clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
424 lines
16 KiB
C++
424 lines
16 KiB
C++
// SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SValBuilder, a class that defines the interface for
|
|
// "symbolical evaluators" which construct an SVal from an expression.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
|
|
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include <cstdint>
|
|
#include <optional>
|
|
|
|
namespace clang {
|
|
|
|
class AnalyzerOptions;
|
|
class BlockDecl;
|
|
class CXXBoolLiteralExpr;
|
|
class CXXMethodDecl;
|
|
class CXXRecordDecl;
|
|
class DeclaratorDecl;
|
|
class FunctionDecl;
|
|
class LocationContext;
|
|
class StackFrameContext;
|
|
class Stmt;
|
|
|
|
namespace ento {
|
|
|
|
class ConditionTruthVal;
|
|
class ProgramStateManager;
|
|
class StoreRef;
|
|
|
|
class SValBuilder {
|
|
virtual void anchor();
|
|
|
|
protected:
|
|
ASTContext &Context;
|
|
|
|
/// Manager of APSInt values.
|
|
BasicValueFactory BasicVals;
|
|
|
|
/// Manages the creation of symbols.
|
|
SymbolManager SymMgr;
|
|
|
|
/// Manages the creation of memory regions.
|
|
MemRegionManager MemMgr;
|
|
|
|
ProgramStateManager &StateMgr;
|
|
|
|
const AnalyzerOptions &AnOpts;
|
|
|
|
/// The scalar type to use for array indices.
|
|
const QualType ArrayIndexTy;
|
|
|
|
/// The width of the scalar type used for array indices.
|
|
const unsigned ArrayIndexWidth;
|
|
|
|
public:
|
|
SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
|
|
ProgramStateManager &stateMgr);
|
|
|
|
virtual ~SValBuilder() = default;
|
|
|
|
SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy);
|
|
|
|
// Handles casts of type CK_IntegralCast.
|
|
SVal evalIntegralCast(ProgramStateRef state, SVal val, QualType castTy,
|
|
QualType originalType);
|
|
|
|
SVal evalMinus(NonLoc val);
|
|
SVal evalComplement(NonLoc val);
|
|
|
|
/// Create a new value which represents a binary expression with two non-
|
|
/// location operands.
|
|
virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
|
|
|
|
/// Create a new value which represents a binary expression with two memory
|
|
/// location operands.
|
|
virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
Loc lhs, Loc rhs, QualType resultTy) = 0;
|
|
|
|
/// Create a new value which represents a binary expression with a memory
|
|
/// location and non-location operands. For example, this would be used to
|
|
/// evaluate a pointer arithmetic operation.
|
|
virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
Loc lhs, NonLoc rhs, QualType resultTy) = 0;
|
|
|
|
/// Evaluates a given SVal. If the SVal has only one possible (integer) value,
|
|
/// that value is returned. Otherwise, returns NULL.
|
|
virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
|
|
|
|
/// Tries to get the minimal possible (integer) value of a given SVal. This
|
|
/// always returns the value of a ConcreteInt, but may return NULL if the
|
|
/// value is symbolic and the constraint manager cannot provide a useful
|
|
/// answer.
|
|
virtual const llvm::APSInt *getMinValue(ProgramStateRef state, SVal val) = 0;
|
|
|
|
/// Tries to get the maximal possible (integer) value of a given SVal. This
|
|
/// always returns the value of a ConcreteInt, but may return NULL if the
|
|
/// value is symbolic and the constraint manager cannot provide a useful
|
|
/// answer.
|
|
virtual const llvm::APSInt *getMaxValue(ProgramStateRef state, SVal val) = 0;
|
|
|
|
/// Simplify symbolic expressions within a given SVal. Return an SVal
|
|
/// that represents the same value, but is hopefully easier to work with
|
|
/// than the original SVal.
|
|
virtual SVal simplifySVal(ProgramStateRef State, SVal Val) = 0;
|
|
|
|
/// Constructs a symbolic expression for two non-location values.
|
|
SVal makeSymExprValNN(BinaryOperator::Opcode op,
|
|
NonLoc lhs, NonLoc rhs, QualType resultTy);
|
|
|
|
SVal evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
|
|
SVal operand, QualType type);
|
|
|
|
SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
SVal lhs, SVal rhs, QualType type);
|
|
|
|
/// \return Whether values in \p lhs and \p rhs are equal at \p state.
|
|
ConditionTruthVal areEqual(ProgramStateRef state, SVal lhs, SVal rhs);
|
|
|
|
SVal evalEQ(ProgramStateRef state, SVal lhs, SVal rhs);
|
|
|
|
DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
|
|
DefinedOrUnknownSVal rhs);
|
|
|
|
ASTContext &getContext() { return Context; }
|
|
const ASTContext &getContext() const { return Context; }
|
|
|
|
ProgramStateManager &getStateManager() { return StateMgr; }
|
|
|
|
QualType getConditionType() const {
|
|
return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
|
|
}
|
|
|
|
QualType getArrayIndexType() const {
|
|
return ArrayIndexTy;
|
|
}
|
|
|
|
BasicValueFactory &getBasicValueFactory() { return BasicVals; }
|
|
const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
|
|
|
|
SymbolManager &getSymbolManager() { return SymMgr; }
|
|
const SymbolManager &getSymbolManager() const { return SymMgr; }
|
|
|
|
MemRegionManager &getRegionManager() { return MemMgr; }
|
|
const MemRegionManager &getRegionManager() const { return MemMgr; }
|
|
|
|
const AnalyzerOptions &getAnalyzerOptions() const { return AnOpts; }
|
|
|
|
// Forwarding methods to SymbolManager.
|
|
|
|
const SymbolConjured* conjureSymbol(const Stmt *stmt,
|
|
const LocationContext *LCtx,
|
|
QualType type,
|
|
unsigned visitCount,
|
|
const void *symbolTag = nullptr) {
|
|
return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
|
|
}
|
|
|
|
const SymbolConjured* conjureSymbol(const Expr *expr,
|
|
const LocationContext *LCtx,
|
|
unsigned visitCount,
|
|
const void *symbolTag = nullptr) {
|
|
return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
|
|
}
|
|
|
|
/// Construct an SVal representing '0' for the specified type.
|
|
DefinedOrUnknownSVal makeZeroVal(QualType type);
|
|
|
|
/// Make a unique symbol for value of region.
|
|
DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
|
|
|
|
/// Create a new symbol with a unique 'name'.
|
|
///
|
|
/// We resort to conjured symbols when we cannot construct a derived symbol.
|
|
/// The advantage of symbols derived/built from other symbols is that we
|
|
/// preserve the relation between related(or even equivalent) expressions, so
|
|
/// conjured symbols should be used sparingly.
|
|
DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
|
|
const Expr *expr,
|
|
const LocationContext *LCtx,
|
|
unsigned count);
|
|
DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
|
|
const Expr *expr,
|
|
const LocationContext *LCtx,
|
|
QualType type,
|
|
unsigned count);
|
|
DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
|
|
const LocationContext *LCtx,
|
|
QualType type,
|
|
unsigned visitCount);
|
|
|
|
/// Conjure a symbol representing heap allocated memory region.
|
|
///
|
|
/// Note, the expression should represent a location.
|
|
DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
|
|
const LocationContext *LCtx,
|
|
unsigned Count);
|
|
|
|
/// Conjure a symbol representing heap allocated memory region.
|
|
///
|
|
/// Note, now, the expression *doesn't* need to represent a location.
|
|
/// But the type need to!
|
|
DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
|
|
const LocationContext *LCtx,
|
|
QualType type, unsigned Count);
|
|
|
|
/// Create an SVal representing the result of an alloca()-like call, that is,
|
|
/// an AllocaRegion on the stack.
|
|
///
|
|
/// After calling this function, it's a good idea to set the extent of the
|
|
/// returned AllocaRegion.
|
|
loc::MemRegionVal getAllocaRegionVal(const Expr *E,
|
|
const LocationContext *LCtx,
|
|
unsigned Count);
|
|
|
|
DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
|
|
SymbolRef parentSymbol, const TypedValueRegion *region);
|
|
|
|
DefinedSVal getMetadataSymbolVal(const void *symbolTag,
|
|
const MemRegion *region,
|
|
const Expr *expr, QualType type,
|
|
const LocationContext *LCtx,
|
|
unsigned count);
|
|
|
|
DefinedSVal getMemberPointer(const NamedDecl *ND);
|
|
|
|
DefinedSVal getFunctionPointer(const FunctionDecl *func);
|
|
|
|
DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
|
|
const LocationContext *locContext,
|
|
unsigned blockCount);
|
|
|
|
/// Returns the value of \p E, if it can be determined in a non-path-sensitive
|
|
/// manner.
|
|
///
|
|
/// If \p E is not a constant or cannot be modeled, returns \c std::nullopt.
|
|
std::optional<SVal> getConstantVal(const Expr *E);
|
|
|
|
NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
|
|
return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
|
|
}
|
|
|
|
NonLoc makeLazyCompoundVal(const StoreRef &store,
|
|
const TypedValueRegion *region) {
|
|
return nonloc::LazyCompoundVal(
|
|
BasicVals.getLazyCompoundValData(store, region));
|
|
}
|
|
|
|
NonLoc makePointerToMember(const DeclaratorDecl *DD) {
|
|
return nonloc::PointerToMember(DD);
|
|
}
|
|
|
|
NonLoc makePointerToMember(const PointerToMemberData *PTMD) {
|
|
return nonloc::PointerToMember(PTMD);
|
|
}
|
|
|
|
NonLoc makeZeroArrayIndex() {
|
|
return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
|
|
}
|
|
|
|
NonLoc makeArrayIndex(uint64_t idx) {
|
|
return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
|
|
}
|
|
|
|
SVal convertToArrayIndex(SVal val);
|
|
|
|
nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
|
|
return nonloc::ConcreteInt(
|
|
BasicVals.getValue(integer->getValue(),
|
|
integer->getType()->isUnsignedIntegerOrEnumerationType()));
|
|
}
|
|
|
|
nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
|
|
return makeTruthVal(boolean->getValue(), boolean->getType());
|
|
}
|
|
|
|
nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
|
|
|
|
nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
|
|
return nonloc::ConcreteInt(BasicVals.getValue(integer));
|
|
}
|
|
|
|
loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
|
|
return loc::ConcreteInt(BasicVals.getValue(integer));
|
|
}
|
|
|
|
NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
|
|
return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
|
|
}
|
|
|
|
DefinedSVal makeIntVal(uint64_t integer, QualType type) {
|
|
if (Loc::isLocType(type))
|
|
return loc::ConcreteInt(BasicVals.getValue(integer, type));
|
|
|
|
return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
|
|
}
|
|
|
|
NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
|
|
return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
|
|
}
|
|
|
|
NonLoc makeIntValWithWidth(QualType ptrType, uint64_t integer) {
|
|
return nonloc::ConcreteInt(BasicVals.getValue(integer, ptrType));
|
|
}
|
|
|
|
NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
|
|
return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
|
|
}
|
|
|
|
nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
|
|
const llvm::APSInt &rhs, QualType type);
|
|
|
|
nonloc::SymbolVal makeNonLoc(const llvm::APSInt &rhs,
|
|
BinaryOperator::Opcode op, const SymExpr *lhs,
|
|
QualType type);
|
|
|
|
nonloc::SymbolVal makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
|
|
const SymExpr *rhs, QualType type);
|
|
|
|
NonLoc makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
|
|
QualType type);
|
|
|
|
/// Create a NonLoc value for cast.
|
|
nonloc::SymbolVal makeNonLoc(const SymExpr *operand, QualType fromTy,
|
|
QualType toTy);
|
|
|
|
nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
|
|
return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
|
|
}
|
|
|
|
nonloc::ConcreteInt makeTruthVal(bool b) {
|
|
return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
|
|
}
|
|
|
|
/// Create NULL pointer, with proper pointer bit-width for given address
|
|
/// space.
|
|
/// \param type pointer type.
|
|
loc::ConcreteInt makeNullWithType(QualType type) {
|
|
// We cannot use the `isAnyPointerType()`.
|
|
assert((type->isPointerType() || type->isObjCObjectPointerType() ||
|
|
type->isBlockPointerType() || type->isNullPtrType() ||
|
|
type->isReferenceType()) &&
|
|
"makeNullWithType must use pointer type");
|
|
|
|
// The `sizeof(T&)` is `sizeof(T)`, thus we replace the reference with a
|
|
// pointer. Here we assume that references are actually implemented by
|
|
// pointers under-the-hood.
|
|
type = type->isReferenceType()
|
|
? Context.getPointerType(type->getPointeeType())
|
|
: type;
|
|
return loc::ConcreteInt(BasicVals.getZeroWithTypeSize(type));
|
|
}
|
|
|
|
loc::MemRegionVal makeLoc(SymbolRef sym) {
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
}
|
|
|
|
loc::MemRegionVal makeLoc(const MemRegion *region) {
|
|
return loc::MemRegionVal(region);
|
|
}
|
|
|
|
loc::GotoLabel makeLoc(const AddrLabelExpr *expr) {
|
|
return loc::GotoLabel(expr->getLabel());
|
|
}
|
|
|
|
loc::ConcreteInt makeLoc(const llvm::APSInt &integer) {
|
|
return loc::ConcreteInt(BasicVals.getValue(integer));
|
|
}
|
|
|
|
/// Return MemRegionVal on success cast, otherwise return std::nullopt.
|
|
std::optional<loc::MemRegionVal>
|
|
getCastedMemRegionVal(const MemRegion *region, QualType type);
|
|
|
|
/// Make an SVal that represents the given symbol. This follows the convention
|
|
/// of representing Loc-type symbols (symbolic pointers and references)
|
|
/// as Loc values wrapping the symbol rather than as plain symbol values.
|
|
DefinedSVal makeSymbolVal(SymbolRef Sym) {
|
|
if (Loc::isLocType(Sym->getType()))
|
|
return makeLoc(Sym);
|
|
return nonloc::SymbolVal(Sym);
|
|
}
|
|
|
|
/// Return a memory region for the 'this' object reference.
|
|
loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
|
|
const StackFrameContext *SFC);
|
|
|
|
/// Return a memory region for the 'this' object reference.
|
|
loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
|
|
const StackFrameContext *SFC);
|
|
};
|
|
|
|
SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
|
|
ASTContext &context,
|
|
ProgramStateManager &stateMgr);
|
|
|
|
} // namespace ento
|
|
|
|
} // namespace clang
|
|
|
|
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
|