clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
907 lines
34 KiB
C++
907 lines
34 KiB
C++
//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the state of the program along the analysisa path.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
|
|
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
|
|
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableMap.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
class APSInt;
|
|
}
|
|
|
|
namespace clang {
|
|
class ASTContext;
|
|
|
|
namespace ento {
|
|
|
|
class AnalysisManager;
|
|
class CallEvent;
|
|
class CallEventManager;
|
|
|
|
typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
|
|
ProgramStateManager &, ExprEngine *);
|
|
typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
|
|
ProgramStateManager &);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T> struct ProgramStateTrait {
|
|
typedef typename T::data_type data_type;
|
|
static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
|
|
static inline data_type MakeData(void *const* P) {
|
|
return P ? (data_type) *P : (data_type) 0;
|
|
}
|
|
};
|
|
|
|
/// \class ProgramState
|
|
/// ProgramState - This class encapsulates:
|
|
///
|
|
/// 1. A mapping from expressions to values (Environment)
|
|
/// 2. A mapping from locations to values (Store)
|
|
/// 3. Constraints on symbolic values (GenericDataMap)
|
|
///
|
|
/// Together these represent the "abstract state" of a program.
|
|
///
|
|
/// ProgramState is intended to be used as a functional object; that is,
|
|
/// once it is created and made "persistent" in a FoldingSet, its
|
|
/// values will never change.
|
|
class ProgramState : public llvm::FoldingSetNode {
|
|
public:
|
|
typedef llvm::ImmutableSet<llvm::APSInt*> IntSetTy;
|
|
typedef llvm::ImmutableMap<void*, void*> GenericDataMap;
|
|
|
|
private:
|
|
void operator=(const ProgramState& R) = delete;
|
|
|
|
friend class ProgramStateManager;
|
|
friend class ExplodedGraph;
|
|
friend class ExplodedNode;
|
|
friend class NodeBuilder;
|
|
|
|
ProgramStateManager *stateMgr;
|
|
Environment Env; // Maps a Stmt to its current SVal.
|
|
Store store; // Maps a location to its current value.
|
|
GenericDataMap GDM; // Custom data stored by a client of this class.
|
|
|
|
// A state is infeasible if there is a contradiction among the constraints.
|
|
// An infeasible state is represented by a `nullptr`.
|
|
// In the sense of `assumeDual`, a state can have two children by adding a
|
|
// new constraint and the negation of that new constraint. A parent state is
|
|
// over-constrained if both of its children are infeasible. In the
|
|
// mathematical sense, it means that the parent is infeasible and we should
|
|
// have realized that at the moment when we have created it. However, we
|
|
// could not recognize that because of the imperfection of the underlying
|
|
// constraint solver. We say it is posteriorly over-constrained because we
|
|
// recognize that a parent is infeasible only *after* a new and more specific
|
|
// constraint and its negation are evaluated.
|
|
//
|
|
// Example:
|
|
//
|
|
// x * x = 4 and x is in the range [0, 1]
|
|
// This is an already infeasible state, but the constraint solver is not
|
|
// capable of handling sqrt, thus we don't know it yet.
|
|
//
|
|
// Then a new constraint `x = 0` is added. At this moment the constraint
|
|
// solver re-evaluates the existing constraints and realizes the
|
|
// contradiction `0 * 0 = 4`.
|
|
// We also evaluate the negated constraint `x != 0`; the constraint solver
|
|
// deduces `x = 1` and then realizes the contradiction `1 * 1 = 4`.
|
|
// Both children are infeasible, thus the parent state is marked as
|
|
// posteriorly over-constrained. These parents are handled with special care:
|
|
// we do not allow transitions to exploded nodes with such states.
|
|
bool PosteriorlyOverconstrained = false;
|
|
// Make internal constraint solver entities friends so they can access the
|
|
// overconstrained-related functions. We want to keep this API inaccessible
|
|
// for Checkers.
|
|
friend class ConstraintManager;
|
|
bool isPosteriorlyOverconstrained() const {
|
|
return PosteriorlyOverconstrained;
|
|
}
|
|
ProgramStateRef cloneAsPosteriorlyOverconstrained() const;
|
|
|
|
unsigned refCount;
|
|
|
|
/// makeWithStore - Return a ProgramState with the same values as the current
|
|
/// state with the exception of using the specified Store.
|
|
ProgramStateRef makeWithStore(const StoreRef &store) const;
|
|
|
|
void setStore(const StoreRef &storeRef);
|
|
|
|
public:
|
|
/// This ctor is used when creating the first ProgramState object.
|
|
ProgramState(ProgramStateManager *mgr, const Environment& env,
|
|
StoreRef st, GenericDataMap gdm);
|
|
|
|
/// Copy ctor - We must explicitly define this or else the "Next" ptr
|
|
/// in FoldingSetNode will also get copied.
|
|
ProgramState(const ProgramState &RHS);
|
|
|
|
~ProgramState();
|
|
|
|
int64_t getID() const;
|
|
|
|
/// Return the ProgramStateManager associated with this state.
|
|
ProgramStateManager &getStateManager() const {
|
|
return *stateMgr;
|
|
}
|
|
|
|
AnalysisManager &getAnalysisManager() const;
|
|
|
|
/// Return the ConstraintManager.
|
|
ConstraintManager &getConstraintManager() const;
|
|
|
|
/// getEnvironment - Return the environment associated with this state.
|
|
/// The environment is the mapping from expressions to values.
|
|
const Environment& getEnvironment() const { return Env; }
|
|
|
|
/// Return the store associated with this state. The store
|
|
/// is a mapping from locations to values.
|
|
Store getStore() const { return store; }
|
|
|
|
|
|
/// getGDM - Return the generic data map associated with this state.
|
|
GenericDataMap getGDM() const { return GDM; }
|
|
|
|
void setGDM(GenericDataMap gdm) { GDM = gdm; }
|
|
|
|
/// Profile - Profile the contents of a ProgramState object for use in a
|
|
/// FoldingSet. Two ProgramState objects are considered equal if they
|
|
/// have the same Environment, Store, and GenericDataMap.
|
|
static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
|
|
V->Env.Profile(ID);
|
|
ID.AddPointer(V->store);
|
|
V->GDM.Profile(ID);
|
|
ID.AddBoolean(V->PosteriorlyOverconstrained);
|
|
}
|
|
|
|
/// Profile - Used to profile the contents of this object for inclusion
|
|
/// in a FoldingSet.
|
|
void Profile(llvm::FoldingSetNodeID& ID) const {
|
|
Profile(ID, this);
|
|
}
|
|
|
|
BasicValueFactory &getBasicVals() const;
|
|
SymbolManager &getSymbolManager() const;
|
|
|
|
//==---------------------------------------------------------------------==//
|
|
// Constraints on values.
|
|
//==---------------------------------------------------------------------==//
|
|
//
|
|
// Each ProgramState records constraints on symbolic values. These constraints
|
|
// are managed using the ConstraintManager associated with a ProgramStateManager.
|
|
// As constraints gradually accrue on symbolic values, added constraints
|
|
// may conflict and indicate that a state is infeasible (as no real values
|
|
// could satisfy all the constraints). This is the principal mechanism
|
|
// for modeling path-sensitivity in ExprEngine/ProgramState.
|
|
//
|
|
// Various "assume" methods form the interface for adding constraints to
|
|
// symbolic values. A call to 'assume' indicates an assumption being placed
|
|
// on one or symbolic values. 'assume' methods take the following inputs:
|
|
//
|
|
// (1) A ProgramState object representing the current state.
|
|
//
|
|
// (2) The assumed constraint (which is specific to a given "assume" method).
|
|
//
|
|
// (3) A binary value "Assumption" that indicates whether the constraint is
|
|
// assumed to be true or false.
|
|
//
|
|
// The output of "assume*" is a new ProgramState object with the added constraints.
|
|
// If no new state is feasible, NULL is returned.
|
|
//
|
|
|
|
/// Assumes that the value of \p cond is zero (if \p assumption is "false")
|
|
/// or non-zero (if \p assumption is "true").
|
|
///
|
|
/// This returns a new state with the added constraint on \p cond.
|
|
/// If no new state is feasible, NULL is returned.
|
|
[[nodiscard]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
|
|
bool assumption) const;
|
|
|
|
/// Assumes both "true" and "false" for \p cond, and returns both
|
|
/// corresponding states (respectively).
|
|
///
|
|
/// This is more efficient than calling assume() twice. Note that one (but not
|
|
/// both) of the returned states may be NULL.
|
|
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
|
|
assume(DefinedOrUnknownSVal cond) const;
|
|
|
|
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
|
|
assumeInBoundDual(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
|
|
QualType IndexType = QualType()) const;
|
|
|
|
[[nodiscard]] ProgramStateRef
|
|
assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
|
|
bool assumption, QualType IndexType = QualType()) const;
|
|
|
|
/// Assumes that the value of \p Val is bounded with [\p From; \p To]
|
|
/// (if \p assumption is "true") or it is fully out of this range
|
|
/// (if \p assumption is "false").
|
|
///
|
|
/// This returns a new state with the added constraint on \p cond.
|
|
/// If no new state is feasible, NULL is returned.
|
|
[[nodiscard]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
|
|
const llvm::APSInt &From,
|
|
const llvm::APSInt &To,
|
|
bool assumption) const;
|
|
|
|
/// Assumes given range both "true" and "false" for \p Val, and returns both
|
|
/// corresponding states (respectively).
|
|
///
|
|
/// This is more efficient than calling assume() twice. Note that one (but not
|
|
/// both) of the returned states may be NULL.
|
|
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
|
|
assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
|
|
const llvm::APSInt &To) const;
|
|
|
|
/// Check if the given SVal is not constrained to zero and is not
|
|
/// a zero constant.
|
|
ConditionTruthVal isNonNull(SVal V) const;
|
|
|
|
/// Check if the given SVal is constrained to zero or is a zero
|
|
/// constant.
|
|
ConditionTruthVal isNull(SVal V) const;
|
|
|
|
/// \return Whether values \p Lhs and \p Rhs are equal.
|
|
ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
|
|
|
|
/// Utility method for getting regions.
|
|
LLVM_ATTRIBUTE_RETURNS_NONNULL
|
|
const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
|
|
|
|
//==---------------------------------------------------------------------==//
|
|
// Binding and retrieving values to/from the environment and symbolic store.
|
|
//==---------------------------------------------------------------------==//
|
|
|
|
/// Create a new state by binding the value 'V' to the statement 'S' in the
|
|
/// state's environment.
|
|
[[nodiscard]] ProgramStateRef BindExpr(const Stmt *S,
|
|
const LocationContext *LCtx, SVal V,
|
|
bool Invalidate = true) const;
|
|
|
|
[[nodiscard]] ProgramStateRef bindLoc(Loc location, SVal V,
|
|
const LocationContext *LCtx,
|
|
bool notifyChanges = true) const;
|
|
|
|
[[nodiscard]] ProgramStateRef bindLoc(SVal location, SVal V,
|
|
const LocationContext *LCtx) const;
|
|
|
|
/// Initializes the region of memory represented by \p loc with an initial
|
|
/// value. Once initialized, all values loaded from any sub-regions of that
|
|
/// region will be equal to \p V, unless overwritten later by the program.
|
|
/// This method should not be used on regions that are already initialized.
|
|
/// If you need to indicate that memory contents have suddenly become unknown
|
|
/// within a certain region of memory, consider invalidateRegions().
|
|
[[nodiscard]] ProgramStateRef
|
|
bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
|
|
|
|
/// Performs C++ zero-initialization procedure on the region of memory
|
|
/// represented by \p loc.
|
|
[[nodiscard]] ProgramStateRef
|
|
bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
|
|
|
|
[[nodiscard]] ProgramStateRef killBinding(Loc LV) const;
|
|
|
|
/// Returns the state with bindings for the given regions cleared from the
|
|
/// store. If \p Call is non-null, also invalidates global regions (but if
|
|
/// \p Call is from a system header, then this is limited to globals declared
|
|
/// in system headers).
|
|
///
|
|
/// This calls the lower-level method \c StoreManager::invalidateRegions to
|
|
/// do the actual invalidation, then calls the checker callbacks which should
|
|
/// be triggered by this event.
|
|
///
|
|
/// \param Regions the set of regions to be invalidated.
|
|
/// \param E the expression that caused the invalidation.
|
|
/// \param BlockCount The number of times the current basic block has been
|
|
/// visited.
|
|
/// \param CausesPointerEscape the flag is set to true when the invalidation
|
|
/// entails escape of a symbol (representing a pointer). For example,
|
|
/// due to it being passed as an argument in a call.
|
|
/// \param IS the set of invalidated symbols.
|
|
/// \param Call if non-null, the invalidated regions represent parameters to
|
|
/// the call and should be considered directly invalidated.
|
|
/// \param ITraits information about special handling for particular regions
|
|
/// or symbols.
|
|
[[nodiscard]] ProgramStateRef
|
|
invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
|
|
unsigned BlockCount, const LocationContext *LCtx,
|
|
bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
|
|
const CallEvent *Call = nullptr,
|
|
RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
|
|
|
|
[[nodiscard]] ProgramStateRef
|
|
invalidateRegions(ArrayRef<SVal> Values, const Expr *E, unsigned BlockCount,
|
|
const LocationContext *LCtx, bool CausesPointerEscape,
|
|
InvalidatedSymbols *IS = nullptr,
|
|
const CallEvent *Call = nullptr,
|
|
RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
|
|
|
|
/// enterStackFrame - Returns the state for entry to the given stack frame,
|
|
/// preserving the current state.
|
|
[[nodiscard]] ProgramStateRef
|
|
enterStackFrame(const CallEvent &Call,
|
|
const StackFrameContext *CalleeCtx) const;
|
|
|
|
/// Return the value of 'self' if available in the given context.
|
|
SVal getSelfSVal(const LocationContext *LC) const;
|
|
|
|
/// Get the lvalue for a base class object reference.
|
|
Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
|
|
|
|
/// Get the lvalue for a base class object reference.
|
|
Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
|
|
bool IsVirtual) const;
|
|
|
|
/// Get the lvalue for a variable reference.
|
|
Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
|
|
|
|
Loc getLValue(const CompoundLiteralExpr *literal,
|
|
const LocationContext *LC) const;
|
|
|
|
/// Get the lvalue for an ivar reference.
|
|
SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
|
|
|
|
/// Get the lvalue for a field reference.
|
|
SVal getLValue(const FieldDecl *decl, SVal Base) const;
|
|
|
|
/// Get the lvalue for an indirect field reference.
|
|
SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
|
|
|
|
/// Get the lvalue for an array index.
|
|
SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
|
|
|
|
/// Returns the SVal bound to the statement 'S' in the state's environment.
|
|
SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
|
|
|
|
SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
|
|
|
|
/// Return the value bound to the specified location.
|
|
/// Returns UnknownVal() if none found.
|
|
SVal getSVal(Loc LV, QualType T = QualType()) const;
|
|
|
|
/// Returns the "raw" SVal bound to LV before any value simplfication.
|
|
SVal getRawSVal(Loc LV, QualType T= QualType()) const;
|
|
|
|
/// Return the value bound to the specified location.
|
|
/// Returns UnknownVal() if none found.
|
|
SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
|
|
|
|
/// Return the value bound to the specified location, assuming
|
|
/// that the value is a scalar integer or an enumeration or a pointer.
|
|
/// Returns UnknownVal() if none found or the region is not known to hold
|
|
/// a value of such type.
|
|
SVal getSValAsScalarOrLoc(const MemRegion *R) const;
|
|
|
|
using region_iterator = const MemRegion **;
|
|
|
|
/// Visits the symbols reachable from the given SVal using the provided
|
|
/// SymbolVisitor.
|
|
///
|
|
/// This is a convenience API. Consider using ScanReachableSymbols class
|
|
/// directly when making multiple scans on the same state with the same
|
|
/// visitor to avoid repeated initialization cost.
|
|
/// \sa ScanReachableSymbols
|
|
bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
|
|
|
|
/// Visits the symbols reachable from the regions in the given
|
|
/// MemRegions range using the provided SymbolVisitor.
|
|
bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
|
|
SymbolVisitor &visitor) const;
|
|
|
|
template <typename CB> CB scanReachableSymbols(SVal val) const;
|
|
template <typename CB> CB
|
|
scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
|
|
|
|
//==---------------------------------------------------------------------==//
|
|
// Accessing the Generic Data Map (GDM).
|
|
//==---------------------------------------------------------------------==//
|
|
|
|
void *const* FindGDM(void *K) const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
add(typename ProgramStateTrait<T>::key_type K) const;
|
|
|
|
template <typename T>
|
|
typename ProgramStateTrait<T>::data_type
|
|
get() const {
|
|
return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
|
|
}
|
|
|
|
template<typename T>
|
|
typename ProgramStateTrait<T>::lookup_type
|
|
get(typename ProgramStateTrait<T>::key_type key) const {
|
|
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
|
|
return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
|
|
}
|
|
|
|
template <typename T>
|
|
typename ProgramStateTrait<T>::context_type get_context() const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
remove(typename ProgramStateTrait<T>::key_type K) const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
remove(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::context_type C) const;
|
|
|
|
template <typename T> [[nodiscard]] ProgramStateRef remove() const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
set(typename ProgramStateTrait<T>::data_type D) const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
set(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::value_type E) const;
|
|
|
|
template <typename T>
|
|
[[nodiscard]] ProgramStateRef
|
|
set(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::value_type E,
|
|
typename ProgramStateTrait<T>::context_type C) const;
|
|
|
|
template<typename T>
|
|
bool contains(typename ProgramStateTrait<T>::key_type key) const {
|
|
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
|
|
return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
|
|
}
|
|
|
|
// Pretty-printing.
|
|
void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
|
|
void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
|
|
unsigned int Space = 0) const;
|
|
|
|
void dump() const;
|
|
|
|
private:
|
|
friend void ProgramStateRetain(const ProgramState *state);
|
|
friend void ProgramStateRelease(const ProgramState *state);
|
|
|
|
SVal wrapSymbolicRegion(SVal Base) const;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ProgramStateManager - Factory object for ProgramStates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class ProgramStateManager {
|
|
friend class ProgramState;
|
|
friend void ProgramStateRelease(const ProgramState *state);
|
|
private:
|
|
/// Eng - The ExprEngine that owns this state manager.
|
|
ExprEngine *Eng; /* Can be null. */
|
|
|
|
EnvironmentManager EnvMgr;
|
|
std::unique_ptr<StoreManager> StoreMgr;
|
|
std::unique_ptr<ConstraintManager> ConstraintMgr;
|
|
|
|
ProgramState::GenericDataMap::Factory GDMFactory;
|
|
|
|
typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
|
|
GDMContextsTy GDMContexts;
|
|
|
|
/// StateSet - FoldingSet containing all the states created for analyzing
|
|
/// a particular function. This is used to unique states.
|
|
llvm::FoldingSet<ProgramState> StateSet;
|
|
|
|
/// Object that manages the data for all created SVals.
|
|
std::unique_ptr<SValBuilder> svalBuilder;
|
|
|
|
/// Manages memory for created CallEvents.
|
|
std::unique_ptr<CallEventManager> CallEventMgr;
|
|
|
|
/// A BumpPtrAllocator to allocate states.
|
|
llvm::BumpPtrAllocator &Alloc;
|
|
|
|
/// A vector of ProgramStates that we can reuse.
|
|
std::vector<ProgramState *> freeStates;
|
|
|
|
public:
|
|
ProgramStateManager(ASTContext &Ctx,
|
|
StoreManagerCreator CreateStoreManager,
|
|
ConstraintManagerCreator CreateConstraintManager,
|
|
llvm::BumpPtrAllocator& alloc,
|
|
ExprEngine *expreng);
|
|
|
|
~ProgramStateManager();
|
|
|
|
ProgramStateRef getInitialState(const LocationContext *InitLoc);
|
|
|
|
ASTContext &getContext() { return svalBuilder->getContext(); }
|
|
const ASTContext &getContext() const { return svalBuilder->getContext(); }
|
|
|
|
BasicValueFactory &getBasicVals() {
|
|
return svalBuilder->getBasicValueFactory();
|
|
}
|
|
|
|
SValBuilder &getSValBuilder() {
|
|
return *svalBuilder;
|
|
}
|
|
|
|
const SValBuilder &getSValBuilder() const {
|
|
return *svalBuilder;
|
|
}
|
|
|
|
SymbolManager &getSymbolManager() {
|
|
return svalBuilder->getSymbolManager();
|
|
}
|
|
const SymbolManager &getSymbolManager() const {
|
|
return svalBuilder->getSymbolManager();
|
|
}
|
|
|
|
llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
|
|
|
|
MemRegionManager& getRegionManager() {
|
|
return svalBuilder->getRegionManager();
|
|
}
|
|
const MemRegionManager &getRegionManager() const {
|
|
return svalBuilder->getRegionManager();
|
|
}
|
|
|
|
CallEventManager &getCallEventManager() { return *CallEventMgr; }
|
|
|
|
StoreManager &getStoreManager() { return *StoreMgr; }
|
|
ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
|
|
ExprEngine &getOwningEngine() { return *Eng; }
|
|
|
|
ProgramStateRef
|
|
removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
|
|
const StackFrameContext *LCtx,
|
|
SymbolReaper &SymReaper);
|
|
|
|
public:
|
|
|
|
SVal ArrayToPointer(Loc Array, QualType ElementTy) {
|
|
return StoreMgr->ArrayToPointer(Array, ElementTy);
|
|
}
|
|
|
|
// Methods that manipulate the GDM.
|
|
ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
|
|
ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
|
|
|
|
// Methods that query & manipulate the Store.
|
|
|
|
void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
|
|
StoreMgr->iterBindings(state->getStore(), F);
|
|
}
|
|
|
|
ProgramStateRef getPersistentState(ProgramState &Impl);
|
|
ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
|
|
ProgramStateRef GDMState);
|
|
|
|
bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
|
|
return ConstraintMgr->haveEqualConstraints(S1, S2);
|
|
}
|
|
|
|
bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
|
|
return S1->Env == S2->Env;
|
|
}
|
|
|
|
bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
|
|
return S1->store == S2->store;
|
|
}
|
|
|
|
//==---------------------------------------------------------------------==//
|
|
// Generic Data Map methods.
|
|
//==---------------------------------------------------------------------==//
|
|
//
|
|
// ProgramStateManager and ProgramState support a "generic data map" that allows
|
|
// different clients of ProgramState objects to embed arbitrary data within a
|
|
// ProgramState object. The generic data map is essentially an immutable map
|
|
// from a "tag" (that acts as the "key" for a client) and opaque values.
|
|
// Tags/keys and values are simply void* values. The typical way that clients
|
|
// generate unique tags are by taking the address of a static variable.
|
|
// Clients are responsible for ensuring that data values referred to by a
|
|
// the data pointer are immutable (and thus are essentially purely functional
|
|
// data).
|
|
//
|
|
// The templated methods below use the ProgramStateTrait<T> class
|
|
// to resolve keys into the GDM and to return data values to clients.
|
|
//
|
|
|
|
// Trait based GDM dispatch.
|
|
template <typename T>
|
|
ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
|
|
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
|
|
ProgramStateTrait<T>::MakeVoidPtr(D));
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef set(ProgramStateRef st,
|
|
typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::value_type V,
|
|
typename ProgramStateTrait<T>::context_type C) {
|
|
|
|
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
|
|
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
|
|
}
|
|
|
|
template <typename T>
|
|
ProgramStateRef add(ProgramStateRef st,
|
|
typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::context_type C) {
|
|
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
|
|
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
|
|
}
|
|
|
|
template <typename T>
|
|
ProgramStateRef remove(ProgramStateRef st,
|
|
typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::context_type C) {
|
|
|
|
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
|
|
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
|
|
}
|
|
|
|
template <typename T>
|
|
ProgramStateRef remove(ProgramStateRef st) {
|
|
return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
|
|
}
|
|
|
|
void *FindGDMContext(void *index,
|
|
void *(*CreateContext)(llvm::BumpPtrAllocator&),
|
|
void (*DeleteContext)(void*));
|
|
|
|
template <typename T>
|
|
typename ProgramStateTrait<T>::context_type get_context() {
|
|
void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
|
|
ProgramStateTrait<T>::CreateContext,
|
|
ProgramStateTrait<T>::DeleteContext);
|
|
|
|
return ProgramStateTrait<T>::MakeContext(p);
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Out-of-line method definitions for ProgramState.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline ConstraintManager &ProgramState::getConstraintManager() const {
|
|
return stateMgr->getConstraintManager();
|
|
}
|
|
|
|
inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
|
|
const LocationContext *LC) const
|
|
{
|
|
return getStateManager().getRegionManager().getVarRegion(D, LC);
|
|
}
|
|
|
|
inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
|
|
bool Assumption) const {
|
|
if (Cond.isUnknown())
|
|
return this;
|
|
|
|
return getStateManager().ConstraintMgr
|
|
->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
|
|
}
|
|
|
|
inline std::pair<ProgramStateRef , ProgramStateRef >
|
|
ProgramState::assume(DefinedOrUnknownSVal Cond) const {
|
|
if (Cond.isUnknown())
|
|
return std::make_pair(this, this);
|
|
|
|
return getStateManager().ConstraintMgr
|
|
->assumeDual(this, Cond.castAs<DefinedSVal>());
|
|
}
|
|
|
|
inline ProgramStateRef ProgramState::assumeInclusiveRange(
|
|
DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
|
|
bool Assumption) const {
|
|
if (Val.isUnknown())
|
|
return this;
|
|
|
|
assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
|
|
|
|
return getStateManager().ConstraintMgr->assumeInclusiveRange(
|
|
this, Val.castAs<NonLoc>(), From, To, Assumption);
|
|
}
|
|
|
|
inline std::pair<ProgramStateRef, ProgramStateRef>
|
|
ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
|
|
const llvm::APSInt &From,
|
|
const llvm::APSInt &To) const {
|
|
if (Val.isUnknown())
|
|
return std::make_pair(this, this);
|
|
|
|
assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
|
|
|
|
return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
|
|
this, Val.castAs<NonLoc>(), From, To);
|
|
}
|
|
|
|
inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
|
|
if (std::optional<Loc> L = LV.getAs<Loc>())
|
|
return bindLoc(*L, V, LCtx);
|
|
return this;
|
|
}
|
|
|
|
inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
|
|
const SubRegion *Super) const {
|
|
const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
|
|
return loc::MemRegionVal(
|
|
getStateManager().getRegionManager().getCXXBaseObjectRegion(
|
|
Base, Super, BaseSpec.isVirtual()));
|
|
}
|
|
|
|
inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
|
|
const SubRegion *Super,
|
|
bool IsVirtual) const {
|
|
return loc::MemRegionVal(
|
|
getStateManager().getRegionManager().getCXXBaseObjectRegion(
|
|
BaseClass, Super, IsVirtual));
|
|
}
|
|
|
|
inline Loc ProgramState::getLValue(const VarDecl *VD,
|
|
const LocationContext *LC) const {
|
|
return getStateManager().StoreMgr->getLValueVar(VD, LC);
|
|
}
|
|
|
|
inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
|
|
const LocationContext *LC) const {
|
|
return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
|
|
}
|
|
|
|
inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
|
|
return getStateManager().StoreMgr->getLValueIvar(D, Base);
|
|
}
|
|
|
|
inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
|
|
if (std::optional<NonLoc> N = Idx.getAs<NonLoc>())
|
|
return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
|
|
return UnknownVal();
|
|
}
|
|
|
|
inline SVal ProgramState::getSVal(const Stmt *Ex,
|
|
const LocationContext *LCtx) const{
|
|
return Env.getSVal(EnvironmentEntry(Ex, LCtx),
|
|
*getStateManager().svalBuilder);
|
|
}
|
|
|
|
inline SVal
|
|
ProgramState::getSValAsScalarOrLoc(const Stmt *S,
|
|
const LocationContext *LCtx) const {
|
|
if (const Expr *Ex = dyn_cast<Expr>(S)) {
|
|
QualType T = Ex->getType();
|
|
if (Ex->isGLValue() || Loc::isLocType(T) ||
|
|
T->isIntegralOrEnumerationType())
|
|
return getSVal(S, LCtx);
|
|
}
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
|
|
return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
|
|
}
|
|
|
|
inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
|
|
return getStateManager().StoreMgr->getBinding(getStore(),
|
|
loc::MemRegionVal(R),
|
|
T);
|
|
}
|
|
|
|
inline BasicValueFactory &ProgramState::getBasicVals() const {
|
|
return getStateManager().getBasicVals();
|
|
}
|
|
|
|
inline SymbolManager &ProgramState::getSymbolManager() const {
|
|
return getStateManager().getSymbolManager();
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
|
|
return getStateManager().add<T>(this, K, get_context<T>());
|
|
}
|
|
|
|
template <typename T>
|
|
typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
|
|
return getStateManager().get_context<T>();
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
|
|
return getStateManager().remove<T>(this, K, get_context<T>());
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::context_type C) const {
|
|
return getStateManager().remove<T>(this, K, C);
|
|
}
|
|
|
|
template <typename T>
|
|
ProgramStateRef ProgramState::remove() const {
|
|
return getStateManager().remove<T>(this);
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
|
|
return getStateManager().set<T>(this, D);
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::value_type E) const {
|
|
return getStateManager().set<T>(this, K, E, get_context<T>());
|
|
}
|
|
|
|
template<typename T>
|
|
ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
|
|
typename ProgramStateTrait<T>::value_type E,
|
|
typename ProgramStateTrait<T>::context_type C) const {
|
|
return getStateManager().set<T>(this, K, E, C);
|
|
}
|
|
|
|
template <typename CB>
|
|
CB ProgramState::scanReachableSymbols(SVal val) const {
|
|
CB cb(this);
|
|
scanReachableSymbols(val, cb);
|
|
return cb;
|
|
}
|
|
|
|
template <typename CB>
|
|
CB ProgramState::scanReachableSymbols(
|
|
llvm::iterator_range<region_iterator> Reachable) const {
|
|
CB cb(this);
|
|
scanReachableSymbols(Reachable, cb);
|
|
return cb;
|
|
}
|
|
|
|
/// \class ScanReachableSymbols
|
|
/// A utility class that visits the reachable symbols using a custom
|
|
/// SymbolVisitor. Terminates recursive traversal when the visitor function
|
|
/// returns false.
|
|
class ScanReachableSymbols {
|
|
typedef llvm::DenseSet<const void*> VisitedItems;
|
|
|
|
VisitedItems visited;
|
|
ProgramStateRef state;
|
|
SymbolVisitor &visitor;
|
|
public:
|
|
ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
|
|
: state(std::move(st)), visitor(v) {}
|
|
|
|
bool scan(nonloc::LazyCompoundVal val);
|
|
bool scan(nonloc::CompoundVal val);
|
|
bool scan(SVal val);
|
|
bool scan(const MemRegion *R);
|
|
bool scan(const SymExpr *sym);
|
|
};
|
|
|
|
} // end ento namespace
|
|
|
|
} // end clang namespace
|
|
|
|
#endif
|