clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1014 lines
40 KiB
C++
1014 lines
40 KiB
C++
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the generic AliasAnalysis interface, which is used as the
|
|
// common interface used by all clients of alias analysis information, and
|
|
// implemented by all alias analysis implementations. Mod/Ref information is
|
|
// also captured by this interface.
|
|
//
|
|
// Implementations of this interface must implement the various virtual methods,
|
|
// which automatically provides functionality for the entire suite of client
|
|
// APIs.
|
|
//
|
|
// This API identifies memory regions with the MemoryLocation class. The pointer
|
|
// component specifies the base memory address of the region. The Size specifies
|
|
// the maximum size (in address units) of the memory region, or
|
|
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
|
|
// identifies the "type" of the memory reference; see the
|
|
// TypeBasedAliasAnalysis class for details.
|
|
//
|
|
// Some non-obvious details include:
|
|
// - Pointers that point to two completely different objects in memory never
|
|
// alias, regardless of the value of the Size component.
|
|
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
|
|
// is two pointers to constant memory. Even if they are equal, constant
|
|
// memory is never stored to, so there will never be any dependencies.
|
|
// In this and other situations, the pointers may be both NoAlias and
|
|
// MustAlias at the same time. The current API can only return one result,
|
|
// though this is rarely a problem in practice.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
|
|
#define LLVM_ANALYSIS_ALIASANALYSIS_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ModRef.h"
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class AtomicCmpXchgInst;
|
|
class BasicBlock;
|
|
class CatchPadInst;
|
|
class CatchReturnInst;
|
|
class DominatorTree;
|
|
class FenceInst;
|
|
class LoopInfo;
|
|
class TargetLibraryInfo;
|
|
|
|
/// The possible results of an alias query.
|
|
///
|
|
/// These results are always computed between two MemoryLocation objects as
|
|
/// a query to some alias analysis.
|
|
///
|
|
/// Note that these are unscoped enumerations because we would like to support
|
|
/// implicitly testing a result for the existence of any possible aliasing with
|
|
/// a conversion to bool, but an "enum class" doesn't support this. The
|
|
/// canonical names from the literature are suffixed and unique anyways, and so
|
|
/// they serve as global constants in LLVM for these results.
|
|
///
|
|
/// See docs/AliasAnalysis.html for more information on the specific meanings
|
|
/// of these values.
|
|
class AliasResult {
|
|
private:
|
|
static const int OffsetBits = 23;
|
|
static const int AliasBits = 8;
|
|
static_assert(AliasBits + 1 + OffsetBits <= 32,
|
|
"AliasResult size is intended to be 4 bytes!");
|
|
|
|
unsigned int Alias : AliasBits;
|
|
unsigned int HasOffset : 1;
|
|
signed int Offset : OffsetBits;
|
|
|
|
public:
|
|
enum Kind : uint8_t {
|
|
/// The two locations do not alias at all.
|
|
///
|
|
/// This value is arranged to convert to false, while all other values
|
|
/// convert to true. This allows a boolean context to convert the result to
|
|
/// a binary flag indicating whether there is the possibility of aliasing.
|
|
NoAlias = 0,
|
|
/// The two locations may or may not alias. This is the least precise
|
|
/// result.
|
|
MayAlias,
|
|
/// The two locations alias, but only due to a partial overlap.
|
|
PartialAlias,
|
|
/// The two locations precisely alias each other.
|
|
MustAlias,
|
|
};
|
|
static_assert(MustAlias < (1 << AliasBits),
|
|
"Not enough bit field size for the enum!");
|
|
|
|
explicit AliasResult() = delete;
|
|
constexpr AliasResult(const Kind &Alias)
|
|
: Alias(Alias), HasOffset(false), Offset(0) {}
|
|
|
|
operator Kind() const { return static_cast<Kind>(Alias); }
|
|
|
|
bool operator==(const AliasResult &Other) const {
|
|
return Alias == Other.Alias && HasOffset == Other.HasOffset &&
|
|
Offset == Other.Offset;
|
|
}
|
|
bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
|
|
|
|
bool operator==(Kind K) const { return Alias == K; }
|
|
bool operator!=(Kind K) const { return !(*this == K); }
|
|
|
|
constexpr bool hasOffset() const { return HasOffset; }
|
|
constexpr int32_t getOffset() const {
|
|
assert(HasOffset && "No offset!");
|
|
return Offset;
|
|
}
|
|
void setOffset(int32_t NewOffset) {
|
|
if (isInt<OffsetBits>(NewOffset)) {
|
|
HasOffset = true;
|
|
Offset = NewOffset;
|
|
}
|
|
}
|
|
|
|
/// Helper for processing AliasResult for swapped memory location pairs.
|
|
void swap(bool DoSwap = true) {
|
|
if (DoSwap && hasOffset())
|
|
setOffset(-getOffset());
|
|
}
|
|
};
|
|
|
|
static_assert(sizeof(AliasResult) == 4,
|
|
"AliasResult size is intended to be 4 bytes!");
|
|
|
|
/// << operator for AliasResult.
|
|
raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
|
|
|
|
/// Virtual base class for providers of capture information.
|
|
struct CaptureInfo {
|
|
virtual ~CaptureInfo() = 0;
|
|
|
|
/// Check whether Object is not captured before instruction I. If OrAt is
|
|
/// true, captures by instruction I itself are also considered.
|
|
///
|
|
/// If I is nullptr, then captures at any point will be considered.
|
|
virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I,
|
|
bool OrAt) = 0;
|
|
};
|
|
|
|
/// Context-free CaptureInfo provider, which computes and caches whether an
|
|
/// object is captured in the function at all, but does not distinguish whether
|
|
/// it was captured before or after the context instruction.
|
|
class SimpleCaptureInfo final : public CaptureInfo {
|
|
SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
|
|
|
|
public:
|
|
bool isNotCapturedBefore(const Value *Object, const Instruction *I,
|
|
bool OrAt) override;
|
|
};
|
|
|
|
/// Context-sensitive CaptureInfo provider, which computes and caches the
|
|
/// earliest common dominator closure of all captures. It provides a good
|
|
/// approximation to a precise "captures before" analysis.
|
|
class EarliestEscapeInfo final : public CaptureInfo {
|
|
DominatorTree &DT;
|
|
const LoopInfo *LI;
|
|
|
|
/// Map from identified local object to an instruction before which it does
|
|
/// not escape, or nullptr if it never escapes. The "earliest" instruction
|
|
/// may be a conservative approximation, e.g. the first instruction in the
|
|
/// function is always a legal choice.
|
|
DenseMap<const Value *, Instruction *> EarliestEscapes;
|
|
|
|
/// Reverse map from instruction to the objects it is the earliest escape for.
|
|
/// This is used for cache invalidation purposes.
|
|
DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
|
|
|
|
public:
|
|
EarliestEscapeInfo(DominatorTree &DT, const LoopInfo *LI = nullptr)
|
|
: DT(DT), LI(LI) {}
|
|
|
|
bool isNotCapturedBefore(const Value *Object, const Instruction *I,
|
|
bool OrAt) override;
|
|
|
|
void removeInstruction(Instruction *I);
|
|
};
|
|
|
|
/// Cache key for BasicAA results. It only includes the pointer and size from
|
|
/// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
|
|
/// the value of MayBeCrossIteration, which may affect BasicAA results.
|
|
struct AACacheLoc {
|
|
using PtrTy = PointerIntPair<const Value *, 1, bool>;
|
|
PtrTy Ptr;
|
|
LocationSize Size;
|
|
|
|
AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
|
|
AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
|
|
: Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
|
|
};
|
|
|
|
template <> struct DenseMapInfo<AACacheLoc> {
|
|
static inline AACacheLoc getEmptyKey() {
|
|
return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
|
|
DenseMapInfo<LocationSize>::getEmptyKey()};
|
|
}
|
|
static inline AACacheLoc getTombstoneKey() {
|
|
return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
|
|
DenseMapInfo<LocationSize>::getTombstoneKey()};
|
|
}
|
|
static unsigned getHashValue(const AACacheLoc &Val) {
|
|
return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
|
|
DenseMapInfo<LocationSize>::getHashValue(Val.Size);
|
|
}
|
|
static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
|
|
return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
|
|
}
|
|
};
|
|
|
|
class AAResults;
|
|
|
|
/// This class stores info we want to provide to or retain within an alias
|
|
/// query. By default, the root query is stateless and starts with a freshly
|
|
/// constructed info object. Specific alias analyses can use this query info to
|
|
/// store per-query state that is important for recursive or nested queries to
|
|
/// avoid recomputing. To enable preserving this state across multiple queries
|
|
/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
|
|
/// The information stored in an `AAQueryInfo` is currently limitted to the
|
|
/// caches used by BasicAA, but can further be extended to fit other AA needs.
|
|
class AAQueryInfo {
|
|
public:
|
|
using LocPair = std::pair<AACacheLoc, AACacheLoc>;
|
|
struct CacheEntry {
|
|
/// Cache entry is neither an assumption nor does it use a (non-definitive)
|
|
/// assumption.
|
|
static constexpr int Definitive = -2;
|
|
/// Cache entry is not an assumption itself, but may be using an assumption
|
|
/// from higher up the stack.
|
|
static constexpr int AssumptionBased = -1;
|
|
|
|
AliasResult Result;
|
|
/// Number of times a NoAlias assumption has been used, 0 for assumptions
|
|
/// that have not been used. Can also take one of the Definitive or
|
|
/// AssumptionBased values documented above.
|
|
int NumAssumptionUses;
|
|
|
|
/// Whether this is a definitive (non-assumption) result.
|
|
bool isDefinitive() const { return NumAssumptionUses == Definitive; }
|
|
/// Whether this is an assumption that has not been proven yet.
|
|
bool isAssumption() const { return NumAssumptionUses >= 0; }
|
|
};
|
|
|
|
// Alias analysis result aggregration using which this query is performed.
|
|
// Can be used to perform recursive queries.
|
|
AAResults &AAR;
|
|
|
|
using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
|
|
AliasCacheT AliasCache;
|
|
|
|
CaptureInfo *CI;
|
|
|
|
/// Query depth used to distinguish recursive queries.
|
|
unsigned Depth = 0;
|
|
|
|
/// How many active NoAlias assumption uses there are.
|
|
int NumAssumptionUses = 0;
|
|
|
|
/// Location pairs for which an assumption based result is currently stored.
|
|
/// Used to remove all potentially incorrect results from the cache if an
|
|
/// assumption is disproven.
|
|
SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
|
|
|
|
/// Tracks whether the accesses may be on different cycle iterations.
|
|
///
|
|
/// When interpret "Value" pointer equality as value equality we need to make
|
|
/// sure that the "Value" is not part of a cycle. Otherwise, two uses could
|
|
/// come from different "iterations" of a cycle and see different values for
|
|
/// the same "Value" pointer.
|
|
///
|
|
/// The following example shows the problem:
|
|
/// %p = phi(%alloca1, %addr2)
|
|
/// %l = load %ptr
|
|
/// %addr1 = gep, %alloca2, 0, %l
|
|
/// %addr2 = gep %alloca2, 0, (%l + 1)
|
|
/// alias(%p, %addr1) -> MayAlias !
|
|
/// store %l, ...
|
|
bool MayBeCrossIteration = false;
|
|
|
|
/// Whether alias analysis is allowed to use the dominator tree, for use by
|
|
/// passes that lazily update the DT while performing AA queries.
|
|
bool UseDominatorTree = true;
|
|
|
|
AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
|
|
};
|
|
|
|
/// AAQueryInfo that uses SimpleCaptureInfo.
|
|
class SimpleAAQueryInfo : public AAQueryInfo {
|
|
SimpleCaptureInfo CI;
|
|
|
|
public:
|
|
SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
|
|
};
|
|
|
|
class BatchAAResults;
|
|
|
|
class AAResults {
|
|
public:
|
|
// Make these results default constructable and movable. We have to spell
|
|
// these out because MSVC won't synthesize them.
|
|
AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
|
|
AAResults(AAResults &&Arg);
|
|
~AAResults();
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
|
|
// FIXME: We should use a much lighter weight system than the usual
|
|
// polymorphic pattern because we don't own AAResult. It should
|
|
// ideally involve two pointers and no separate allocation.
|
|
AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
|
|
}
|
|
|
|
/// Register a function analysis ID that the results aggregation depends on.
|
|
///
|
|
/// This is used in the new pass manager to implement the invalidation logic
|
|
/// where we must invalidate the results aggregation if any of our component
|
|
/// analyses become invalid.
|
|
void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
|
|
|
|
/// Handle invalidation events in the new pass manager.
|
|
///
|
|
/// The aggregation is invalidated if any of the underlying analyses is
|
|
/// invalidated.
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Alias Queries
|
|
/// @{
|
|
|
|
/// The main low level interface to the alias analysis implementation.
|
|
/// Returns an AliasResult indicating whether the two pointers are aliased to
|
|
/// each other. This is the interface that must be implemented by specific
|
|
/// alias analysis implementations.
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
|
|
|
|
/// A convenience wrapper around the primary \c alias interface.
|
|
AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
|
|
LocationSize V2Size) {
|
|
return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
|
|
}
|
|
|
|
/// A convenience wrapper around the primary \c alias interface.
|
|
AliasResult alias(const Value *V1, const Value *V2) {
|
|
return alias(MemoryLocation::getBeforeOrAfter(V1),
|
|
MemoryLocation::getBeforeOrAfter(V2));
|
|
}
|
|
|
|
/// A trivial helper function to check to see if the specified pointers are
|
|
/// no-alias.
|
|
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == AliasResult::NoAlias;
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isNoAlias helper interface.
|
|
bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
|
|
LocationSize V2Size) {
|
|
return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isNoAlias helper interface.
|
|
bool isNoAlias(const Value *V1, const Value *V2) {
|
|
return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
|
|
MemoryLocation::getBeforeOrAfter(V2));
|
|
}
|
|
|
|
/// A trivial helper function to check to see if the specified pointers are
|
|
/// must-alias.
|
|
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == AliasResult::MustAlias;
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isMustAlias helper interface.
|
|
bool isMustAlias(const Value *V1, const Value *V2) {
|
|
return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
|
|
AliasResult::MustAlias;
|
|
}
|
|
|
|
/// Checks whether the given location points to constant memory, or if
|
|
/// \p OrLocal is true whether it points to a local alloca.
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
|
|
return isNoModRef(getModRefInfoMask(Loc, OrLocal));
|
|
}
|
|
|
|
/// A convenience wrapper around the primary \c pointsToConstantMemory
|
|
/// interface.
|
|
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
|
|
return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
|
|
}
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Simple mod/ref information
|
|
/// @{
|
|
|
|
/// Returns a bitmask that should be unconditionally applied to the ModRef
|
|
/// info of a memory location. This allows us to eliminate Mod and/or Ref
|
|
/// from the ModRef info based on the knowledge that the memory location
|
|
/// points to constant and/or locally-invariant memory.
|
|
///
|
|
/// If IgnoreLocals is true, then this method returns NoModRef for memory
|
|
/// that points to a local alloca.
|
|
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
|
|
bool IgnoreLocals = false);
|
|
|
|
/// A convenience wrapper around the primary \c getModRefInfoMask
|
|
/// interface.
|
|
ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
|
|
return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
|
|
}
|
|
|
|
/// Get the ModRef info associated with a pointer argument of a call. The
|
|
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
|
|
/// that these bits do not necessarily account for the overall behavior of
|
|
/// the function, but rather only provide additional per-argument
|
|
/// information.
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
|
|
|
|
/// Return the behavior of the given call site.
|
|
MemoryEffects getMemoryEffects(const CallBase *Call);
|
|
|
|
/// Return the behavior when calling the given function.
|
|
MemoryEffects getMemoryEffects(const Function *F);
|
|
|
|
/// Checks if the specified call is known to never read or write memory.
|
|
///
|
|
/// Note that if the call only reads from known-constant memory, it is also
|
|
/// legal to return true. Also, calls that unwind the stack are legal for
|
|
/// this predicate.
|
|
///
|
|
/// Many optimizations (such as CSE and LICM) can be performed on such calls
|
|
/// without worrying about aliasing properties, and many calls have this
|
|
/// property (e.g. calls to 'sin' and 'cos').
|
|
///
|
|
/// This property corresponds to the GCC 'const' attribute.
|
|
bool doesNotAccessMemory(const CallBase *Call) {
|
|
return getMemoryEffects(Call).doesNotAccessMemory();
|
|
}
|
|
|
|
/// Checks if the specified function is known to never read or write memory.
|
|
///
|
|
/// Note that if the function only reads from known-constant memory, it is
|
|
/// also legal to return true. Also, function that unwind the stack are legal
|
|
/// for this predicate.
|
|
///
|
|
/// Many optimizations (such as CSE and LICM) can be performed on such calls
|
|
/// to such functions without worrying about aliasing properties, and many
|
|
/// functions have this property (e.g. 'sin' and 'cos').
|
|
///
|
|
/// This property corresponds to the GCC 'const' attribute.
|
|
bool doesNotAccessMemory(const Function *F) {
|
|
return getMemoryEffects(F).doesNotAccessMemory();
|
|
}
|
|
|
|
/// Checks if the specified call is known to only read from non-volatile
|
|
/// memory (or not access memory at all).
|
|
///
|
|
/// Calls that unwind the stack are legal for this predicate.
|
|
///
|
|
/// This property allows many common optimizations to be performed in the
|
|
/// absence of interfering store instructions, such as CSE of strlen calls.
|
|
///
|
|
/// This property corresponds to the GCC 'pure' attribute.
|
|
bool onlyReadsMemory(const CallBase *Call) {
|
|
return getMemoryEffects(Call).onlyReadsMemory();
|
|
}
|
|
|
|
/// Checks if the specified function is known to only read from non-volatile
|
|
/// memory (or not access memory at all).
|
|
///
|
|
/// Functions that unwind the stack are legal for this predicate.
|
|
///
|
|
/// This property allows many common optimizations to be performed in the
|
|
/// absence of interfering store instructions, such as CSE of strlen calls.
|
|
///
|
|
/// This property corresponds to the GCC 'pure' attribute.
|
|
bool onlyReadsMemory(const Function *F) {
|
|
return getMemoryEffects(F).onlyReadsMemory();
|
|
}
|
|
|
|
/// Check whether or not an instruction may read or write the optionally
|
|
/// specified memory location.
|
|
///
|
|
///
|
|
/// An instruction that doesn't read or write memory may be trivially LICM'd
|
|
/// for example.
|
|
///
|
|
/// For function calls, this delegates to the alias-analysis specific
|
|
/// call-site mod-ref behavior queries. Otherwise it delegates to the specific
|
|
/// helpers above.
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const std::optional<MemoryLocation> &OptLoc) {
|
|
SimpleAAQueryInfo AAQIP(*this);
|
|
return getModRefInfo(I, OptLoc, AAQIP);
|
|
}
|
|
|
|
/// A convenience wrapper for constructing the memory location.
|
|
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(I, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// Return information about whether a call and an instruction may refer to
|
|
/// the same memory locations.
|
|
ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
|
|
|
|
/// Return information about whether a particular call site modifies
|
|
/// or reads the specified memory location \p MemLoc before instruction \p I
|
|
/// in a BasicBlock.
|
|
ModRefInfo callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc,
|
|
DominatorTree *DT) {
|
|
SimpleAAQueryInfo AAQIP(*this);
|
|
return callCapturesBefore(I, MemLoc, DT, AAQIP);
|
|
}
|
|
|
|
/// A convenience wrapper to synthesize a memory location.
|
|
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
|
|
LocationSize Size, DominatorTree *DT) {
|
|
return callCapturesBefore(I, MemoryLocation(P, Size), DT);
|
|
}
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Higher level methods for querying mod/ref information.
|
|
/// @{
|
|
|
|
/// Check if it is possible for execution of the specified basic block to
|
|
/// modify the location Loc.
|
|
bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
|
|
|
|
/// A convenience wrapper synthesizing a memory location.
|
|
bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
|
|
LocationSize Size) {
|
|
return canBasicBlockModify(BB, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// Check if it is possible for the execution of the specified instructions
|
|
/// to mod\ref (according to the mode) the location Loc.
|
|
///
|
|
/// The instructions to consider are all of the instructions in the range of
|
|
/// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
|
|
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
|
|
const MemoryLocation &Loc,
|
|
const ModRefInfo Mode);
|
|
|
|
/// A convenience wrapper synthesizing a memory location.
|
|
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
|
|
const Value *Ptr, LocationSize Size,
|
|
const ModRefInfo Mode) {
|
|
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
|
|
}
|
|
|
|
// CtxI can be nullptr, in which case the query is whether or not the aliasing
|
|
// relationship holds through the entire function.
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
|
|
|
|
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool IgnoreLocals = false);
|
|
ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
|
|
AAQueryInfo &AAQIP);
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc, AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const std::optional<MemoryLocation> &OptLoc,
|
|
AAQueryInfo &AAQIP);
|
|
ModRefInfo callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc, DominatorTree *DT,
|
|
AAQueryInfo &AAQIP);
|
|
MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
|
|
|
|
private:
|
|
class Concept;
|
|
|
|
template <typename T> class Model;
|
|
|
|
friend class AAResultBase;
|
|
|
|
const TargetLibraryInfo &TLI;
|
|
|
|
std::vector<std::unique_ptr<Concept>> AAs;
|
|
|
|
std::vector<AnalysisKey *> AADeps;
|
|
|
|
friend class BatchAAResults;
|
|
};
|
|
|
|
/// This class is a wrapper over an AAResults, and it is intended to be used
|
|
/// only when there are no IR changes inbetween queries. BatchAAResults is
|
|
/// reusing the same `AAQueryInfo` to preserve the state across queries,
|
|
/// esentially making AA work in "batch mode". The internal state cannot be
|
|
/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
|
|
/// or create a new BatchAAResults.
|
|
class BatchAAResults {
|
|
AAResults &AA;
|
|
AAQueryInfo AAQI;
|
|
SimpleCaptureInfo SimpleCI;
|
|
|
|
public:
|
|
BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
|
|
BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
|
|
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return AA.alias(LocA, LocB, AAQI);
|
|
}
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
|
|
return isNoModRef(AA.getModRefInfoMask(Loc, AAQI, OrLocal));
|
|
}
|
|
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
|
|
bool IgnoreLocals = false) {
|
|
return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
|
|
}
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const std::optional<MemoryLocation> &OptLoc) {
|
|
return AA.getModRefInfo(I, OptLoc, AAQI);
|
|
}
|
|
ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
|
|
return AA.getModRefInfo(I, Call2, AAQI);
|
|
}
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
|
|
return AA.getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
MemoryEffects getMemoryEffects(const CallBase *Call) {
|
|
return AA.getMemoryEffects(Call, AAQI);
|
|
}
|
|
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == AliasResult::MustAlias;
|
|
}
|
|
bool isMustAlias(const Value *V1, const Value *V2) {
|
|
return alias(MemoryLocation(V1, LocationSize::precise(1)),
|
|
MemoryLocation(V2, LocationSize::precise(1))) ==
|
|
AliasResult::MustAlias;
|
|
}
|
|
ModRefInfo callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc,
|
|
DominatorTree *DT) {
|
|
return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
|
|
}
|
|
|
|
/// Assume that values may come from different cycle iterations.
|
|
void enableCrossIterationMode() {
|
|
AAQI.MayBeCrossIteration = true;
|
|
}
|
|
|
|
/// Disable the use of the dominator tree during alias analysis queries.
|
|
void disableDominatorTree() { AAQI.UseDominatorTree = false; }
|
|
};
|
|
|
|
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
|
|
/// pointer or reference.
|
|
using AliasAnalysis = AAResults;
|
|
|
|
/// A private abstract base class describing the concept of an individual alias
|
|
/// analysis implementation.
|
|
///
|
|
/// This interface is implemented by any \c Model instantiation. It is also the
|
|
/// interface which a type used to instantiate the model must provide.
|
|
///
|
|
/// All of these methods model methods by the same name in the \c
|
|
/// AAResults class. Only differences and specifics to how the
|
|
/// implementations are called are documented here.
|
|
class AAResults::Concept {
|
|
public:
|
|
virtual ~Concept() = 0;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Alias Queries
|
|
/// @{
|
|
|
|
/// The main low level interface to the alias analysis implementation.
|
|
/// Returns an AliasResult indicating whether the two pointers are aliased to
|
|
/// each other. This is the interface that must be implemented by specific
|
|
/// alias analysis implementations.
|
|
virtual AliasResult alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB, AAQueryInfo &AAQI,
|
|
const Instruction *CtxI) = 0;
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Simple mod/ref information
|
|
/// @{
|
|
|
|
/// Returns a bitmask that should be unconditionally applied to the ModRef
|
|
/// info of a memory location. This allows us to eliminate Mod and/or Ref from
|
|
/// the ModRef info based on the knowledge that the memory location points to
|
|
/// constant and/or locally-invariant memory.
|
|
virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI,
|
|
bool IgnoreLocals) = 0;
|
|
|
|
/// Get the ModRef info associated with a pointer argument of a callsite. The
|
|
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
|
|
/// that these bits do not necessarily account for the overall behavior of
|
|
/// the function, but rather only provide additional per-argument
|
|
/// information.
|
|
virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
|
|
unsigned ArgIdx) = 0;
|
|
|
|
/// Return the behavior of the given call site.
|
|
virtual MemoryEffects getMemoryEffects(const CallBase *Call,
|
|
AAQueryInfo &AAQI) = 0;
|
|
|
|
/// Return the behavior when calling the given function.
|
|
virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
|
|
|
|
/// getModRefInfo (for call sites) - Return information about whether
|
|
/// a particular call site modifies or reads the specified memory location.
|
|
virtual ModRefInfo getModRefInfo(const CallBase *Call,
|
|
const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) = 0;
|
|
|
|
/// Return information about whether two call sites may refer to the same set
|
|
/// of memory locations. See the AA documentation for details:
|
|
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
|
|
virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) = 0;
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// A private class template which derives from \c Concept and wraps some other
|
|
/// type.
|
|
///
|
|
/// This models the concept by directly forwarding each interface point to the
|
|
/// wrapped type which must implement a compatible interface. This provides
|
|
/// a type erased binding.
|
|
template <typename AAResultT> class AAResults::Model final : public Concept {
|
|
AAResultT &Result;
|
|
|
|
public:
|
|
explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
|
|
~Model() override = default;
|
|
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI, const Instruction *CtxI) override {
|
|
return Result.alias(LocA, LocB, AAQI, CtxI);
|
|
}
|
|
|
|
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool IgnoreLocals) override {
|
|
return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
|
|
}
|
|
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
|
|
return Result.getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
|
|
MemoryEffects getMemoryEffects(const CallBase *Call,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.getMemoryEffects(Call, AAQI);
|
|
}
|
|
|
|
MemoryEffects getMemoryEffects(const Function *F) override {
|
|
return Result.getMemoryEffects(F);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.getModRefInfo(Call, Loc, AAQI);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.getModRefInfo(Call1, Call2, AAQI);
|
|
}
|
|
};
|
|
|
|
/// A base class to help implement the function alias analysis results concept.
|
|
///
|
|
/// Because of the nature of many alias analysis implementations, they often
|
|
/// only implement a subset of the interface. This base class will attempt to
|
|
/// implement the remaining portions of the interface in terms of simpler forms
|
|
/// of the interface where possible, and otherwise provide conservatively
|
|
/// correct fallback implementations.
|
|
///
|
|
/// Implementors of an alias analysis should derive from this class, and then
|
|
/// override specific methods that they wish to customize. There is no need to
|
|
/// use virtual anywhere.
|
|
class AAResultBase {
|
|
protected:
|
|
explicit AAResultBase() = default;
|
|
|
|
// Provide all the copy and move constructors so that derived types aren't
|
|
// constrained.
|
|
AAResultBase(const AAResultBase &Arg) {}
|
|
AAResultBase(AAResultBase &&Arg) {}
|
|
|
|
public:
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI, const Instruction *I) {
|
|
return AliasResult::MayAlias;
|
|
}
|
|
|
|
ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool IgnoreLocals) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
|
|
MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
|
|
return MemoryEffects::unknown();
|
|
}
|
|
|
|
MemoryEffects getMemoryEffects(const Function *F) {
|
|
return MemoryEffects::unknown();
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
};
|
|
|
|
/// Return true if this pointer is returned by a noalias function.
|
|
bool isNoAliasCall(const Value *V);
|
|
|
|
/// Return true if this pointer refers to a distinct and identifiable object.
|
|
/// This returns true for:
|
|
/// Global Variables and Functions (but not Global Aliases)
|
|
/// Allocas
|
|
/// ByVal and NoAlias Arguments
|
|
/// NoAlias returns (e.g. calls to malloc)
|
|
///
|
|
bool isIdentifiedObject(const Value *V);
|
|
|
|
/// Return true if V is umabigously identified at the function-level.
|
|
/// Different IdentifiedFunctionLocals can't alias.
|
|
/// Further, an IdentifiedFunctionLocal can not alias with any function
|
|
/// arguments other than itself, which is not necessarily true for
|
|
/// IdentifiedObjects.
|
|
bool isIdentifiedFunctionLocal(const Value *V);
|
|
|
|
/// Returns true if the pointer is one which would have been considered an
|
|
/// escape by isNonEscapingLocalObject.
|
|
bool isEscapeSource(const Value *V);
|
|
|
|
/// Return true if Object memory is not visible after an unwind, in the sense
|
|
/// that program semantics cannot depend on Object containing any particular
|
|
/// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
|
|
/// to true, then the memory is only not visible if the object has not been
|
|
/// captured prior to the unwind. Otherwise it is not visible even if captured.
|
|
bool isNotVisibleOnUnwind(const Value *Object,
|
|
bool &RequiresNoCaptureBeforeUnwind);
|
|
|
|
/// Return true if the Object is writable, in the sense that any location based
|
|
/// on this pointer that can be loaded can also be stored to without trapping.
|
|
/// Additionally, at the point Object is declared, stores can be introduced
|
|
/// without data races. At later points, this is only the case if the pointer
|
|
/// can not escape to a different thread.
|
|
///
|
|
/// If ExplicitlyDereferenceableOnly is set to true, this property only holds
|
|
/// for the part of Object that is explicitly marked as dereferenceable, e.g.
|
|
/// using the dereferenceable(N) attribute. It does not necessarily hold for
|
|
/// parts that are only known to be dereferenceable due to the presence of
|
|
/// loads.
|
|
bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
|
|
|
|
/// A manager for alias analyses.
|
|
///
|
|
/// This class can have analyses registered with it and when run, it will run
|
|
/// all of them and aggregate their results into single AA results interface
|
|
/// that dispatches across all of the alias analysis results available.
|
|
///
|
|
/// Note that the order in which analyses are registered is very significant.
|
|
/// That is the order in which the results will be aggregated and queried.
|
|
///
|
|
/// This manager effectively wraps the AnalysisManager for registering alias
|
|
/// analyses. When you register your alias analysis with this manager, it will
|
|
/// ensure the analysis itself is registered with its AnalysisManager.
|
|
///
|
|
/// The result of this analysis is only invalidated if one of the particular
|
|
/// aggregated AA results end up being invalidated. This removes the need to
|
|
/// explicitly preserve the results of `AAManager`. Note that analyses should no
|
|
/// longer be registered once the `AAManager` is run.
|
|
class AAManager : public AnalysisInfoMixin<AAManager> {
|
|
public:
|
|
using Result = AAResults;
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AnalysisT> void registerFunctionAnalysis() {
|
|
ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
|
|
}
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AnalysisT> void registerModuleAnalysis() {
|
|
ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
|
|
}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM);
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<AAManager>;
|
|
|
|
static AnalysisKey Key;
|
|
|
|
SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
|
|
AAResults &AAResults),
|
|
4> ResultGetters;
|
|
|
|
template <typename AnalysisT>
|
|
static void getFunctionAAResultImpl(Function &F,
|
|
FunctionAnalysisManager &AM,
|
|
AAResults &AAResults) {
|
|
AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
|
|
AAResults.addAADependencyID(AnalysisT::ID());
|
|
}
|
|
|
|
template <typename AnalysisT>
|
|
static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
|
|
AAResults &AAResults) {
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (auto *R =
|
|
MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
|
|
AAResults.addAAResult(*R);
|
|
MAMProxy
|
|
.template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A wrapper pass to provide the legacy pass manager access to a suitably
|
|
/// prepared AAResults object.
|
|
class AAResultsWrapperPass : public FunctionPass {
|
|
std::unique_ptr<AAResults> AAR;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AAResultsWrapperPass();
|
|
|
|
AAResults &getAAResults() { return *AAR; }
|
|
const AAResults &getAAResults() const { return *AAR; }
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
|
|
/// A wrapper pass for external alias analyses. This just squirrels away the
|
|
/// callback used to run any analyses and register their results.
|
|
struct ExternalAAWrapperPass : ImmutablePass {
|
|
using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
|
|
|
|
CallbackT CB;
|
|
|
|
static char ID;
|
|
|
|
ExternalAAWrapperPass();
|
|
|
|
explicit ExternalAAWrapperPass(CallbackT CB);
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
/// A wrapper pass around a callback which can be used to populate the
|
|
/// AAResults in the AAResultsWrapperPass from an external AA.
|
|
///
|
|
/// The callback provided here will be used each time we prepare an AAResults
|
|
/// object, and will receive a reference to the function wrapper pass, the
|
|
/// function, and the AAResults object to populate. This should be used when
|
|
/// setting up a custom pass pipeline to inject a hook into the AA results.
|
|
ImmutablePass *createExternalAAWrapperPass(
|
|
std::function<void(Pass &, Function &, AAResults &)> Callback);
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
|