKind OK)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
qloc, cloc),
OpaqueValue(opaqueValue) {
SubExprs[COMMON] = common;
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
setDependence(computeDependence(this));
}
/// Build an empty conditional operator.
explicit BinaryConditionalOperator(EmptyShell Empty)
: AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
/// getCommon - Return the common expression, written to the
/// left of the condition. The opaque value will be bound to the
/// result of this expression.
Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
/// getOpaqueValue - Return the opaque value placeholder.
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
/// getCond - Return the condition expression; this is defined
/// in terms of the opaque value.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
/// getTrueExpr - Return the subexpression which will be
/// evaluated if the condition evaluates to true; this is defined
/// in terms of the opaque value.
Expr *getTrueExpr() const {
return cast<Expr>(SubExprs[LHS]);
}
/// getFalseExpr - Return the subexpression which will be
/// evaluated if the condition evaluates to false; this is
/// defined in terms of the opaque value.
Expr *getFalseExpr() const {
return cast<Expr>(SubExprs[RHS]);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommon()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getFalseExpr()->getEndLoc();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == BinaryConditionalOperatorClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
}
};
inline Expr *AbstractConditionalOperator::getCond() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getCond();
return cast<BinaryConditionalOperator>(this)->getCond();
}
inline Expr *AbstractConditionalOperator::getTrueExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getTrueExpr();
return cast<BinaryConditionalOperator>(this)->getTrueExpr();
}
inline Expr *AbstractConditionalOperator::getFalseExpr() const {
if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
return co->getFalseExpr();
return cast<BinaryConditionalOperator>(this)->getFalseExpr();
}
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelDecl *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
QualType t)
: Expr(AddrLabelExprClass, t, VK_PRValue, OK_Ordinary), AmpAmpLoc(AALoc),
LabelLoc(LLoc), Label(L) {
setDependence(ExprDependence::None);
}
/// Build an empty address of a label expression.
explicit AddrLabelExpr(EmptyShell Empty)
: Expr(AddrLabelExprClass, Empty) { }
SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return AmpAmpLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return LabelLoc; }
LabelDecl *getLabel() const { return Label; }
void setLabel(LabelDecl *L) { Label = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
///
/// A StmtExpr is always an r-value; values "returned" out of a
/// StmtExpr will be copied.
class StmtExpr : public Expr {
Stmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
StmtExpr(CompoundStmt *SubStmt, QualType T, SourceLocation LParenLoc,
SourceLocation RParenLoc, unsigned TemplateDepth)
: Expr(StmtExprClass, T, VK_PRValue, OK_Ordinary), SubStmt(SubStmt),
LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this, TemplateDepth));
// FIXME: A templated statement expression should have an associated
// DeclContext so that nested declarations always have a dependent context.
StmtExprBits.TemplateDepth = TemplateDepth;
}
/// Build an empty statement expression.
explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
void setSubStmt(CompoundStmt *S) { SubStmt = S; }
SourceLocation getBeginLoc() const LLVM_READONLY { return LParenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
unsigned getTemplateDepth() const { return StmtExprBits.TemplateDepth; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
// Iterators
child_range children() { return child_range(&SubStmt, &SubStmt+1); }
const_child_range children() const {
return const_child_range(&SubStmt, &SubStmt + 1);
}
};
/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
// SubExprs - the list of values passed to the __builtin_shufflevector
// function. The first two are vectors, and the rest are constant
// indices. The number of values in this list is always
// 2+the number of indices in the vector type.
Stmt **SubExprs;
unsigned NumExprs;
public:
ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
SourceLocation BLoc, SourceLocation RP);
/// Build an empty vector-shuffle expression.
explicit ShuffleVectorExpr(EmptyShell Empty)
: Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ShuffleVectorExprClass;
}
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
/// constant expression, the actual arguments passed in, and the function
/// pointers.
unsigned getNumSubExprs() const { return NumExprs; }
/// Retrieve the array of expressions.
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
/// getExpr - Return the Expr at the specified index.
Expr *getExpr(unsigned Index) {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
const Expr *getExpr(unsigned Index) const {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
}
};
/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
/// This AST node provides support for converting a vector type to another
/// vector type of the same arity.
class ConvertVectorExpr : public Expr {
private:
Stmt *SrcExpr;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
public:
ConvertVectorExpr(Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType,
ExprValueKind VK, ExprObjectKind OK,
SourceLocation BuiltinLoc, SourceLocation RParenLoc)
: Expr(ConvertVectorExprClass, DstType, VK, OK), SrcExpr(SrcExpr),
TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this));
}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getTypeSourceInfo - Return the destination type.
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
void setTypeSourceInfo(TypeSourceInfo *ti) {
TInfo = ti;
}
/// getBuiltinLoc - Return the location of the __builtin_convertvector token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConvertVectorExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
/// visible way: the type is the same as that of the chosen subexpression,
/// and all predicates (whether it's an l-value, whether it's an integer
/// constant expression, etc.) return the same result as for the chosen
/// sub-expression.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
bool CondIsTrue;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
ExprValueKind VK, ExprObjectKind OK, SourceLocation RP,
bool condIsTrue)
: Expr(ChooseExprClass, t, VK, OK), BuiltinLoc(BLoc), RParenLoc(RP),
CondIsTrue(condIsTrue) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
setDependence(computeDependence(this));
}
/// Build an empty __builtin_choose_expr.
explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
/// isConditionTrue - Return whether the condition is true (i.e. not
/// equal to zero).
bool isConditionTrue() const {
assert(!isConditionDependent() &&
"Dependent condition isn't true or false");
return CondIsTrue;
}
void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
bool isConditionDependent() const {
return getCond()->isTypeDependent() || getCond()->isValueDependent();
}
/// getChosenSubExpr - Return the subexpression chosen according to the
/// condition.
Expr *getChosenSubExpr() const {
return isConditionTrue() ? getLHS() : getRHS();
}
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
// Iterators
child_range children() {
return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
}
const_child_range children() const {
return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
}
};
/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
/// TokenLoc - The location of the __null keyword.
SourceLocation TokenLoc;
public:
GNUNullExpr(QualType Ty, SourceLocation Loc)
: Expr(GNUNullExprClass, Ty, VK_PRValue, OK_Ordinary), TokenLoc(Loc) {
setDependence(ExprDependence::None);
}
/// Build an empty GNU __null expression.
explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
/// getTokenLocation - The location of the __null token.
SourceLocation getTokenLocation() const { return TokenLoc; }
void setTokenLocation(SourceLocation L) { TokenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return TokenLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return TokenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GNUNullExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Represents a call to the builtin function \c __builtin_va_arg.
class VAArgExpr : public Expr {
Stmt *Val;
llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
SourceLocation BuiltinLoc, RParenLoc;
public:
VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
SourceLocation RPLoc, QualType t, bool IsMS)
: Expr(VAArgExprClass, t, VK_PRValue, OK_Ordinary), Val(e),
TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {
setDependence(computeDependence(this));
}
/// Create an empty __builtin_va_arg expression.
explicit VAArgExpr(EmptyShell Empty)
: Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// Returns whether this is really a Win64 ABI va_arg expression.
bool isMicrosoftABI() const { return TInfo.getInt(); }
void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == VAArgExprClass;
}
// Iterators
child_range children() { return child_range(&Val, &Val+1); }
const_child_range children() const {
return const_child_range(&Val, &Val + 1);
}
};
enum class SourceLocIdentKind {
Function,
FuncSig,
File,
FileName,
Line,
Column,
SourceLocStruct
};
/// Represents a function call to one of __builtin_LINE(), __builtin_COLUMN(),
/// __builtin_FUNCTION(), __builtin_FUNCSIG(), __builtin_FILE(),
/// __builtin_FILE_NAME() or __builtin_source_location().
class SourceLocExpr final : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
DeclContext *ParentContext;
public:
SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Type,
QualType ResultTy, SourceLocation BLoc,
SourceLocation RParenLoc, DeclContext *Context);
/// Build an empty call expression.
explicit SourceLocExpr(EmptyShell Empty) : Expr(SourceLocExprClass, Empty) {}
/// Return the result of evaluating this SourceLocExpr in the specified
/// (and possibly null) default argument or initialization context.
APValue EvaluateInContext(const ASTContext &Ctx,
const Expr *DefaultExpr) const;
/// Return a string representing the name of the specific builtin function.
StringRef getBuiltinStr() const;
SourceLocIdentKind getIdentKind() const {
return static_cast<SourceLocIdentKind>(SourceLocExprBits.Kind);
}
bool isIntType() const {
switch (getIdentKind()) {
case SourceLocIdentKind::File:
case SourceLocIdentKind::FileName:
case SourceLocIdentKind::Function:
case SourceLocIdentKind::FuncSig:
case SourceLocIdentKind::SourceLocStruct:
return false;
case SourceLocIdentKind::Line:
case SourceLocIdentKind::Column:
return true;
}
llvm_unreachable("unknown source location expression kind");
}
/// If the SourceLocExpr has been resolved return the subexpression
/// representing the resolved value. Otherwise return null.
const DeclContext *getParentContext() const { return ParentContext; }
DeclContext *getParentContext() { return ParentContext; }
SourceLocation getLocation() const { return BuiltinLoc; }
SourceLocation getBeginLoc() const { return BuiltinLoc; }
SourceLocation getEndLoc() const { return RParenLoc; }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(child_iterator(), child_iterator());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SourceLocExprClass;
}
static bool MayBeDependent(SourceLocIdentKind Kind) {
switch (Kind) {
case SourceLocIdentKind::Function:
case SourceLocIdentKind::FuncSig:
case SourceLocIdentKind::SourceLocStruct:
return true;
default:
return false;
}
}
private:
friend class ASTStmtReader;
};
/// Stores data related to a single #embed directive.
struct EmbedDataStorage {
StringLiteral *BinaryData;
size_t getDataElementCount() const { return BinaryData->getByteLength(); }
};
/// Represents a reference to #emded data. By default, this references the whole
/// range. Otherwise it represents a subrange of data imported by #embed
/// directive. Needed to handle nested initializer lists with #embed directives.
/// Example:
/// struct S {
/// int x, y;
/// };
///
/// struct T {
/// int x[2];
/// struct S s
/// };
///
/// struct T t[] = {
/// #embed "data" // data contains 10 elements;
/// };
///
/// The resulting semantic form of initializer list will contain (EE stands
/// for EmbedExpr):
/// { {EE(first two data elements), {EE(3rd element), EE(4th element) }},
/// { {EE(5th and 6th element), {EE(7th element), EE(8th element) }},
/// { {EE(9th and 10th element), { zeroinitializer }}}
///
/// EmbedExpr inside of a semantic initializer list and referencing more than
/// one element can only appear for arrays of scalars.
class EmbedExpr final : public Expr {
SourceLocation EmbedKeywordLoc;
IntegerLiteral *FakeChildNode = nullptr;
const ASTContext *Ctx = nullptr;
EmbedDataStorage *Data;
unsigned Begin = 0;
unsigned NumOfElements;
public:
EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, EmbedDataStorage *Data,
unsigned Begin, unsigned NumOfElements);
explicit EmbedExpr(EmptyShell Empty) : Expr(SourceLocExprClass, Empty) {}
SourceLocation getLocation() const { return EmbedKeywordLoc; }
SourceLocation getBeginLoc() const { return EmbedKeywordLoc; }
SourceLocation getEndLoc() const { return EmbedKeywordLoc; }
StringLiteral *getDataStringLiteral() const { return Data->BinaryData; }
EmbedDataStorage *getData() const { return Data; }
unsigned getStartingElementPos() const { return Begin; }
size_t getDataElementCount() const { return NumOfElements; }
// Allows accessing every byte of EmbedExpr data and iterating over it.
// An Iterator knows the EmbedExpr that it refers to, and an offset value
// within the data.
// Dereferencing an Iterator results in construction of IntegerLiteral AST
// node filled with byte of data of the corresponding EmbedExpr within offset
// that the Iterator currently has.
template <bool Const>
class ChildElementIter
: public llvm::iterator_facade_base<
ChildElementIter<Const>, std::random_access_iterator_tag,
std::conditional_t<Const, const IntegerLiteral *,
IntegerLiteral *>> {
friend class EmbedExpr;
EmbedExpr *EExpr = nullptr;
unsigned long long CurOffset = ULLONG_MAX;
using BaseTy = typename ChildElementIter::iterator_facade_base;
ChildElementIter(EmbedExpr *E) : EExpr(E) {
if (E)
CurOffset = E->getStartingElementPos();
}
public:
ChildElementIter() : CurOffset(ULLONG_MAX) {}
typename BaseTy::reference operator*() const {
assert(EExpr && CurOffset != ULLONG_MAX &&
"trying to dereference an invalid iterator");
IntegerLiteral *N = EExpr->FakeChildNode;
StringRef DataRef = EExpr->Data->BinaryData->getBytes();
N->setValue(*EExpr->Ctx,
llvm::APInt(N->getValue().getBitWidth(), DataRef[CurOffset],
N->getType()->isSignedIntegerType()));
// We want to return a reference to the fake child node in the
// EmbedExpr, not the local variable N.
return const_cast<typename BaseTy::reference>(EExpr->FakeChildNode);
}
typename BaseTy::pointer operator->() const { return **this; }
using BaseTy::operator++;
ChildElementIter &operator++() {
assert(EExpr && "trying to increment an invalid iterator");
assert(CurOffset != ULLONG_MAX &&
"Already at the end of what we can iterate over");
if (++CurOffset >=
EExpr->getDataElementCount() + EExpr->getStartingElementPos()) {
CurOffset = ULLONG_MAX;
EExpr = nullptr;
}
return *this;
}
bool operator==(ChildElementIter Other) const {
return (EExpr == Other.EExpr && CurOffset == Other.CurOffset);
}
}; // class ChildElementIter
public:
using fake_child_range = llvm::iterator_range<ChildElementIter<false>>;
using const_fake_child_range = llvm::iterator_range<ChildElementIter<true>>;
fake_child_range underlying_data_elements() {
return fake_child_range(ChildElementIter<false>(this),
ChildElementIter<false>());
}
const_fake_child_range underlying_data_elements() const {
return const_fake_child_range(
ChildElementIter<true>(const_cast<EmbedExpr *>(this)),
ChildElementIter<true>());
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == EmbedExprClass;
}
ChildElementIter<false> begin() { return ChildElementIter<false>(this); }
ChildElementIter<true> begin() const {
return ChildElementIter<true>(const_cast<EmbedExpr *>(this));
}
template <typename Call, typename... Targs>
bool doForEachDataElement(Call &&C, unsigned &StartingIndexInArray,
Targs &&...Fargs) const {
for (auto It : underlying_data_elements()) {
if (!std::invoke(std::forward<Call>(C), const_cast<IntegerLiteral *>(It),
StartingIndexInArray, std::forward<Targs>(Fargs)...))
return false;
StartingIndexInArray++;
}
return true;
}
private:
friend class ASTStmtReader;
};
/// Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// After semantic analysis has completed, given an initializer list,
/// method isSemanticForm() returns true if and only if this is the
/// semantic form of the initializer list (note: the same AST node
/// may at the same time be the syntactic form).
/// Given the semantic form of the initializer list, one can retrieve
/// the syntactic form of that initializer list (when different)
/// using method getSyntacticForm(); the method returns null if applied
/// to a initializer list which is already in syntactic form.
/// Similarly, given the syntactic form (i.e., an initializer list such
/// that isSemanticForm() returns false), one can retrieve the semantic
/// form using method getSemanticForm().
/// Since many initializer lists have the same syntactic and semantic forms,
/// getSyntacticForm() may return NULL, indicating that the current
/// semantic initializer list also serves as its syntactic form.
class InitListExpr : public Expr {
// FIXME: Eliminate this vector in favor of ASTContext allocation
typedef ASTVector<Stmt *> InitExprsTy;
InitExprsTy InitExprs;
SourceLocation LBraceLoc, RBraceLoc;
/// The alternative form of the initializer list (if it exists).
/// The int part of the pair stores whether this initializer list is
/// in semantic form. If not null, the pointer points to:
/// - the syntactic form, if this is in semantic form;
/// - the semantic form, if this is in syntactic form.
llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
/// Either:
/// If this initializer list initializes an array with more elements than
/// there are initializers in the list, specifies an expression to be used
/// for value initialization of the rest of the elements.
/// Or
/// If this initializer list initializes a union, specifies which
/// field within the union will be initialized.
llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
public:
InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
/// Build an empty initializer list.
explicit InitListExpr(EmptyShell Empty)
: Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
unsigned getNumInits() const { return InitExprs.size(); }
/// Retrieve the set of initializers.
Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
/// Retrieve the set of initializers.
Expr * const *getInits() const {
return reinterpret_cast<Expr * const *>(InitExprs.data());
}
ArrayRef<Expr *> inits() { return llvm::ArrayRef(getInits(), getNumInits()); }
ArrayRef<Expr *> inits() const {
return llvm::ArrayRef(getInits(), getNumInits());
}
const Expr *getInit(unsigned Init) const {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
Expr *getInit(unsigned Init) {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < getNumInits() && "Initializer access out of range!");
InitExprs[Init] = expr;
if (expr)
setDependence(getDependence() | expr->getDependence());
}
/// Mark the semantic form of the InitListExpr as error when the semantic
/// analysis fails.
void markError() {
assert(isSemanticForm());
setDependence(getDependence() | ExprDependence::ErrorDependent);
}
/// Reserve space for some number of initializers.
void reserveInits(const ASTContext &C, unsigned NumInits);
/// Specify the number of initializers
///
/// If there are more than @p NumInits initializers, the remaining
/// initializers will be destroyed. If there are fewer than @p
/// NumInits initializers, NULL expressions will be added for the
/// unknown initializers.
void resizeInits(const ASTContext &Context, unsigned NumInits);
/// Updates the initializer at index @p Init with the new
/// expression @p expr, and returns the old expression at that
/// location.
///
/// When @p Init is out of range for this initializer list, the
/// initializer list will be extended with NULL expressions to
/// accommodate the new entry.
Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
/// If this initializer list initializes an array with more elements
/// than there are initializers in the list, specifies an expression to be
/// used for value initialization of the rest of the elements.
Expr *getArrayFiller() {
return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
}
const Expr *getArrayFiller() const {
return const_cast<InitListExpr *>(this)->getArrayFiller();
}
void setArrayFiller(Expr *filler);
/// Return true if this is an array initializer and its array "filler"
/// has been set.
bool hasArrayFiller() const { return getArrayFiller(); }
/// Determine whether this initializer list contains a designated initializer.
bool hasDesignatedInit() const {
return std::any_of(begin(), end(), [](const Stmt *S) {
return isa<DesignatedInitExpr>(S);
});
}
/// If this initializes a union, specifies which field in the
/// union to initialize.
///
/// Typically, this field is the first named field within the
/// union. However, a designated initializer can specify the
/// initialization of a different field within the union.
FieldDecl *getInitializedFieldInUnion() {
return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
}
const FieldDecl *getInitializedFieldInUnion() const {
return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
}
void setInitializedFieldInUnion(FieldDecl *FD) {
assert((FD == nullptr
|| getInitializedFieldInUnion() == nullptr
|| getInitializedFieldInUnion() == FD)
&& "Only one field of a union may be initialized at a time!");
ArrayFillerOrUnionFieldInit = FD;
}
// Explicit InitListExpr's originate from source code (and have valid source
// locations). Implicit InitListExpr's are created by the semantic analyzer.
// FIXME: This is wrong; InitListExprs created by semantic analysis have
// valid source locations too!
bool isExplicit() const {
return LBraceLoc.isValid() && RBraceLoc.isValid();
}
/// Is this an initializer for an array of characters, initialized by a string
/// literal or an @encode?
bool isStringLiteralInit() const;
/// Is this a transparent initializer list (that is, an InitListExpr that is
/// purely syntactic, and whose semantics are that of the sole contained
/// initializer)?
bool isTransparent() const;
/// Is this the zero initializer {0} in a language which considers it
/// idiomatic?
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
bool isSemanticForm() const { return AltForm.getInt(); }
InitListExpr *getSemanticForm() const {
return isSemanticForm() ? nullptr : AltForm.getPointer();
}
bool isSyntacticForm() const {
return !AltForm.getInt() || !AltForm.getPointer();
}
InitListExpr *getSyntacticForm() const {
return isSemanticForm() ? AltForm.getPointer() : nullptr;
}
void setSyntacticForm(InitListExpr *Init) {
AltForm.setPointer(Init);
AltForm.setInt(true);
Init->AltForm.setPointer(this);
Init->AltForm.setInt(false);
}
bool hadArrayRangeDesignator() const {
return InitListExprBits.HadArrayRangeDesignator != 0;
}
void sawArrayRangeDesignator(bool ARD = true) {
InitListExprBits.HadArrayRangeDesignator = ARD;
}
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
// Iterators
child_range children() {
const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
// FIXME: This does not include the array filler expression.
if (InitExprs.empty())
return const_child_range(const_child_iterator(), const_child_iterator());
return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
}
typedef InitExprsTy::iterator iterator;
typedef InitExprsTy::const_iterator const_iterator;
typedef InitExprsTy::reverse_iterator reverse_iterator;
typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
iterator begin() { return InitExprs.begin(); }
const_iterator begin() const { return InitExprs.begin(); }
iterator end() { return InitExprs.end(); }
const_iterator end() const { return InitExprs.end(); }
reverse_iterator rbegin() { return InitExprs.rbegin(); }
const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
reverse_iterator rend() { return InitExprs.rend(); }
const_reverse_iterator rend() const { return InitExprs.rend(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
/// double x;
/// double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initialization expression will be 1.0.
class DesignatedInitExpr final
: public Expr,
private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
public:
/// Forward declaration of the Designator class.
class Designator;
private:
/// The location of the '=' or ':' prior to the actual initializer
/// expression.
SourceLocation EqualOrColonLoc;
/// Whether this designated initializer used the GNU deprecated
/// syntax rather than the C99 '=' syntax.
LLVM_PREFERRED_TYPE(bool)
unsigned GNUSyntax : 1;
/// The number of designators in this initializer expression.
unsigned NumDesignators : 15;
/// The number of subexpressions of this initializer expression,
/// which contains both the initializer and any additional
/// expressions used by array and array-range designators.
unsigned NumSubExprs : 16;
/// The designators in this designated initialization
/// expression.
Designator *Designators;
DesignatedInitExpr(const ASTContext &C, QualType Ty,
llvm::ArrayRef<Designator> Designators,
SourceLocation EqualOrColonLoc, bool GNUSyntax,
ArrayRef<Expr *> IndexExprs, Expr *Init);
explicit DesignatedInitExpr(unsigned NumSubExprs)
: Expr(DesignatedInitExprClass, EmptyShell()),
NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
public:
/// Represents a single C99 designator.
///
/// @todo This class is infuriatingly similar to clang::Designator,
/// but minor differences (storing indices vs. storing pointers)
/// keep us from reusing it. Try harder, later, to rectify these
/// differences.
class Designator {
/// A field designator, e.g., ".x".
struct FieldDesignatorInfo {
/// Refers to the field that is being initialized. The low bit
/// of this field determines whether this is actually a pointer
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
/// initially constructed, a field designator will store an
/// IdentifierInfo*. After semantic analysis has resolved that
/// name, the field designator will instead store a FieldDecl*.
uintptr_t NameOrField;
/// The location of the '.' in the designated initializer.
SourceLocation DotLoc;
/// The location of the field name in the designated initializer.
SourceLocation FieldLoc;
FieldDesignatorInfo(const IdentifierInfo *II, SourceLocation DotLoc,
SourceLocation FieldLoc)
: NameOrField(reinterpret_cast<uintptr_t>(II) | 0x1), DotLoc(DotLoc),
FieldLoc(FieldLoc) {}
};
/// An array or GNU array-range designator, e.g., "[9]" or "[10...15]".
struct ArrayOrRangeDesignatorInfo {
/// Location of the first index expression within the designated
/// initializer expression's list of subexpressions.
unsigned Index;
/// The location of the '[' starting the array range designator.
SourceLocation LBracketLoc;
/// The location of the ellipsis separating the start and end
/// indices. Only valid for GNU array-range designators.
SourceLocation EllipsisLoc;
/// The location of the ']' terminating the array range designator.
SourceLocation RBracketLoc;
ArrayOrRangeDesignatorInfo(unsigned Index, SourceLocation LBracketLoc,
SourceLocation RBracketLoc)
: Index(Index), LBracketLoc(LBracketLoc), RBracketLoc(RBracketLoc) {}
ArrayOrRangeDesignatorInfo(unsigned Index,
SourceLocation LBracketLoc,
SourceLocation EllipsisLoc,
SourceLocation RBracketLoc)
: Index(Index), LBracketLoc(LBracketLoc), EllipsisLoc(EllipsisLoc),
RBracketLoc(RBracketLoc) {}
};
/// The kind of designator this describes.
enum DesignatorKind {
FieldDesignator,
ArrayDesignator,
ArrayRangeDesignator
};
DesignatorKind Kind;
union {
/// A field designator, e.g., ".x".
struct FieldDesignatorInfo FieldInfo;
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignatorInfo ArrayOrRangeInfo;
};
Designator(DesignatorKind Kind) : Kind(Kind) {}
public:
Designator() {}
bool isFieldDesignator() const { return Kind == FieldDesignator; }
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
//===------------------------------------------------------------------===//
// FieldDesignatorInfo
/// Creates a field designator.
static Designator CreateFieldDesignator(const IdentifierInfo *FieldName,
SourceLocation DotLoc,
SourceLocation FieldLoc) {
Designator D(FieldDesignator);
new (&D.FieldInfo) FieldDesignatorInfo(FieldName, DotLoc, FieldLoc);
return D;
}
const IdentifierInfo *getFieldName() const;
FieldDecl *getFieldDecl() const {
assert(isFieldDesignator() && "Only valid on a field designator");
if (FieldInfo.NameOrField & 0x01)
return nullptr;
return reinterpret_cast<FieldDecl *>(FieldInfo.NameOrField);
}
void setFieldDecl(FieldDecl *FD) {
assert(isFieldDesignator() && "Only valid on a field designator");
FieldInfo.NameOrField = reinterpret_cast<uintptr_t>(FD);
}
SourceLocation getDotLoc() const {
assert(isFieldDesignator() && "Only valid on a field designator");
return FieldInfo.DotLoc;
}
SourceLocation getFieldLoc() const {
assert(isFieldDesignator() && "Only valid on a field designator");
return FieldInfo.FieldLoc;
}
//===------------------------------------------------------------------===//
// ArrayOrRangeDesignator
/// Creates an array designator.
static Designator CreateArrayDesignator(unsigned Index,
SourceLocation LBracketLoc,
SourceLocation RBracketLoc) {
Designator D(ArrayDesignator);
new (&D.ArrayOrRangeInfo) ArrayOrRangeDesignatorInfo(Index, LBracketLoc,
RBracketLoc);
return D;
}
/// Creates a GNU array-range designator.
static Designator CreateArrayRangeDesignator(unsigned Index,
SourceLocation LBracketLoc,
SourceLocation EllipsisLoc,
SourceLocation RBracketLoc) {
Designator D(ArrayRangeDesignator);
new (&D.ArrayOrRangeInfo) ArrayOrRangeDesignatorInfo(Index, LBracketLoc,
EllipsisLoc,
RBracketLoc);
return D;
}
unsigned getArrayIndex() const {
assert((isArrayDesignator() || isArrayRangeDesignator()) &&
"Only valid on an array or array-range designator");
return ArrayOrRangeInfo.Index;
}
SourceLocation getLBracketLoc() const {
assert((isArrayDesignator() || isArrayRangeDesignator()) &&
"Only valid on an array or array-range designator");
return ArrayOrRangeInfo.LBracketLoc;
}
SourceLocation getEllipsisLoc() const {
assert(isArrayRangeDesignator() &&
"Only valid on an array-range designator");
return ArrayOrRangeInfo.EllipsisLoc;
}
SourceLocation getRBracketLoc() const {
assert((isArrayDesignator() || isArrayRangeDesignator()) &&
"Only valid on an array or array-range designator");
return ArrayOrRangeInfo.RBracketLoc;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
if (isFieldDesignator())
return getDotLoc().isInvalid() ? getFieldLoc() : getDotLoc();
return getLBracketLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return isFieldDesignator() ? getFieldLoc() : getRBracketLoc();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getBeginLoc(), getEndLoc());
}
};
static DesignatedInitExpr *Create(const ASTContext &C,
llvm::ArrayRef<Designator> Designators,
ArrayRef<Expr*> IndexExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, Expr *Init);
static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
unsigned NumIndexExprs);
/// Returns the number of designators in this initializer.
unsigned size() const { return NumDesignators; }
// Iterator access to the designators.
llvm::MutableArrayRef<Designator> designators() {
return {Designators, NumDesignators};
}
llvm::ArrayRef<Designator> designators() const {
return {Designators, NumDesignators};
}
Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
const Designator *getDesignator(unsigned Idx) const {
return &designators()[Idx];
}
void setDesignators(const ASTContext &C, const Designator *Desigs,
unsigned NumDesigs);
Expr *getArrayIndex(const Designator &D) const;
Expr *getArrayRangeStart(const Designator &D) const;
Expr *getArrayRangeEnd(const Designator &D) const;
/// Retrieve the location of the '=' that precedes the
/// initializer value itself, if present.
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
/// Whether this designated initializer should result in direct-initialization
/// of the designated subobject (eg, '{.foo{1, 2, 3}}').
bool isDirectInit() const { return EqualOrColonLoc.isInvalid(); }
/// Determines whether this designated initializer used the
/// deprecated GNU syntax for designated initializers.
bool usesGNUSyntax() const { return GNUSyntax; }
void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
/// Retrieve the initializer value.
Expr *getInit() const {
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
}
void setInit(Expr *init) {
*child_begin() = init;
}
/// Retrieve the total number of subexpressions in this
/// designated initializer expression, including the actual
/// initialized value and any expressions that occur within array
/// and array-range designators.
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr *getSubExpr(unsigned Idx) const {
assert(Idx < NumSubExprs && "Subscript out of range");
return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
}
void setSubExpr(unsigned Idx, Expr *E) {
assert(Idx < NumSubExprs && "Subscript out of range");
getTrailingObjects<Stmt *>()[Idx] = E;
}
/// Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void ExpandDesignator(const ASTContext &C, unsigned Idx,
const Designator *First, const Designator *Last);
SourceRange getDesignatorsSourceRange() const;
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitExprClass;
}
// Iterators
child_range children() {
Stmt **begin = getTrailingObjects<Stmt *>();
return child_range(begin, begin + NumSubExprs);
}
const_child_range children() const {
Stmt * const *begin = getTrailingObjects<Stmt *>();
return const_child_range(begin, begin + NumSubExprs);
}
friend TrailingObjects;
};
/// Represents a place-holder for an object not to be initialized by
/// anything.
///
/// This only makes sense when it appears as part of an updater of a
/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
/// initializes a big object, and the NoInitExpr's mark the spots within the
/// big object not to be overwritten by the updater.
///
/// \see DesignatedInitUpdateExpr
class NoInitExpr : public Expr {
public:
explicit NoInitExpr(QualType ty)
: Expr(NoInitExprClass, ty, VK_PRValue, OK_Ordinary) {
setDependence(computeDependence(this));
}
explicit NoInitExpr(EmptyShell Empty)
: Expr(NoInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == NoInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
// In cases like:
// struct Q { int a, b, c; };
// Q *getQ();
// void foo() {
// struct A { Q q; } a = { *getQ(), .q.b = 3 };
// }
//
// We will have an InitListExpr for a, with type A, and then a
// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
//
class DesignatedInitUpdateExpr : public Expr {
// BaseAndUpdaterExprs[0] is the base expression;
// BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
Stmt *BaseAndUpdaterExprs[2];
public:
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
Expr *baseExprs, SourceLocation rBraceLoc);
explicit DesignatedInitUpdateExpr(EmptyShell Empty)
: Expr(DesignatedInitUpdateExprClass, Empty) { }
SourceLocation getBeginLoc() const LLVM_READONLY;
SourceLocation getEndLoc() const LLVM_READONLY;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitUpdateExprClass;
}
Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
InitListExpr *getUpdater() const {
return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
}
void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
// Iterators
// children = the base and the updater
child_range children() {
return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
}
const_child_range children() const {
return const_child_range(&BaseAndUpdaterExprs[0],
&BaseAndUpdaterExprs[0] + 2);
}
};
/// Represents a loop initializing the elements of an array.
///
/// The need to initialize the elements of an array occurs in a number of
/// contexts:
///
/// * in the implicit copy/move constructor for a class with an array member
/// * when a lambda-expression captures an array by value
/// * when a decomposition declaration decomposes an array
///
/// There are two subexpressions: a common expression (the source array)
/// that is evaluated once up-front, and a per-element initializer that
/// runs once for each array element.
///
/// Within the per-element initializer, the common expression may be referenced
/// via an OpaqueValueExpr, and the current index may be obtained via an
/// ArrayInitIndexExpr.
class ArrayInitLoopExpr : public Expr {
Stmt *SubExprs[2];
explicit ArrayInitLoopExpr(EmptyShell Empty)
: Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
public:
explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
: Expr(ArrayInitLoopExprClass, T, VK_PRValue, OK_Ordinary),
SubExprs{CommonInit, ElementInit} {
setDependence(computeDependence(this));
}
/// Get the common subexpression shared by all initializations (the source
/// array).
OpaqueValueExpr *getCommonExpr() const {
return cast<OpaqueValueExpr>(SubExprs[0]);
}
/// Get the initializer to use for each array element.
Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
llvm::APInt getArraySize() const {
return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
->getSize();
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitLoopExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCommonExpr()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getCommonExpr()->getEndLoc();
}
child_range children() {
return child_range(SubExprs, SubExprs + 2);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + 2);
}
friend class ASTReader;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents the index of the current element of an array being
/// initialized by an ArrayInitLoopExpr. This can only appear within the
/// subexpression of an ArrayInitLoopExpr.
class ArrayInitIndexExpr : public Expr {
explicit ArrayInitIndexExpr(EmptyShell Empty)
: Expr(ArrayInitIndexExprClass, Empty) {}
public:
explicit ArrayInitIndexExpr(QualType T)
: Expr(ArrayInitIndexExprClass, T, VK_PRValue, OK_Ordinary) {
setDependence(ExprDependence::None);
}
static bool classof(const Stmt *S) {
return S->getStmtClass() == ArrayInitIndexExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
friend class ASTReader;
friend class ASTStmtReader;
};
/// Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
explicit ImplicitValueInitExpr(QualType ty)
: Expr(ImplicitValueInitExprClass, ty, VK_PRValue, OK_Ordinary) {
setDependence(computeDependence(this));
}
/// Construct an empty implicit value initialization.
explicit ImplicitValueInitExpr(EmptyShell Empty)
: Expr(ImplicitValueInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitValueInitExprClass;
}
SourceLocation getBeginLoc() const LLVM_READONLY { return SourceLocation(); }
SourceLocation getEndLoc() const LLVM_READONLY { return SourceLocation(); }
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
class ParenListExpr final
: public Expr,
private llvm::TrailingObjects<ParenListExpr, Stmt *> {
friend class ASTStmtReader;
friend TrailingObjects;
/// The location of the left and right parentheses.
SourceLocation LParenLoc, RParenLoc;
/// Build a paren list.
ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc);
/// Build an empty paren list.
ParenListExpr(EmptyShell Empty, unsigned NumExprs);
public:
/// Create a paren list.
static ParenListExpr *Create(const ASTContext &Ctx, SourceLocation LParenLoc,
ArrayRef<Expr *> Exprs,
SourceLocation RParenLoc);
/// Create an empty paren list.
static ParenListExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumExprs);
/// Return the number of expressions in this paren list.
unsigned getNumExprs() const { return ParenListExprBits.NumExprs; }
Expr *getExpr(unsigned Init) {
assert(Init < getNumExprs() && "Initializer access out of range!");
return getExprs()[Init];
}
const Expr *getExpr(unsigned Init) const {
return const_cast<ParenListExpr *>(this)->getExpr(Init);
}
Expr **getExprs() {
return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>());
}
ArrayRef<Expr *> exprs() { return llvm::ArrayRef(getExprs(), getNumExprs()); }
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const { return getLParenLoc(); }
SourceLocation getEndLoc() const { return getRParenLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenListExprClass;
}
// Iterators
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + getNumExprs());
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() + getNumExprs());
}
};
/// Represents a C11 generic selection.
///
/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
/// expression, followed by one or more generic associations. Each generic
/// association specifies a type name and an expression, or "default" and an
/// expression (in which case it is known as a default generic association).
/// The type and value of the generic selection are identical to those of its
/// result expression, which is defined as the expression in the generic
/// association with a type name that is compatible with the type of the
/// controlling expression, or the expression in the default generic association
/// if no types are compatible. For example:
///
/// @code
/// _Generic(X, double: 1, float: 2, default: 3)
/// @endcode
///
/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
/// or 3 if "hello".
///
/// As an extension, generic selections are allowed in C++, where the following
/// additional semantics apply:
///
/// Any generic selection whose controlling expression is type-dependent or
/// which names a dependent type in its association list is result-dependent,
/// which means that the choice of result expression is dependent.
/// Result-dependent generic associations are both type- and value-dependent.
///
/// We also allow an extended form in both C and C++ where the controlling
/// predicate for the selection expression is a type rather than an expression.
/// This type argument form does not perform any conversions for the
/// controlling type, which makes it suitable for use with qualified type
/// associations, which is not possible with the expression form.
class GenericSelectionExpr final
: public Expr,
private llvm::TrailingObjects<GenericSelectionExpr, Stmt *,
TypeSourceInfo *> {
friend class ASTStmtReader;
friend class ASTStmtWriter;
friend TrailingObjects;
/// The number of association expressions and the index of the result
/// expression in the case where the generic selection expression is not
/// result-dependent. The result index is equal to ResultDependentIndex
/// if and only if the generic selection expression is result-dependent.
unsigned NumAssocs : 15;
unsigned ResultIndex : 15; // NB: ResultDependentIndex is tied to this width.
LLVM_PREFERRED_TYPE(bool)
unsigned IsExprPredicate : 1;
enum : unsigned {
ResultDependentIndex = 0x7FFF
};
unsigned getIndexOfControllingExpression() const {
// If controlled by an expression, the first offset into the Stmt *
// trailing array is the controlling expression, the associated expressions
// follow this.
assert(isExprPredicate() && "Asking for the controlling expression of a "
"selection expr predicated by a type");
return 0;
}
unsigned getIndexOfControllingType() const {
// If controlled by a type, the first offset into the TypeSourceInfo *
// trailing array is the controlling type, the associated types follow this.
assert(isTypePredicate() && "Asking for the controlling type of a "
"selection expr predicated by an expression");
return 0;
}
unsigned getIndexOfStartOfAssociatedExprs() const {
// If the predicate is a type, then the associated expressions are the only
// Stmt * in the trailing array, otherwise we need to offset past the
// predicate expression.
return (int)isExprPredicate();
}
unsigned getIndexOfStartOfAssociatedTypes() const {
// If the predicate is a type, then the associated types follow it in the
// trailing array. Otherwise, the associated types are the only
// TypeSourceInfo * in the trailing array.
return (int)isTypePredicate();
}
/// The location of the "default" and of the right parenthesis.
SourceLocation DefaultLoc, RParenLoc;
// GenericSelectionExpr is followed by several trailing objects.
// They are (in order):
//
// * A single Stmt * for the controlling expression or a TypeSourceInfo * for
// the controlling type, depending on the result of isTypePredicate() or
// isExprPredicate().
// * An array of getNumAssocs() Stmt * for the association expressions.
// * An array of getNumAssocs() TypeSourceInfo *, one for each of the
// association expressions.
unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
// Add one to account for the controlling expression; the remainder
// are the associated expressions.
return getNumAssocs() + (int)isExprPredicate();
}
unsigned numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
// Add one to account for the controlling type predicate, the remainder
// are the associated types.
return getNumAssocs() + (int)isTypePredicate();
}
template <bool Const> class AssociationIteratorTy;
/// Bundle together an association expression and its TypeSourceInfo.
/// The Const template parameter is for the const and non-const versions
/// of AssociationTy.
template <bool Const> class AssociationTy {
friend class GenericSelectionExpr;
template <bool OtherConst> friend class AssociationIteratorTy;
using ExprPtrTy = std::conditional_t<Const, const Expr *, Expr *>;
using TSIPtrTy =
std::conditional_t<Const, const TypeSourceInfo *, TypeSourceInfo *>;
ExprPtrTy E;
TSIPtrTy TSI;
bool Selected;
AssociationTy(ExprPtrTy E, TSIPtrTy TSI, bool Selected)
: E(E), TSI(TSI), Selected(Selected) {}
public:
ExprPtrTy getAssociationExpr() const { return E; }
TSIPtrTy getTypeSourceInfo() const { return TSI; }
QualType getType() const { return TSI ? TSI->getType() : QualType(); }
bool isSelected() const { return Selected; }
AssociationTy *operator->() { return this; }
const AssociationTy *operator->() const { return this; }
}; // class AssociationTy
/// Iterator over const and non-const Association objects. The Association
/// objects are created on the fly when the iterator is dereferenced.
/// This abstract over how exactly the association expressions and the
/// corresponding TypeSourceInfo * are stored.
template <bool Const>
class AssociationIteratorTy
: public llvm::iterator_facade_base<
AssociationIteratorTy<Const>, std::input_iterator_tag,
AssociationTy<Const>, std::ptrdiff_t, AssociationTy<Const>,
AssociationTy<Const>> {
friend class GenericSelectionExpr;
// FIXME: This iterator could conceptually be a random access iterator, and
// it would be nice if we could strengthen the iterator category someday.
// However this iterator does not satisfy two requirements of forward
// iterators:
// a) reference = T& or reference = const T&
// b) If It1 and It2 are both dereferenceable, then It1 == It2 if and only
// if *It1 and *It2 are bound to the same objects.
// An alternative design approach was discussed during review;
// store an Association object inside the iterator, and return a reference
// to it when dereferenced. This idea was discarded because of nasty
// lifetime issues:
// AssociationIterator It = ...;
// const Association &Assoc = *It++; // Oops, Assoc is dangling.
using BaseTy = typename AssociationIteratorTy::iterator_facade_base;
using StmtPtrPtrTy =
std::conditional_t<Const, const Stmt *const *, Stmt **>;
using TSIPtrPtrTy = std::conditional_t<Const, const TypeSourceInfo *const *,
TypeSourceInfo **>;
StmtPtrPtrTy E = nullptr;
TSIPtrPtrTy TSI; // Kept in sync with E.
unsigned Offset = 0, SelectedOffset = 0;
AssociationIteratorTy(StmtPtrPtrTy E, TSIPtrPtrTy TSI, unsigned Offset,
unsigned SelectedOffset)
: E(E), TSI(TSI), Offset(Offset), SelectedOffset(SelectedOffset) {}
public:
AssociationIteratorTy() : E(nullptr), TSI(nullptr) {}
typename BaseTy::reference operator*() const {
return AssociationTy<Const>(cast<Expr>(*E), *TSI,
Offset == SelectedOffset);
}
typename BaseTy::pointer operator->() const { return **this; }
using BaseTy::operator++;
AssociationIteratorTy &operator++() {
++E;
++TSI;
++Offset;
return *this;
}
bool operator==(AssociationIteratorTy Other) const { return E == Other.E; }
}; // class AssociationIterator
/// Build a non-result-dependent generic selection expression accepting an
/// expression predicate.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Build a result-dependent generic selection expression accepting an
/// expression predicate.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack);
/// Build a non-result-dependent generic selection expression accepting a
/// type predicate.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
TypeSourceInfo *ControllingType,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Build a result-dependent generic selection expression accepting a type
/// predicate.
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc,
TypeSourceInfo *ControllingType,
ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack);
/// Build an empty generic selection expression for deserialization.
explicit GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs);
public:
/// Create a non-result-dependent generic selection expression accepting an
/// expression predicate.
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Create a result-dependent generic selection expression accepting an
/// expression predicate.
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
Expr *ControllingExpr, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack);
/// Create a non-result-dependent generic selection expression accepting a
/// type predicate.
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
unsigned ResultIndex);
/// Create a result-dependent generic selection expression accepting a type
/// predicate
static GenericSelectionExpr *
Create(const ASTContext &Context, SourceLocation GenericLoc,
TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack);
/// Create an empty generic selection expression for deserialization.
static GenericSelectionExpr *CreateEmpty(const ASTContext &Context,
unsigned NumAssocs);
using Association = AssociationTy<false>;
using ConstAssociation = AssociationTy<true>;
using AssociationIterator = AssociationIteratorTy<false>;
using ConstAssociationIterator = AssociationIteratorTy<true>;
using association_range = llvm::iterator_range<AssociationIterator>;
using const_association_range =
llvm::iterator_range<ConstAssociationIterator>;
/// The number of association expressions.
unsigned getNumAssocs() const { return NumAssocs; }
/// The zero-based index of the result expression's generic association in
/// the generic selection's association list. Defined only if the
/// generic selection is not result-dependent.
unsigned getResultIndex() const {
assert(!isResultDependent() &&
"Generic selection is result-dependent but getResultIndex called!");
return ResultIndex;
}
/// Whether this generic selection is result-dependent.
bool isResultDependent() const { return ResultIndex == ResultDependentIndex; }
/// Whether this generic selection uses an expression as its controlling
/// argument.
bool isExprPredicate() const { return IsExprPredicate; }
/// Whether this generic selection uses a type as its controlling argument.
bool isTypePredicate() const { return !IsExprPredicate; }
/// Return the controlling expression of this generic selection expression.
/// Only valid to call if the selection expression used an expression as its
/// controlling argument.
Expr *getControllingExpr() {
return cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()]);
}
const Expr *getControllingExpr() const {
return cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()]);
}
/// Return the controlling type of this generic selection expression. Only
/// valid to call if the selection expression used a type as its controlling
/// argument.
TypeSourceInfo *getControllingType() {
return getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()];
}
const TypeSourceInfo* getControllingType() const {
return getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()];
}
/// Return the result expression of this controlling expression. Defined if
/// and only if the generic selection expression is not result-dependent.
Expr *getResultExpr() {
return cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfStartOfAssociatedExprs() +
getResultIndex()]);
}
const Expr *getResultExpr() const {
return cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfStartOfAssociatedExprs() +
getResultIndex()]);
}
ArrayRef<Expr *> getAssocExprs() const {
return {reinterpret_cast<Expr *const *>(getTrailingObjects<Stmt *>() +
getIndexOfStartOfAssociatedExprs()),
NumAssocs};
}
ArrayRef<TypeSourceInfo *> getAssocTypeSourceInfos() const {
return {getTrailingObjects<TypeSourceInfo *>() +
getIndexOfStartOfAssociatedTypes(),
NumAssocs};
}
/// Return the Ith association expression with its TypeSourceInfo,
/// bundled together in GenericSelectionExpr::(Const)Association.
Association getAssociation(unsigned I) {
assert(I < getNumAssocs() &&
"Out-of-range index in GenericSelectionExpr::getAssociation!");
return Association(
cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfStartOfAssociatedExprs() +
I]),
getTrailingObjects<
TypeSourceInfo *>()[getIndexOfStartOfAssociatedTypes() + I],
!isResultDependent() && (getResultIndex() == I));
}
ConstAssociation getAssociation(unsigned I) const {
assert(I < getNumAssocs() &&
"Out-of-range index in GenericSelectionExpr::getAssociation!");
return ConstAssociation(
cast<Expr>(
getTrailingObjects<Stmt *>()[getIndexOfStartOfAssociatedExprs() +
I]),
getTrailingObjects<
TypeSourceInfo *>()[getIndexOfStartOfAssociatedTypes() + I],
!isResultDependent() && (getResultIndex() == I));
}
association_range associations() {
AssociationIterator Begin(getTrailingObjects<Stmt *>() +
getIndexOfStartOfAssociatedExprs(),
getTrailingObjects<TypeSourceInfo *>() +
getIndexOfStartOfAssociatedTypes(),
/*Offset=*/0, ResultIndex);
AssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
/*Offset=*/NumAssocs, ResultIndex);
return llvm::make_range(Begin, End);
}
const_association_range associations() const {
ConstAssociationIterator Begin(getTrailingObjects<Stmt *>() +
getIndexOfStartOfAssociatedExprs(),
getTrailingObjects<TypeSourceInfo *>() +
getIndexOfStartOfAssociatedTypes(),
/*Offset=*/0, ResultIndex);
ConstAssociationIterator End(Begin.E + NumAssocs, Begin.TSI + NumAssocs,
/*Offset=*/NumAssocs, ResultIndex);
return llvm::make_range(Begin, End);
}
SourceLocation getGenericLoc() const {
return GenericSelectionExprBits.GenericLoc;
}
SourceLocation getDefaultLoc() const { return DefaultLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const { return getGenericLoc(); }
SourceLocation getEndLoc() const { return getRParenLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == GenericSelectionExprClass;
}
child_range children() {
return child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() +
numTrailingObjects(OverloadToken<Stmt *>()));
}
const_child_range children() const {
return const_child_range(getTrailingObjects<Stmt *>(),
getTrailingObjects<Stmt *>() +
numTrailingObjects(OverloadToken<Stmt *>()));
}
};
//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//
/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
public:
ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
IdentifierInfo &accessor, SourceLocation loc)
: Expr(ExtVectorElementExprClass, ty, VK,
(VK == VK_PRValue ? OK_Ordinary : OK_VectorComponent)),
Base(base), Accessor(&accessor), AccessorLoc(loc) {
setDependence(computeDependence(this));
}
/// Build an empty vector element expression.
explicit ExtVectorElementExpr(EmptyShell Empty)
: Expr(ExtVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into an llvm
/// aggregate Constant of ConstantInt(s).
void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return AccessorLoc; }
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtVectorElementExprClass;
}
// Iterators
child_range children() { return child_range(&Base, &Base+1); }
const_child_range children() const {
return const_child_range(&Base, &Base + 1);
}
};
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
BlockDecl *TheBlock;
public:
BlockExpr(BlockDecl *BD, QualType ty)
: Expr(BlockExprClass, ty, VK_PRValue, OK_Ordinary), TheBlock(BD) {
setDependence(computeDependence(this));
}
/// Build an empty block expression.
explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
const BlockDecl *getBlockDecl() const { return TheBlock; }
BlockDecl *getBlockDecl() { return TheBlock; }
void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
// Convenience functions for probing the underlying BlockDecl.
SourceLocation getCaretLocation() const;
const Stmt *getBody() const;
Stmt *getBody();
SourceLocation getBeginLoc() const LLVM_READONLY {
return getCaretLocation();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getBody()->getEndLoc();
}
/// getFunctionType - Return the underlying function type for this block.
const FunctionProtoType *getFunctionType() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockExprClass;
}
// Iterators
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
};
/// Copy initialization expr of a __block variable and a boolean flag that
/// indicates whether the expression can throw.
struct BlockVarCopyInit {
BlockVarCopyInit() = default;
BlockVarCopyInit(Expr *CopyExpr, bool CanThrow)
: ExprAndFlag(CopyExpr, CanThrow) {}
void setExprAndFlag(Expr *CopyExpr, bool CanThrow) {
ExprAndFlag.setPointerAndInt(CopyExpr, CanThrow);
}
Expr *getCopyExpr() const { return ExprAndFlag.getPointer(); }
bool canThrow() const { return ExprAndFlag.getInt(); }
llvm::PointerIntPair<Expr *, 1, bool> ExprAndFlag;
};
/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
/// This AST node provides support for reinterpreting a type to another
/// type of the same size.
class AsTypeExpr : public Expr {
private:
Stmt *SrcExpr;
SourceLocation BuiltinLoc, RParenLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
public:
AsTypeExpr(Expr *SrcExpr, QualType DstType, ExprValueKind VK,
ExprObjectKind OK, SourceLocation BuiltinLoc,
SourceLocation RParenLoc)
: Expr(AsTypeExprClass, DstType, VK, OK), SrcExpr(SrcExpr),
BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {
setDependence(computeDependence(this));
}
/// getSrcExpr - Return the Expr to be converted.
Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
/// getBuiltinLoc - Return the location of the __builtin_astype token.
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
/// getRParenLoc - Return the location of final right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AsTypeExprClass;
}
// Iterators
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
const_child_range children() const {
return const_child_range(&SrcExpr, &SrcExpr + 1);
}
};
/// PseudoObjectExpr - An expression which accesses a pseudo-object
/// l-value. A pseudo-object is an abstract object, accesses to which
/// are translated to calls. The pseudo-object expression has a
/// syntactic form, which shows how the expression was actually
/// written in the source code, and a semantic form, which is a series
/// of expressions to be executed in order which detail how the
/// operation is actually evaluated. Optionally, one of the semantic
/// forms may also provide a result value for the expression.
///
/// If any of the semantic-form expressions is an OpaqueValueExpr,
/// that OVE is required to have a source expression, and it is bound
/// to the result of that source expression. Such OVEs may appear
/// only in subsequent semantic-form expressions and as
/// sub-expressions of the syntactic form.
///
/// PseudoObjectExpr should be used only when an operation can be
/// usefully described in terms of fairly simple rewrite rules on
/// objects and functions that are meant to be used by end-developers.
/// For example, under the Itanium ABI, dynamic casts are implemented
/// as a call to a runtime function called __dynamic_cast; using this
/// class to describe that would be inappropriate because that call is
/// not really part of the user-visible semantics, and instead the
/// cast is properly reflected in the AST and IR-generation has been
/// taught to generate the call as necessary. In contrast, an
/// Objective-C property access is semantically defined to be
/// equivalent to a particular message send, and this is very much
/// part of the user model. The name of this class encourages this
/// modelling design.
class PseudoObjectExpr final
: public Expr,
private llvm::TrailingObjects<PseudoObjectExpr, Expr *> {
// PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
// Always at least two, because the first sub-expression is the
// syntactic form.
// PseudoObjectExprBits.ResultIndex - The index of the
// sub-expression holding the result. 0 means the result is void,
// which is unambiguous because it's the index of the syntactic
// form. Note that this is therefore 1 higher than the value passed
// in to Create, which is an index within the semantic forms.
// Note also that ASTStmtWriter assumes this encoding.
Expr **getSubExprsBuffer() { return getTrailingObjects<Expr *>(); }
const Expr * const *getSubExprsBuffer() const {
return getTrailingObjects<Expr *>();
}
PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntactic, ArrayRef<Expr*> semantic,
unsigned resultIndex);
PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
unsigned getNumSubExprs() const {
return PseudoObjectExprBits.NumSubExprs;
}
public:
/// NoResult - A value for the result index indicating that there is
/// no semantic result.
enum : unsigned { NoResult = ~0U };
static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
ArrayRef<Expr*> semantic,
unsigned resultIndex);
static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
unsigned numSemanticExprs);
/// Return the syntactic form of this expression, i.e. the
/// expression it actually looks like. Likely to be expressed in
/// terms of OpaqueValueExprs bound in the semantic form.
Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
/// Return the index of the result-bearing expression into the semantics
/// expressions, or PseudoObjectExpr::NoResult if there is none.
unsigned getResultExprIndex() const {
if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
return PseudoObjectExprBits.ResultIndex - 1;
}
/// Return the result-bearing expression, or null if there is none.
Expr *getResultExpr() {
if (PseudoObjectExprBits.ResultIndex == 0)
return nullptr;
return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
}
const Expr *getResultExpr() const {
return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
}
unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
typedef Expr * const *semantics_iterator;
typedef const Expr * const *const_semantics_iterator;
semantics_iterator semantics_begin() {
return getSubExprsBuffer() + 1;
}
const_semantics_iterator semantics_begin() const {
return getSubExprsBuffer() + 1;
}
semantics_iterator semantics_end() {
return getSubExprsBuffer() + getNumSubExprs();
}
const_semantics_iterator semantics_end() const {
return getSubExprsBuffer() + getNumSubExprs();
}
ArrayRef<Expr*> semantics() {
return ArrayRef(semantics_begin(), semantics_end());
}
ArrayRef<const Expr*> semantics() const {
return ArrayRef(semantics_begin(), semantics_end());
}
Expr *getSemanticExpr(unsigned index) {
assert(index + 1 < getNumSubExprs());
return getSubExprsBuffer()[index + 1];
}
const Expr *getSemanticExpr(unsigned index) const {
return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
}
SourceLocation getExprLoc() const LLVM_READONLY {
return getSyntacticForm()->getExprLoc();
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getSyntacticForm()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY {
return getSyntacticForm()->getEndLoc();
}
child_range children() {
const_child_range CCR =
const_cast<const PseudoObjectExpr *>(this)->children();
return child_range(cast_away_const(CCR.begin()),
cast_away_const(CCR.end()));
}
const_child_range children() const {
Stmt *const *cs = const_cast<Stmt *const *>(
reinterpret_cast<const Stmt *const *>(getSubExprsBuffer()));
return const_child_range(cs, cs + getNumSubExprs());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == PseudoObjectExprClass;
}
friend TrailingObjects;
friend class ASTStmtReader;
};
/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>,
/// and corresponding __opencl_atomic_* for OpenCL 2.0.
/// All of these instructions take one primary pointer, at least one memory
/// order. The instructions for which getScopeModel returns non-null value
/// take one synch scope.
class AtomicExpr : public Expr {
public:
enum AtomicOp {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
#include "clang/Basic/Builtins.inc"
// Avoid trailing comma
BI_First = 0
};
private:
/// Location of sub-expressions.
/// The location of Scope sub-expression is NumSubExprs - 1, which is
/// not fixed, therefore is not defined in enum.
enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
Stmt *SubExprs[END_EXPR + 1];
unsigned NumSubExprs;
SourceLocation BuiltinLoc, RParenLoc;
AtomicOp Op;
friend class ASTStmtReader;
public:
AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
AtomicOp op, SourceLocation RP);
/// Determine the number of arguments the specified atomic builtin
/// should have.
static unsigned getNumSubExprs(AtomicOp Op);
/// Build an empty AtomicExpr.
explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
Expr *getPtr() const {
return cast<Expr>(SubExprs[PTR]);
}
Expr *getOrder() const {
return cast<Expr>(SubExprs[ORDER]);
}
Expr *getScope() const {
assert(getScopeModel() && "No scope");
return cast<Expr>(SubExprs[NumSubExprs - 1]);
}
Expr *getVal1() const {
if (Op == AO__c11_atomic_init || Op == AO__opencl_atomic_init)
return cast<Expr>(SubExprs[ORDER]);
assert(NumSubExprs > VAL1);
return cast<Expr>(SubExprs[VAL1]);
}
Expr *getOrderFail() const {
assert(NumSubExprs > ORDER_FAIL);
return cast<Expr>(SubExprs[ORDER_FAIL]);
}
Expr *getVal2() const {
if (Op == AO__atomic_exchange || Op == AO__scoped_atomic_exchange)
return cast<Expr>(SubExprs[ORDER_FAIL]);
assert(NumSubExprs > VAL2);
return cast<Expr>(SubExprs[VAL2]);
}
Expr *getWeak() const {
assert(NumSubExprs > WEAK);
return cast<Expr>(SubExprs[WEAK]);
}
QualType getValueType() const;
AtomicOp getOp() const { return Op; }
StringRef getOpAsString() const {
switch (Op) {
#define BUILTIN(ID, TYPE, ATTRS)
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
case AO##ID: \
return #ID;
#include "clang/Basic/Builtins.inc"
}
llvm_unreachable("not an atomic operator?");
}
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
const Expr * const *getSubExprs() const {
return reinterpret_cast<Expr * const *>(SubExprs);
}
bool isVolatile() const {
return getPtr()->getType()->getPointeeType().isVolatileQualified();
}
bool isCmpXChg() const {
return getOp() == AO__c11_atomic_compare_exchange_strong ||
getOp() == AO__c11_atomic_compare_exchange_weak ||
getOp() == AO__hip_atomic_compare_exchange_strong ||
getOp() == AO__opencl_atomic_compare_exchange_strong ||
getOp() == AO__opencl_atomic_compare_exchange_weak ||
getOp() == AO__hip_atomic_compare_exchange_weak ||
getOp() == AO__atomic_compare_exchange ||
getOp() == AO__atomic_compare_exchange_n ||
getOp() == AO__scoped_atomic_compare_exchange ||
getOp() == AO__scoped_atomic_compare_exchange_n;
}
bool isOpenCL() const {
return getOp() >= AO__opencl_atomic_compare_exchange_strong &&
getOp() <= AO__opencl_atomic_store;
}
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceLocation getBeginLoc() const LLVM_READONLY { return BuiltinLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AtomicExprClass;
}
// Iterators
child_range children() {
return child_range(SubExprs, SubExprs+NumSubExprs);
}
const_child_range children() const {
return const_child_range(SubExprs, SubExprs + NumSubExprs);
}
/// Get atomic scope model for the atomic op code.
/// \return empty atomic scope model if the atomic op code does not have
/// scope operand.
static std::unique_ptr<AtomicScopeModel> getScopeModel(AtomicOp Op) {
// FIXME: Allow grouping of builtins to be able to only check >= and <=
if (Op >= AO__opencl_atomic_compare_exchange_strong &&
Op <= AO__opencl_atomic_store && Op != AO__opencl_atomic_init)
return AtomicScopeModel::create(AtomicScopeModelKind::OpenCL);
if (Op >= AO__hip_atomic_compare_exchange_strong &&
Op <= AO__hip_atomic_store)
return AtomicScopeModel::create(AtomicScopeModelKind::HIP);
if (Op >= AO__scoped_atomic_add_fetch && Op <= AO__scoped_atomic_xor_fetch)
return AtomicScopeModel::create(AtomicScopeModelKind::Generic);
return AtomicScopeModel::create(AtomicScopeModelKind::None);
}
/// Get atomic scope model.
/// \return empty atomic scope model if this atomic expression does not have
/// scope operand.
std::unique_ptr<AtomicScopeModel> getScopeModel() const {
return getScopeModel(getOp());
}
};
/// TypoExpr - Internal placeholder for expressions where typo correction
/// still needs to be performed and/or an error diagnostic emitted.
class TypoExpr : public Expr {
// The location for the typo name.
SourceLocation TypoLoc;
public:
TypoExpr(QualType T, SourceLocation TypoLoc)
: Expr(TypoExprClass, T, VK_LValue, OK_Ordinary), TypoLoc(TypoLoc) {
assert(T->isDependentType() && "TypoExpr given a non-dependent type");
setDependence(ExprDependence::TypeValueInstantiation |
ExprDependence::Error);
}
child_range children() {
return child_range(child_iterator(), child_iterator());
}
const_child_range children() const {
return const_child_range(const_child_iterator(), const_child_iterator());
}
SourceLocation getBeginLoc() const LLVM_READONLY { return TypoLoc; }
SourceLocation getEndLoc() const LLVM_READONLY { return TypoLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypoExprClass;
}
};
/// This class represents BOTH the OpenMP Array Section and OpenACC 'subarray',
/// with a boolean differentiator.
/// OpenMP 5.0 [2.1.5, Array Sections].
/// To specify an array section in an OpenMP construct, array subscript
/// expressions are extended with the following syntax:
/// \code
/// [ lower-bound : length : stride ]
/// [ lower-bound : length : ]
/// [ lower-bound : length ]
/// [ lower-bound : : stride ]
/// [ lower-bound : : ]
/// [ lower-bound : ]
/// [ : length : stride ]
/// [ : length : ]
/// [ : length ]
/// [ : : stride ]
/// [ : : ]
/// [ : ]
/// \endcode
/// The array section must be a subset of the original array.
/// Array sections are allowed on multidimensional arrays. Base language array
/// subscript expressions can be used to specify length-one dimensions of
/// multidimensional array sections.
/// Each of the lower-bound, length, and stride expressions if specified must be
/// an integral type expressions of the base language. When evaluated
/// they represent a set of integer values as follows:
/// \code
/// { lower-bound, lower-bound + stride, lower-bound + 2 * stride,... ,
/// lower-bound + ((length - 1) * stride) }
/// \endcode
/// The lower-bound and length must evaluate to non-negative integers.
/// The stride must evaluate to a positive integer.
/// When the size of the array dimension is not known, the length must be
/// specified explicitly.
/// When the stride is absent it defaults to 1.
/// When the length is absent it defaults to ⌈(size lower-bound)/stride⌉,
/// where size is the size of the array dimension. When the lower-bound is
/// absent it defaults to 0.
///
///
/// OpenACC 3.3 [2.7.1 Data Specification in Data Clauses]
/// In C and C++, a subarray is an array name followed by an extended array
/// range specification in brackets, with start and length, such as
///
/// AA[2:n]
///
/// If the lower bound is missing, zero is used. If the length is missing and
/// the array has known size, the size of the array is used; otherwise the
/// length is required. The subarray AA[2:n] means elements AA[2], AA[3], . . .
/// , AA[2+n-1]. In C and C++, a two dimensional array may be declared in at
/// least four ways:
///
/// -Statically-sized array: float AA[100][200];
/// -Pointer to statically sized rows: typedef float row[200]; row* BB;
/// -Statically-sized array of pointers: float* CC[200];
/// -Pointer to pointers: float** DD;
///
/// Each dimension may be statically sized, or a pointer to dynamically
/// allocated memory. Each of these may be included in a data clause using
/// subarray notation to specify a rectangular array:
///
/// -AA[2:n][0:200]
/// -BB[2:n][0:m]
/// -CC[2:n][0:m]
/// -DD[2:n][0:m]
///
/// Multidimensional rectangular subarrays in C and C++ may be specified for any
/// array with any combination of statically-sized or dynamically-allocated
/// dimensions. For statically sized dimensions, all dimensions except the first
/// must specify the whole extent to preserve the contiguous data restriction,
/// discussed below. For dynamically allocated dimensions, the implementation
/// will allocate pointers in device memory corresponding to the pointers in
/// local memory and will fill in those pointers as appropriate.
///
/// In Fortran, a subarray is an array name followed by a comma-separated list
/// of range specifications in parentheses, with lower and upper bound
/// subscripts, such as
///
/// arr(1:high,low:100)
///
/// If either the lower or upper bounds are missing, the declared or allocated
/// bounds of the array, if known, are used. All dimensions except the last must
/// specify the whole extent, to preserve the contiguous data restriction,
/// discussed below.
///
/// Restrictions
///
/// -In Fortran, the upper bound for the last dimension of an assumed-size dummy
/// array must be specified.
///
/// -In C and C++, the length for dynamically allocated dimensions of an array
/// must be explicitly specified.
///
/// -In C and C++, modifying pointers in pointer arrays during the data
/// lifetime, either on the host or on the device, may result in undefined
/// behavior.
///
/// -If a subarray appears in a data clause, the implementation may choose to
/// allocate memory for only that subarray on the accelerator.
///
/// -In Fortran, array pointers may appear, but pointer association is not
/// preserved in device memory.
///
/// -Any array or subarray in a data clause, including Fortran array pointers,
/// must be a contiguous section of memory, except for dynamic multidimensional
/// C arrays.
///
/// -In C and C++, if a variable or array of composite type appears, all the
/// data members of the struct or class are allocated and copied, as
/// appropriate. If a composite member is a pointer type, the data addressed by
/// that pointer are not implicitly copied.
///
/// -In Fortran, if a variable or array of composite type appears, all the
/// members of that derived type are allocated and copied, as appropriate. If
/// any member has the allocatable or pointer attribute, the data accessed
/// through that member are not copied.
///
/// -If an expression is used in a subscript or subarray expression in a clause
/// on a data construct, the same value is used when copying data at the end of
/// the data region, even if the values of variables in the expression change
/// during the data region.
class ArraySectionExpr : public Expr {
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
enum ArraySectionType { OMPArraySection, OpenACCArraySection };
private:
enum {
BASE,
LOWER_BOUND,
LENGTH,
STRIDE,
END_EXPR,
OPENACC_END_EXPR = STRIDE
};
ArraySectionType ASType = OMPArraySection;
Stmt *SubExprs[END_EXPR] = {nullptr};
SourceLocation ColonLocFirst;
SourceLocation ColonLocSecond;
SourceLocation RBracketLoc;
public:
// Constructor for OMP array sections, which include a 'stride'.
ArraySectionExpr(Expr *Base, Expr *LowerBound, Expr *Length, Expr *Stride,
QualType Type, ExprValueKind VK, ExprObjectKind OK,
SourceLocation ColonLocFirst, SourceLocation ColonLocSecond,
SourceLocation RBracketLoc)
: Expr(ArraySectionExprClass, Type, VK, OK), ASType(OMPArraySection),
ColonLocFirst(ColonLocFirst), ColonLocSecond(ColonLocSecond),
RBracketLoc(RBracketLoc) {
setBase(Base);
setLowerBound(LowerBound);
setLength(Length);
setStride(Stride);
setDependence(computeDependence(this));
}
// Constructor for OpenACC sub-arrays, which do not permit a 'stride'.
ArraySectionExpr(Expr *Base, Expr *LowerBound, Expr *Length, QualType Type,
ExprValueKind VK, ExprObjectKind OK, SourceLocation ColonLoc,
SourceLocation RBracketLoc)
: Expr(ArraySectionExprClass, Type, VK, OK), ASType(OpenACCArraySection),
ColonLocFirst(ColonLoc), RBracketLoc(RBracketLoc) {
setBase(Base);
setLowerBound(LowerBound);
setLength(Length);
setDependence(computeDependence(this));
}
/// Create an empty array section expression.
explicit ArraySectionExpr(EmptyShell Shell)
: Expr(ArraySectionExprClass, Shell) {}
/// Return original type of the base expression for array section.
static QualType getBaseOriginalType(const Expr *Base);
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySectionExprClass;
}
bool isOMPArraySection() const { return ASType == OMPArraySection; }
bool isOpenACCArraySection() const { return ASType == OpenACCArraySection; }
/// Get base of the array section.
Expr *getBase() { return cast<Expr>(SubExprs[BASE]); }
const Expr *getBase() const { return cast<Expr>(SubExprs[BASE]); }
/// Get lower bound of array section.
Expr *getLowerBound() { return cast_or_null<Expr>(SubExprs[LOWER_BOUND]); }
const Expr *getLowerBound() const {
return cast_or_null<Expr>(SubExprs[LOWER_BOUND]);
}
/// Get length of array section.
Expr *getLength() { return cast_or_null<Expr>(SubExprs[LENGTH]); }
const Expr *getLength() const { return cast_or_null<Expr>(SubExprs[LENGTH]); }
/// Get stride of array section.
Expr *getStride() {
assert(ASType != OpenACCArraySection &&
"Stride not valid in OpenACC subarrays");
return cast_or_null<Expr>(SubExprs[STRIDE]);
}
const Expr *getStride() const {
assert(ASType != OpenACCArraySection &&
"Stride not valid in OpenACC subarrays");
return cast_or_null<Expr>(SubExprs[STRIDE]);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return getBase()->getBeginLoc();
}
SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }
SourceLocation getColonLocFirst() const { return ColonLocFirst; }
SourceLocation getColonLocSecond() const {
assert(ASType != OpenACCArraySection &&
"second colon for stride not valid in OpenACC subarrays");
return ColonLocSecond;
}
SourceLocation getRBracketLoc() const { return RBracketLoc; }
SourceLocation getExprLoc() const LLVM_READONLY {
return getBase()->getExprLoc();
}
child_range children() {
return child_range(
&SubExprs[BASE],
&SubExprs[ASType == OMPArraySection ? END_EXPR : OPENACC_END_EXPR]);
}
const_child_range children() const {
return const_child_range(
&SubExprs[BASE],
&SubExprs[ASType == OMPArraySection ? END_EXPR : OPENACC_END_EXPR]);
}
private:
/// Set base of the array section.
void setBase(Expr *E) { SubExprs[BASE] = E; }
/// Set lower bound of the array section.
void setLowerBound(Expr *E) { SubExprs[LOWER_BOUND] = E; }
/// Set length of the array section.
void setLength(Expr *E) { SubExprs[LENGTH] = E; }
/// Set length of the array section.
void setStride(Expr *E) {
assert(ASType != OpenACCArraySection &&
"Stride not valid in OpenACC subarrays");
SubExprs[STRIDE] = E;
}
void setColonLocFirst(SourceLocation L) { ColonLocFirst = L; }
void setColonLocSecond(SourceLocation L) {
assert(ASType != OpenACCArraySection &&
"second colon for stride not valid in OpenACC subarrays");
ColonLocSecond = L;
}
void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
};
/// Frontend produces RecoveryExprs on semantic errors that prevent creating
/// other well-formed expressions. E.g. when type-checking of a binary operator
/// fails, we cannot produce a BinaryOperator expression. Instead, we can choose
/// to produce a recovery expression storing left and right operands.
///
/// RecoveryExpr does not have any semantic meaning in C++, it is only useful to
/// preserve expressions in AST that would otherwise be dropped. It captures
/// subexpressions of some expression that we could not construct and source
/// range covered by the expression.
///
/// By default, RecoveryExpr uses dependence-bits to take advantage of existing
/// machinery to deal with dependent code in C++, e.g. RecoveryExpr is preserved
/// in `decltype(<broken-expr>)` as part of the `DependentDecltypeType`. In
/// addition to that, clang does not report most errors on dependent
/// expressions, so we get rid of bogus errors for free. However, note that
/// unlike other dependent expressions, RecoveryExpr can be produced in
/// non-template contexts.
///
/// We will preserve the type in RecoveryExpr when the type is known, e.g.
/// preserving the return type for a broken non-overloaded function call, a
/// overloaded call where all candidates have the same return type. In this
/// case, the expression is not type-dependent (unless the known type is itself
/// dependent)
///
/// One can also reliably suppress all bogus errors on expressions containing
/// recovery expressions by examining results of Expr::containsErrors().
class RecoveryExpr final : public Expr,
private llvm::TrailingObjects<RecoveryExpr, Expr *> {
public:
static RecoveryExpr *Create(ASTContext &Ctx, QualType T,
SourceLocation BeginLoc, SourceLocation EndLoc,
ArrayRef<Expr *> SubExprs);
static RecoveryExpr *CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs);
ArrayRef<Expr *> subExpressions() {
auto *B = getTrailingObjects<Expr *>();
return llvm::ArrayRef(B, B + NumExprs);
}
ArrayRef<const Expr *> subExpressions() const {
return const_cast<RecoveryExpr *>(this)->subExpressions();
}
child_range children() {
Stmt **B = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
return child_range(B, B + NumExprs);
}
SourceLocation getBeginLoc() const { return BeginLoc; }
SourceLocation getEndLoc() const { return EndLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == RecoveryExprClass;
}
private:
RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
SourceLocation EndLoc, ArrayRef<Expr *> SubExprs);
RecoveryExpr(EmptyShell Empty, unsigned NumSubExprs)
: Expr(RecoveryExprClass, Empty), NumExprs(NumSubExprs) {}
size_t numTrailingObjects(OverloadToken<Stmt *>) const { return NumExprs; }
SourceLocation BeginLoc, EndLoc;
unsigned NumExprs;
friend TrailingObjects;
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
} // end namespace clang
#endif // LLVM_CLANG_AST_EXPR_H