Files
clang-r547379/include/llvm/DebugInfo/LogicalView/Readers/LVBinaryReader.h
Ryan Prichard 6024e5c395 Update prebuilt Clang to r547379 (20.0.0).
clang 20.0.0 (based on r547379) from build 12806354.

Bug: http://b/379133546
Test: N/A
Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b

Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
2025-11-26 14:59:46 -05:00

244 lines
9.8 KiB
C++

//===-- LVBinaryReader.h ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LVBinaryReader class, which is used to describe a
// binary reader.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_LOGICALVIEW_READERS_LVBINARYREADER_H
#define LLVM_DEBUGINFO_LOGICALVIEW_READERS_LVBINARYREADER_H
#include "llvm/DebugInfo/LogicalView/Core/LVReader.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ObjectFile.h"
namespace llvm {
namespace logicalview {
constexpr bool UpdateHighAddress = false;
// Logical scope, Section address, Section index, IsComdat.
struct LVSymbolTableEntry final {
LVScope *Scope = nullptr;
LVAddress Address = 0;
LVSectionIndex SectionIndex = 0;
bool IsComdat = false;
LVSymbolTableEntry() = default;
LVSymbolTableEntry(LVScope *Scope, LVAddress Address,
LVSectionIndex SectionIndex, bool IsComdat)
: Scope(Scope), Address(Address), SectionIndex(SectionIndex),
IsComdat(IsComdat) {}
};
// Function names extracted from the object symbol table.
class LVSymbolTable final {
using LVSymbolNames = std::map<std::string, LVSymbolTableEntry>;
LVSymbolNames SymbolNames;
public:
LVSymbolTable() = default;
void add(StringRef Name, LVScope *Function, LVSectionIndex SectionIndex = 0);
void add(StringRef Name, LVAddress Address, LVSectionIndex SectionIndex,
bool IsComdat);
LVSectionIndex update(LVScope *Function);
const LVSymbolTableEntry &getEntry(StringRef Name);
LVAddress getAddress(StringRef Name);
LVSectionIndex getIndex(StringRef Name);
bool getIsComdat(StringRef Name);
void print(raw_ostream &OS);
};
class LVBinaryReader : public LVReader {
// Function names extracted from the object symbol table.
LVSymbolTable SymbolTable;
// It contains the LVLineDebug elements representing the inlined logical
// lines for the current compile unit, created by parsing the CodeView
// S_INLINESITE symbol annotation data.
using LVInlineeLine = std::map<LVScope *, std::unique_ptr<LVLines>>;
LVInlineeLine CUInlineeLines;
// Instruction lines for a logical scope. These instructions are fetched
// during its merge with the debug lines.
LVDoubleMap<LVSectionIndex, LVScope *, LVLines *> ScopeInstructions;
// Links the scope with its first assembler address line.
LVDoubleMap<LVSectionIndex, LVAddress, LVScope *> AssemblerMappings;
// Mapping from virtual address to section.
// The virtual address refers to the address where the section is loaded.
using LVSectionAddresses = std::map<LVSectionIndex, object::SectionRef>;
LVSectionAddresses SectionAddresses;
void addSectionAddress(const object::SectionRef &Section) {
if (SectionAddresses.find(Section.getAddress()) == SectionAddresses.end())
SectionAddresses.emplace(Section.getAddress(), Section);
}
// Scopes with ranges for current compile unit. It is used to find a line
// giving its exact or closest address. To support comdat functions, all
// addresses for the same section are recorded in the same map.
using LVSectionRanges = std::map<LVSectionIndex, std::unique_ptr<LVRange>>;
LVSectionRanges SectionRanges;
// Image base and virtual address for Executable file.
uint64_t ImageBaseAddress = 0;
uint64_t VirtualAddress = 0;
// Object sections with machine code.
using LVSections = std::map<LVSectionIndex, object::SectionRef>;
LVSections Sections;
std::vector<std::unique_ptr<LVLines>> DiscoveredLines;
protected:
// It contains the LVLineDebug elements representing the logical lines for
// the current compile unit, created by parsing the debug line section.
LVLines CULines;
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCAsmInfo> MAI;
std::unique_ptr<const MCSubtargetInfo> STI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<const MCDisassembler> MD;
std::unique_ptr<MCContext> MC;
std::unique_ptr<MCInstPrinter> MIP;
// https://yurydelendik.github.io/webassembly-dwarf/
// 2. Consuming and Generating DWARF for WebAssembly Code
// Note: Some DWARF constructs don't map one-to-one onto WebAssembly
// constructs. We strive to enumerate and resolve any ambiguities here.
//
// 2.1. Code Addresses
// Note: DWARF associates various bits of debug info
// with particular locations in the program via its code address (instruction
// pointer or PC). However, WebAssembly's linear memory address space does not
// contain WebAssembly instructions.
//
// Wherever a code address (see 2.17 of [DWARF]) is used in DWARF for
// WebAssembly, it must be the offset of an instruction relative within the
// Code section of the WebAssembly file. The DWARF is considered malformed if
// a PC offset is between instruction boundaries within the Code section.
//
// Note: It is expected that a DWARF consumer does not know how to decode
// WebAssembly instructions. The instruction pointer is selected as the offset
// in the binary file of the first byte of the instruction, and it is
// consistent with the WebAssembly Web API conventions definition of the code
// location.
//
// EXAMPLE: .DEBUG_LINE INSTRUCTION POINTERS
// The .debug_line DWARF section maps instruction pointers to source
// locations. With WebAssembly, the .debug_line section maps Code
// section-relative instruction offsets to source locations.
//
// EXAMPLE: DW_AT_* ATTRIBUTES
// For entities with a single associated code address, DWARF uses
// the DW_AT_low_pc attribute to specify the associated code address value.
// For WebAssembly, the DW_AT_low_pc's value is a Code section-relative
// instruction offset.
//
// For entities with a single contiguous range of code, DWARF uses a
// pair of DW_AT_low_pc and DW_AT_high_pc attributes to specify the associated
// contiguous range of code address values. For WebAssembly, these attributes
// are Code section-relative instruction offsets.
//
// For entities with multiple ranges of code, DWARF uses the DW_AT_ranges
// attribute, which refers to the array located at the .debug_ranges section.
LVAddress WasmCodeSectionOffset = 0;
// Loads all info for the architecture of the provided object file.
Error loadGenericTargetInfo(StringRef TheTriple, StringRef TheFeatures);
virtual void mapRangeAddress(const object::ObjectFile &Obj) {}
virtual void mapRangeAddress(const object::ObjectFile &Obj,
const object::SectionRef &Section,
bool IsComdat) {}
// Create a mapping from virtual address to section.
void mapVirtualAddress(const object::ObjectFile &Obj);
void mapVirtualAddress(const object::COFFObjectFile &COFFObj);
Expected<std::pair<LVSectionIndex, object::SectionRef>>
getSection(LVScope *Scope, LVAddress Address, LVSectionIndex SectionIndex);
void addSectionRange(LVSectionIndex SectionIndex, LVScope *Scope);
void addSectionRange(LVSectionIndex SectionIndex, LVScope *Scope,
LVAddress LowerAddress, LVAddress UpperAddress);
LVRange *getSectionRanges(LVSectionIndex SectionIndex);
void includeInlineeLines(LVSectionIndex SectionIndex, LVScope *Function);
Error createInstructions();
Error createInstructions(LVScope *Function, LVSectionIndex SectionIndex);
Error createInstructions(LVScope *Function, LVSectionIndex SectionIndex,
const LVNameInfo &NameInfo);
void processLines(LVLines *DebugLines, LVSectionIndex SectionIndex);
void processLines(LVLines *DebugLines, LVSectionIndex SectionIndex,
LVScope *Function);
public:
LVBinaryReader() = delete;
LVBinaryReader(StringRef Filename, StringRef FileFormatName, ScopedPrinter &W,
LVBinaryType BinaryType)
: LVReader(Filename, FileFormatName, W, BinaryType) {}
LVBinaryReader(const LVBinaryReader &) = delete;
LVBinaryReader &operator=(const LVBinaryReader &) = delete;
virtual ~LVBinaryReader() = default;
void addInlineeLines(LVScope *Scope, LVLines &Lines) {
CUInlineeLines.emplace(Scope, std::make_unique<LVLines>(std::move(Lines)));
}
// Convert Segment::Offset pair to absolute address.
LVAddress linearAddress(uint16_t Segment, uint32_t Offset,
LVAddress Addendum = 0) {
return ImageBaseAddress + (Segment * VirtualAddress) + Offset + Addendum;
}
void addToSymbolTable(StringRef Name, LVScope *Function,
LVSectionIndex SectionIndex = 0);
void addToSymbolTable(StringRef Name, LVAddress Address,
LVSectionIndex SectionIndex, bool IsComdat);
LVSectionIndex updateSymbolTable(LVScope *Function);
const LVSymbolTableEntry &getSymbolTableEntry(StringRef Name);
LVAddress getSymbolTableAddress(StringRef Name);
LVSectionIndex getSymbolTableIndex(StringRef Name);
bool getSymbolTableIsComdat(StringRef Name);
LVSectionIndex getSectionIndex(LVScope *Scope) override {
return Scope ? getSymbolTableIndex(Scope->getLinkageName())
: DotTextSectionIndex;
}
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const { print(dbgs()); }
#endif
};
} // end namespace logicalview
} // end namespace llvm
#endif // LLVM_DEBUGINFO_LOGICALVIEW_READERS_LVBINARYREADER_H