clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
693 lines
26 KiB
C++
693 lines
26 KiB
C++
//===-- IntervalTree.h ------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements an interval tree.
|
|
//
|
|
// Further information:
|
|
// https://en.wikipedia.org/wiki/Interval_tree
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_INTERVALTREE_H
|
|
#define LLVM_ADT_INTERVALTREE_H
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
|
|
// IntervalTree is a light tree data structure to hold intervals. It allows
|
|
// finding all intervals that overlap with any given point. At this time,
|
|
// it does not support any deletion or rebalancing operations.
|
|
//
|
|
// The IntervalTree is designed to be set up once, and then queried without
|
|
// any further additions.
|
|
//
|
|
// Synopsis:
|
|
// Closed intervals delimited by PointT objects are mapped to ValueT objects.
|
|
//
|
|
// Restrictions:
|
|
// PointT must be a fundamental type.
|
|
// ValueT must be a fundamental or pointer type.
|
|
//
|
|
// template <typename PointT, typename ValueT, typename DataT>
|
|
// class IntervalTree {
|
|
// public:
|
|
//
|
|
// IntervalTree();
|
|
// ~IntervalTree():
|
|
//
|
|
// using IntervalReferences = SmallVector<IntervalData *>;
|
|
//
|
|
// void create();
|
|
// void insert(PointT Left, PointT Right, ValueT Value);
|
|
//
|
|
// IntervalReferences getContaining(PointT Point);
|
|
// static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
|
|
//
|
|
// find_iterator begin(PointType Point) const;
|
|
// find_iterator end() const;
|
|
//
|
|
// bool empty() const;
|
|
// void clear();
|
|
//
|
|
// void print(raw_ostream &OS, bool HexFormat = true);
|
|
// };
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// In the below given dataset
|
|
//
|
|
// [a, b] <- (x)
|
|
//
|
|
// 'a' and 'b' describe a range and 'x' the value for that interval.
|
|
//
|
|
// The following data are purely for illustrative purposes:
|
|
//
|
|
// [30, 35] <- (3035), [39, 50] <- (3950), [55, 61] <- (5561),
|
|
// [31, 56] <- (3156), [12, 21] <- (1221), [25, 41] <- (2541),
|
|
// [49, 65] <- (4965), [71, 79] <- (7179), [11, 16] <- (1116),
|
|
// [20, 30] <- (2030), [36, 54] <- (3654), [60, 70] <- (6070),
|
|
// [74, 80] <- (7480), [15, 40] <- (1540), [43, 43] <- (4343),
|
|
// [50, 75] <- (5075), [10, 85] <- (1085)
|
|
//
|
|
// The data represents a set of overlapping intervals:
|
|
//
|
|
// 30--35 39------------50 55----61
|
|
// 31------------------------56
|
|
// 12--------21 25------------41 49-------------65 71-----79
|
|
// 11----16 20-----30 36----------------54 60------70 74---- 80
|
|
// 15---------------------40 43--43 50--------------------75
|
|
// 10----------------------------------------------------------------------85
|
|
//
|
|
// The items are stored in a binary tree with each node storing:
|
|
//
|
|
// MP: A middle point.
|
|
// IL: All intervals whose left value are completely to the left of the middle
|
|
// point. They are sorted in ascending order by their beginning point.
|
|
// IR: All intervals whose right value are completely to the right of the
|
|
// middle point. They are sorted in descending order by their ending point.
|
|
// LS: Left subtree.
|
|
// RS: Right subtree.
|
|
//
|
|
// As IL and IR will contain the same intervals, in order to optimize space,
|
|
// instead of storing intervals on each node, we use two vectors that will
|
|
// contain the intervals described by IL and IR. Each node will contain an
|
|
// index into that vector (global bucket), to indicate the beginning of the
|
|
// intervals assigned to the node.
|
|
//
|
|
// The following is the output from print():
|
|
//
|
|
// 0: MP:43 IR [10,85] [31,56] [36,54] [39,50] [43,43]
|
|
// 0: MP:43 IL [10,85] [31,56] [36,54] [39,50] [43,43]
|
|
// 1: MP:25 IR [25,41] [15,40] [20,30]
|
|
// 1: MP:25 IL [15,40] [20,30] [25,41]
|
|
// 2: MP:15 IR [12,21] [11,16]
|
|
// 2: MP:15 IL [11,16] [12,21]
|
|
// 2: MP:36 IR []
|
|
// 2: MP:36 IL []
|
|
// 3: MP:31 IR [30,35]
|
|
// 3: MP:31 IL [30,35]
|
|
// 1: MP:61 IR [50,75] [60,70] [49,65] [55,61]
|
|
// 1: MP:61 IL [49,65] [50,75] [55,61] [60,70]
|
|
// 2: MP:74 IR [74,80] [71,79]
|
|
// 2: MP:74 IL [71,79] [74,80]
|
|
//
|
|
// with:
|
|
// 0: Root Node.
|
|
// MP: Middle point.
|
|
// IL: Intervals to the left (in ascending order by beginning point).
|
|
// IR: Intervals to the right (in descending order by ending point).
|
|
//
|
|
// Root
|
|
// |
|
|
// V
|
|
// +------------MP:43------------+
|
|
// | IL IR |
|
|
// | [10,85] [10,85] |
|
|
// LS | [31,56] [31,56] | RS
|
|
// | [36,54] [36,54] |
|
|
// | [39,50] [39,50] |
|
|
// | [43,43] [43,43] |
|
|
// V V
|
|
// +------------MP:25------------+ MP:61------------+
|
|
// | IL IR | IL IR |
|
|
// | [15,40] [25,41] | [49,65] [50,75] |
|
|
// LS | [20,30] [15,40] | RS [50,75] [60,70] | RS
|
|
// | [25,41] [20,30] | [55,61] [49,65] |
|
|
// | | [60,70] [55,61] |
|
|
// V V V
|
|
// MP:15 +-------MP:36 MP:74
|
|
// IL IR | IL IR IL IR
|
|
// [11,16] [12,21] LS | [] [] [71,79] [74,80]
|
|
// [12,21] [11,16] | [74,80] [71,79]
|
|
// V
|
|
// MP:31
|
|
// IL IR
|
|
// [30,35] [30,35]
|
|
//
|
|
// The creation of an interval tree is done in 2 steps:
|
|
// 1) Insert the interval items by calling
|
|
// void insert(PointT Left, PointT Right, ValueT Value);
|
|
// Left, Right: the interval left and right limits.
|
|
// Value: the data associated with that specific interval.
|
|
//
|
|
// 2) Create the interval tree by calling
|
|
// void create();
|
|
//
|
|
// Once the tree is created, it is switched to query mode.
|
|
// Query the tree by using iterators or container.
|
|
//
|
|
// a) Iterators over intervals overlapping the given point with very weak
|
|
// ordering guarantees.
|
|
// find_iterator begin(PointType Point) const;
|
|
// find_iterator end() const;
|
|
// Point: a target point to be tested for inclusion in any interval.
|
|
//
|
|
// b) Container:
|
|
// IntervalReferences getContaining(PointT Point);
|
|
// Point: a target point to be tested for inclusion in any interval.
|
|
// Returns vector with all the intervals containing the target point.
|
|
//
|
|
// The returned intervals are in their natural tree location. They can
|
|
// be sorted:
|
|
//
|
|
// static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
|
|
//
|
|
// Ability to print the constructed interval tree:
|
|
// void print(raw_ostream &OS, bool HexFormat = true);
|
|
// Display the associated data in hexadecimal format.
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalData ----//
|
|
//===----------------------------------------------------------------------===//
|
|
/// An interval data composed by a \a Left and \a Right points and an
|
|
/// associated \a Value.
|
|
/// \a PointT corresponds to the interval endpoints type.
|
|
/// \a ValueT corresponds to the interval value type.
|
|
template <typename PointT, typename ValueT> class IntervalData {
|
|
protected:
|
|
using PointType = PointT;
|
|
using ValueType = ValueT;
|
|
|
|
private:
|
|
PointType Left;
|
|
PointType Right;
|
|
ValueType Value;
|
|
|
|
public:
|
|
IntervalData() = delete;
|
|
IntervalData(PointType Left, PointType Right, ValueType Value)
|
|
: Left(Left), Right(Right), Value(Value) {
|
|
assert(Left <= Right && "'Left' must be less or equal to 'Right'");
|
|
}
|
|
virtual ~IntervalData() = default;
|
|
PointType left() const { return Left; }
|
|
PointType right() const { return Right; }
|
|
ValueType value() const { return Value; }
|
|
|
|
/// Return true if \a Point is inside the left bound of closed interval \a
|
|
/// [Left;Right]. This is Left <= Point for closed intervals.
|
|
bool left(const PointType &Point) const { return left() <= Point; }
|
|
|
|
/// Return true if \a Point is inside the right bound of closed interval \a
|
|
/// [Left;Right]. This is Point <= Right for closed intervals.
|
|
bool right(const PointType &Point) const { return Point <= right(); }
|
|
|
|
/// Return true when \a Point is contained in interval \a [Left;Right].
|
|
/// This is Left <= Point <= Right for closed intervals.
|
|
bool contains(const PointType &Point) const {
|
|
return left(Point) && right(Point);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalTree ----//
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper class template that is used by the IntervalTree to ensure that one
|
|
// does instantiate using only fundamental and/or pointer types.
|
|
template <typename T>
|
|
using PointTypeIsValid = std::bool_constant<std::is_fundamental<T>::value>;
|
|
|
|
template <typename T>
|
|
using ValueTypeIsValid = std::bool_constant<std::is_fundamental<T>::value ||
|
|
std::is_pointer<T>::value>;
|
|
|
|
template <typename PointT, typename ValueT,
|
|
typename DataT = IntervalData<PointT, ValueT>>
|
|
class IntervalTree {
|
|
static_assert(PointTypeIsValid<PointT>::value,
|
|
"PointT must be a fundamental type");
|
|
static_assert(ValueTypeIsValid<ValueT>::value,
|
|
"ValueT must be a fundamental or pointer type");
|
|
|
|
public:
|
|
using PointType = PointT;
|
|
using ValueType = ValueT;
|
|
using DataType = DataT;
|
|
using Allocator = BumpPtrAllocator;
|
|
|
|
enum class Sorting { Ascending, Descending };
|
|
using IntervalReferences = SmallVector<const DataType *, 4>;
|
|
|
|
private:
|
|
using IntervalVector = SmallVector<DataType, 4>;
|
|
using PointsVector = SmallVector<PointType, 4>;
|
|
|
|
class IntervalNode {
|
|
PointType MiddlePoint; // MP - Middle point.
|
|
IntervalNode *Left = nullptr; // LS - Left subtree.
|
|
IntervalNode *Right = nullptr; // RS - Right subtree.
|
|
unsigned BucketIntervalsStart = 0; // Starting index in global bucket.
|
|
unsigned BucketIntervalsSize = 0; // Size of bucket.
|
|
|
|
public:
|
|
PointType middle() const { return MiddlePoint; }
|
|
unsigned start() const { return BucketIntervalsStart; }
|
|
unsigned size() const { return BucketIntervalsSize; }
|
|
|
|
IntervalNode(PointType Point, unsigned Start)
|
|
: MiddlePoint(Point), BucketIntervalsStart(Start) {}
|
|
|
|
friend IntervalTree;
|
|
};
|
|
|
|
Allocator &NodeAllocator; // Allocator used for creating interval nodes.
|
|
IntervalNode *Root = nullptr; // Interval tree root.
|
|
IntervalVector Intervals; // Storage for each interval and all of the fields
|
|
// point back into it.
|
|
PointsVector EndPoints; // Sorted left and right points of all the intervals.
|
|
|
|
// These vectors provide storage that nodes carve buckets of overlapping
|
|
// intervals out of. All intervals are recorded on each vector.
|
|
// The bucket with the intervals associated to a node, is determined by
|
|
// the fields 'BucketIntervalStart' and 'BucketIntervalSize' in the node.
|
|
// The buckets in the first vector are sorted in ascending order using
|
|
// the left value and the buckets in the second vector are sorted in
|
|
// descending order using the right value. Every interval in a bucket
|
|
// contains the middle point for the node.
|
|
IntervalReferences IntervalsLeft; // Intervals to the left of middle point.
|
|
IntervalReferences IntervalsRight; // Intervals to the right of middle point.
|
|
|
|
// Working vector used during the tree creation to sort the intervals. It is
|
|
// cleared once the tree is created.
|
|
IntervalReferences References;
|
|
|
|
/// Recursively delete the constructed tree.
|
|
void deleteTree(IntervalNode *Node) {
|
|
if (Node) {
|
|
deleteTree(Node->Left);
|
|
deleteTree(Node->Right);
|
|
Node->~IntervalNode();
|
|
NodeAllocator.Deallocate(Node);
|
|
}
|
|
}
|
|
|
|
/// Print the interval list (left and right) for a given \a Node.
|
|
static void printList(raw_ostream &OS, IntervalReferences &IntervalSet,
|
|
unsigned Start, unsigned Size, bool HexFormat = true) {
|
|
assert(Start + Size <= IntervalSet.size() &&
|
|
"Start + Size must be in bounds of the IntervalSet");
|
|
const char *Format = HexFormat ? "[0x%08x,0x%08x] " : "[%2d,%2d] ";
|
|
if (Size) {
|
|
for (unsigned Position = Start; Position < Start + Size; ++Position)
|
|
OS << format(Format, IntervalSet[Position]->left(),
|
|
IntervalSet[Position]->right());
|
|
} else {
|
|
OS << "[]";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
/// Print an interval tree \a Node.
|
|
void printNode(raw_ostream &OS, unsigned Level, IntervalNode *Node,
|
|
bool HexFormat = true) {
|
|
const char *Format = HexFormat ? "MP:0x%08x " : "MP:%2d ";
|
|
auto PrintNodeData = [&](StringRef Text, IntervalReferences &IntervalSet) {
|
|
OS << format("%5d: ", Level);
|
|
OS.indent(Level * 2);
|
|
OS << format(Format, Node->middle()) << Text << " ";
|
|
printList(OS, IntervalSet, Node->start(), Node->size(), HexFormat);
|
|
};
|
|
|
|
PrintNodeData("IR", IntervalsRight);
|
|
PrintNodeData("IL", IntervalsLeft);
|
|
}
|
|
|
|
/// Recursively print all the interval nodes.
|
|
void printTree(raw_ostream &OS, unsigned Level, IntervalNode *Node,
|
|
bool HexFormat = true) {
|
|
if (Node) {
|
|
printNode(OS, Level, Node, HexFormat);
|
|
++Level;
|
|
printTree(OS, Level, Node->Left, HexFormat);
|
|
printTree(OS, Level, Node->Right, HexFormat);
|
|
}
|
|
}
|
|
|
|
/// Recursively construct the interval tree.
|
|
/// IntervalsSize: Number of intervals that have been processed and it will
|
|
/// be used as the start for the intervals bucket for a node.
|
|
/// PointsBeginIndex, PointsEndIndex: Determine the range into the EndPoints
|
|
/// vector of end points to be processed.
|
|
/// ReferencesBeginIndex, ReferencesSize: Determine the range into the
|
|
/// intervals being processed.
|
|
IntervalNode *createTree(unsigned &IntervalsSize, int PointsBeginIndex,
|
|
int PointsEndIndex, int ReferencesBeginIndex,
|
|
int ReferencesSize) {
|
|
// We start by taking the entire range of all the intervals and dividing
|
|
// it in half at x_middle (in practice, x_middle should be picked to keep
|
|
// the tree relatively balanced).
|
|
// This gives three sets of intervals, those completely to the left of
|
|
// x_middle which we'll call S_left, those completely to the right of
|
|
// x_middle which we'll call S_right, and those overlapping x_middle
|
|
// which we'll call S_middle.
|
|
// The intervals in S_left and S_right are recursively divided in the
|
|
// same manner until there are no intervals remaining.
|
|
|
|
if (PointsBeginIndex > PointsEndIndex ||
|
|
ReferencesBeginIndex >= ReferencesSize)
|
|
return nullptr;
|
|
|
|
int MiddleIndex = (PointsBeginIndex + PointsEndIndex) / 2;
|
|
PointType MiddlePoint = EndPoints[MiddleIndex];
|
|
|
|
unsigned NewBucketStart = IntervalsSize;
|
|
unsigned NewBucketSize = 0;
|
|
int ReferencesRightIndex = ReferencesSize;
|
|
|
|
IntervalNode *Root =
|
|
new (NodeAllocator) IntervalNode(MiddlePoint, NewBucketStart);
|
|
|
|
// A quicksort implementation where all the intervals that overlap
|
|
// with the pivot are put into the "bucket", and "References" is the
|
|
// partition space where we recursively sort the remaining intervals.
|
|
for (int Index = ReferencesBeginIndex; Index < ReferencesRightIndex;) {
|
|
|
|
// Current interval contains the middle point.
|
|
if (References[Index]->contains(MiddlePoint)) {
|
|
IntervalsLeft[IntervalsSize] = References[Index];
|
|
IntervalsRight[IntervalsSize] = References[Index];
|
|
++IntervalsSize;
|
|
Root->BucketIntervalsSize = ++NewBucketSize;
|
|
|
|
if (Index < --ReferencesRightIndex)
|
|
std::swap(References[Index], References[ReferencesRightIndex]);
|
|
if (ReferencesRightIndex < --ReferencesSize)
|
|
std::swap(References[ReferencesRightIndex],
|
|
References[ReferencesSize]);
|
|
continue;
|
|
}
|
|
|
|
if (References[Index]->left() > MiddlePoint) {
|
|
if (Index < --ReferencesRightIndex)
|
|
std::swap(References[Index], References[ReferencesRightIndex]);
|
|
continue;
|
|
}
|
|
++Index;
|
|
}
|
|
|
|
// Sort intervals on the left and right of the middle point.
|
|
if (NewBucketSize > 1) {
|
|
// Sort the intervals in ascending order by their beginning point.
|
|
std::stable_sort(IntervalsLeft.begin() + NewBucketStart,
|
|
IntervalsLeft.begin() + NewBucketStart + NewBucketSize,
|
|
[](const DataType *LHS, const DataType *RHS) {
|
|
return LHS->left() < RHS->left();
|
|
});
|
|
// Sort the intervals in descending order by their ending point.
|
|
std::stable_sort(IntervalsRight.begin() + NewBucketStart,
|
|
IntervalsRight.begin() + NewBucketStart + NewBucketSize,
|
|
[](const DataType *LHS, const DataType *RHS) {
|
|
return LHS->right() > RHS->right();
|
|
});
|
|
}
|
|
|
|
if (PointsBeginIndex <= MiddleIndex - 1) {
|
|
Root->Left = createTree(IntervalsSize, PointsBeginIndex, MiddleIndex - 1,
|
|
ReferencesBeginIndex, ReferencesRightIndex);
|
|
}
|
|
|
|
if (MiddleIndex + 1 <= PointsEndIndex) {
|
|
Root->Right = createTree(IntervalsSize, MiddleIndex + 1, PointsEndIndex,
|
|
ReferencesRightIndex, ReferencesSize);
|
|
}
|
|
|
|
return Root;
|
|
}
|
|
|
|
public:
|
|
class find_iterator {
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = DataType;
|
|
using difference_type = DataType;
|
|
using pointer = DataType *;
|
|
using reference = DataType &;
|
|
|
|
private:
|
|
const IntervalReferences *AscendingBuckets = nullptr;
|
|
const IntervalReferences *DescendingBuckets = nullptr;
|
|
|
|
// Current node and index while traversing the intervals that contain
|
|
// the reference point.
|
|
IntervalNode *Node = nullptr;
|
|
PointType Point = {};
|
|
unsigned Index = 0;
|
|
|
|
// For the current node, check if we have intervals that contain the
|
|
// reference point. We return when the node does have intervals that
|
|
// contain such point. Otherwise we keep descending on that branch.
|
|
void initNode() {
|
|
Index = 0;
|
|
while (Node) {
|
|
// Return if the reference point is the same as the middle point or
|
|
// the current node doesn't have any intervals at all.
|
|
if (Point == Node->middle()) {
|
|
if (Node->size() == 0) {
|
|
// No intervals that contain the reference point.
|
|
Node = nullptr;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Point < Node->middle()) {
|
|
// The reference point can be at the left or right of the middle
|
|
// point. Return if the current node has intervals that contain the
|
|
// reference point; otherwise descend on the respective branch.
|
|
if (Node->size() && (*AscendingBuckets)[Node->start()]->left(Point)) {
|
|
return;
|
|
}
|
|
Node = Node->Left;
|
|
} else {
|
|
if (Node->size() &&
|
|
(*DescendingBuckets)[Node->start()]->right(Point)) {
|
|
return;
|
|
}
|
|
Node = Node->Right;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given the current node (which was initialized by initNode), move to
|
|
// the next interval in the list of intervals that contain the reference
|
|
// point. Otherwise move to the next node, as the intervals contained
|
|
// in that node, can contain the reference point.
|
|
void nextInterval() {
|
|
// If there are available intervals that contain the reference point,
|
|
// traverse them; otherwise move to the left or right node, depending
|
|
// on the middle point value.
|
|
if (++Index < Node->size()) {
|
|
if (Node->middle() == Point)
|
|
return;
|
|
if (Point < Node->middle()) {
|
|
// Reference point is on the left.
|
|
if (!(*AscendingBuckets)[Node->start() + Index]->left(Point)) {
|
|
// The intervals don't contain the reference point. Move to the
|
|
// next node, preserving the descending order.
|
|
Node = Node->Left;
|
|
initNode();
|
|
}
|
|
} else {
|
|
// Reference point is on the right.
|
|
if (!(*DescendingBuckets)[Node->start() + Index]->right(Point)) {
|
|
// The intervals don't contain the reference point. Move to the
|
|
// next node, preserving the ascending order.
|
|
Node = Node->Right;
|
|
initNode();
|
|
}
|
|
}
|
|
} else {
|
|
// We have traversed all the intervals in the current node.
|
|
if (Point == Node->middle()) {
|
|
Node = nullptr;
|
|
Index = 0;
|
|
return;
|
|
}
|
|
// Select a branch based on the middle point.
|
|
Node = Point < Node->middle() ? Node->Left : Node->Right;
|
|
initNode();
|
|
}
|
|
}
|
|
|
|
find_iterator() = default;
|
|
explicit find_iterator(const IntervalReferences *Left,
|
|
const IntervalReferences *Right, IntervalNode *Node,
|
|
PointType Point)
|
|
: AscendingBuckets(Left), DescendingBuckets(Right), Node(Node),
|
|
Point(Point), Index(0) {
|
|
initNode();
|
|
}
|
|
|
|
const DataType *current() const {
|
|
return (Point <= Node->middle())
|
|
? (*AscendingBuckets)[Node->start() + Index]
|
|
: (*DescendingBuckets)[Node->start() + Index];
|
|
}
|
|
|
|
public:
|
|
find_iterator &operator++() {
|
|
nextInterval();
|
|
return *this;
|
|
}
|
|
|
|
find_iterator operator++(int) {
|
|
find_iterator Iter(*this);
|
|
nextInterval();
|
|
return Iter;
|
|
}
|
|
|
|
/// Dereference operators.
|
|
const DataType *operator->() const { return current(); }
|
|
const DataType &operator*() const { return *(current()); }
|
|
|
|
/// Comparison operators.
|
|
friend bool operator==(const find_iterator &LHS, const find_iterator &RHS) {
|
|
return (!LHS.Node && !RHS.Node && !LHS.Index && !RHS.Index) ||
|
|
(LHS.Point == RHS.Point && LHS.Node == RHS.Node &&
|
|
LHS.Index == RHS.Index);
|
|
}
|
|
friend bool operator!=(const find_iterator &LHS, const find_iterator &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
friend IntervalTree;
|
|
};
|
|
|
|
private:
|
|
find_iterator End;
|
|
|
|
public:
|
|
explicit IntervalTree(Allocator &NodeAllocator)
|
|
: NodeAllocator(NodeAllocator) {}
|
|
~IntervalTree() { clear(); }
|
|
|
|
/// Return true when no intervals are mapped.
|
|
bool empty() const { return Root == nullptr; }
|
|
|
|
/// Remove all entries.
|
|
void clear() {
|
|
deleteTree(Root);
|
|
Root = nullptr;
|
|
Intervals.clear();
|
|
IntervalsLeft.clear();
|
|
IntervalsRight.clear();
|
|
EndPoints.clear();
|
|
}
|
|
|
|
/// Add a mapping of [Left;Right] to \a Value.
|
|
void insert(PointType Left, PointType Right, ValueType Value) {
|
|
assert(empty() && "Invalid insertion. Interval tree already constructed.");
|
|
Intervals.emplace_back(Left, Right, Value);
|
|
}
|
|
|
|
/// Return all the intervals in their natural tree location, that
|
|
/// contain the given point.
|
|
IntervalReferences getContaining(PointType Point) const {
|
|
assert(!empty() && "Interval tree it is not constructed.");
|
|
IntervalReferences IntervalSet;
|
|
for (find_iterator Iter = find(Point), E = find_end(); Iter != E; ++Iter)
|
|
IntervalSet.push_back(const_cast<DataType *>(&(*Iter)));
|
|
return IntervalSet;
|
|
}
|
|
|
|
/// Sort the given intervals using the following sort options:
|
|
/// Ascending: return the intervals with the smallest at the front.
|
|
/// Descending: return the intervals with the biggest at the front.
|
|
static void sortIntervals(IntervalReferences &IntervalSet, Sorting Sort) {
|
|
std::stable_sort(IntervalSet.begin(), IntervalSet.end(),
|
|
[Sort](const DataType *RHS, const DataType *LHS) {
|
|
return Sort == Sorting::Ascending
|
|
? (LHS->right() - LHS->left()) >
|
|
(RHS->right() - RHS->left())
|
|
: (LHS->right() - LHS->left()) <
|
|
(RHS->right() - RHS->left());
|
|
});
|
|
}
|
|
|
|
/// Print the interval tree.
|
|
/// When \a HexFormat is true, the interval tree interval ranges and
|
|
/// associated values are printed in hexadecimal format.
|
|
void print(raw_ostream &OS, bool HexFormat = true) {
|
|
printTree(OS, 0, Root, HexFormat);
|
|
}
|
|
|
|
/// Create the interval tree.
|
|
void create() {
|
|
assert(empty() && "Interval tree already constructed.");
|
|
// Sorted vector of unique end points values of all the intervals.
|
|
// Records references to the collected intervals.
|
|
SmallVector<PointType, 4> Points;
|
|
for (const DataType &Data : Intervals) {
|
|
Points.push_back(Data.left());
|
|
Points.push_back(Data.right());
|
|
References.push_back(std::addressof(Data));
|
|
}
|
|
std::stable_sort(Points.begin(), Points.end());
|
|
auto Last = llvm::unique(Points);
|
|
Points.erase(Last, Points.end());
|
|
|
|
EndPoints.assign(Points.begin(), Points.end());
|
|
|
|
IntervalsLeft.resize(Intervals.size());
|
|
IntervalsRight.resize(Intervals.size());
|
|
|
|
// Given a set of n intervals, construct a data structure so that
|
|
// we can efficiently retrieve all intervals overlapping another
|
|
// interval or point.
|
|
unsigned IntervalsSize = 0;
|
|
Root =
|
|
createTree(IntervalsSize, /*PointsBeginIndex=*/0, EndPoints.size() - 1,
|
|
/*ReferencesBeginIndex=*/0, References.size());
|
|
|
|
// Save to clear this storage, as it used only to sort the intervals.
|
|
References.clear();
|
|
}
|
|
|
|
/// Iterator to start a find operation; it returns find_end() if the
|
|
/// tree has not been built.
|
|
/// There is no support to iterate over all the elements of the tree.
|
|
find_iterator find(PointType Point) const {
|
|
return empty()
|
|
? find_end()
|
|
: find_iterator(&IntervalsLeft, &IntervalsRight, Root, Point);
|
|
}
|
|
|
|
/// Iterator to end find operation.
|
|
find_iterator find_end() const { return End; }
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_ADT_INTERVALTREE_H
|