clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
542 lines
18 KiB
C++
542 lines
18 KiB
C++
//===- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the template classes ExplodedNode and ExplodedGraph,
|
|
// which represent a path-sensitive, intra-procedural "exploded graph."
|
|
// See "Precise interprocedural dataflow analysis via graph reachability"
|
|
// by Reps, Horwitz, and Sagiv
|
|
// (http://portal.acm.org/citation.cfm?id=199462) for the definition of an
|
|
// exploded graph.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
|
|
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
|
|
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Analysis/Support/BumpVector.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace clang {
|
|
|
|
class CFG;
|
|
class Decl;
|
|
class Expr;
|
|
class ParentMap;
|
|
class Stmt;
|
|
|
|
namespace ento {
|
|
|
|
class ExplodedGraph;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExplodedGraph "implementation" classes. These classes are not typed to
|
|
// contain a specific kind of state. Typed-specialized versions are defined
|
|
// on top of these classes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ExplodedNode is not constified all over the engine because we need to add
|
|
// successors to it at any time after creating it.
|
|
|
|
class ExplodedNode : public llvm::FoldingSetNode {
|
|
friend class BranchNodeBuilder;
|
|
friend class CoreEngine;
|
|
friend class EndOfFunctionNodeBuilder;
|
|
friend class ExplodedGraph;
|
|
friend class IndirectGotoNodeBuilder;
|
|
friend class NodeBuilder;
|
|
friend class SwitchNodeBuilder;
|
|
|
|
/// Efficiently stores a list of ExplodedNodes, or an optional flag.
|
|
///
|
|
/// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing
|
|
/// for the case when there is only one node in the group. This is a fairly
|
|
/// common case in an ExplodedGraph, where most nodes have only one
|
|
/// predecessor and many have only one successor. It can also be used to
|
|
/// store a flag rather than a node list, which ExplodedNode uses to mark
|
|
/// whether a node is a sink. If the flag is set, the group is implicitly
|
|
/// empty and no nodes may be added.
|
|
class NodeGroup {
|
|
// Conceptually a discriminated union. If the low bit is set, the node is
|
|
// a sink. If the low bit is not set, the pointer refers to the storage
|
|
// for the nodes in the group.
|
|
// This is not a PointerIntPair in order to keep the storage type opaque.
|
|
uintptr_t P;
|
|
|
|
public:
|
|
NodeGroup(bool Flag = false) : P(Flag) {
|
|
assert(getFlag() == Flag);
|
|
}
|
|
|
|
ExplodedNode * const *begin() const;
|
|
|
|
ExplodedNode * const *end() const;
|
|
|
|
unsigned size() const;
|
|
|
|
bool empty() const { return P == 0 || getFlag() != 0; }
|
|
|
|
/// Adds a node to the list.
|
|
///
|
|
/// The group must not have been created with its flag set.
|
|
void addNode(ExplodedNode *N, ExplodedGraph &G);
|
|
|
|
/// Replaces the single node in this group with a new node.
|
|
///
|
|
/// Note that this should only be used when you know the group was not
|
|
/// created with its flag set, and that the group is empty or contains
|
|
/// only a single node.
|
|
void replaceNode(ExplodedNode *node);
|
|
|
|
/// Returns whether this group was created with its flag set.
|
|
bool getFlag() const {
|
|
return (P & 1);
|
|
}
|
|
};
|
|
|
|
/// Location - The program location (within a function body) associated
|
|
/// with this node.
|
|
const ProgramPoint Location;
|
|
|
|
/// State - The state associated with this node.
|
|
ProgramStateRef State;
|
|
|
|
/// Preds - The predecessors of this node.
|
|
NodeGroup Preds;
|
|
|
|
/// Succs - The successors of this node.
|
|
NodeGroup Succs;
|
|
|
|
int64_t Id;
|
|
|
|
public:
|
|
explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state,
|
|
int64_t Id, bool IsSink)
|
|
: Location(loc), State(std::move(state)), Succs(IsSink), Id(Id) {
|
|
assert(isSink() == IsSink);
|
|
}
|
|
|
|
/// getLocation - Returns the edge associated with the given node.
|
|
ProgramPoint getLocation() const { return Location; }
|
|
|
|
const LocationContext *getLocationContext() const {
|
|
return getLocation().getLocationContext();
|
|
}
|
|
|
|
const StackFrameContext *getStackFrame() const {
|
|
return getLocation().getStackFrame();
|
|
}
|
|
|
|
const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); }
|
|
|
|
CFG &getCFG() const { return *getLocationContext()->getCFG(); }
|
|
|
|
const CFGBlock *getCFGBlock() const;
|
|
|
|
const ParentMap &getParentMap() const {
|
|
return getLocationContext()->getParentMap();
|
|
}
|
|
|
|
template <typename T> T &getAnalysis() const {
|
|
return *getLocationContext()->getAnalysis<T>();
|
|
}
|
|
|
|
const ProgramStateRef &getState() const { return State; }
|
|
|
|
template <typename T> std::optional<T> getLocationAs() const & {
|
|
return Location.getAs<T>();
|
|
}
|
|
|
|
/// Get the value of an arbitrary expression at this node.
|
|
SVal getSVal(const Stmt *S) const {
|
|
return getState()->getSVal(S, getLocationContext());
|
|
}
|
|
|
|
static void Profile(llvm::FoldingSetNodeID &ID,
|
|
const ProgramPoint &Loc,
|
|
const ProgramStateRef &state,
|
|
bool IsSink) {
|
|
ID.Add(Loc);
|
|
ID.AddPointer(state.get());
|
|
ID.AddBoolean(IsSink);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID& ID) const {
|
|
// We avoid copy constructors by not using accessors.
|
|
Profile(ID, Location, State, isSink());
|
|
}
|
|
|
|
/// addPredeccessor - Adds a predecessor to the current node, and
|
|
/// in tandem add this node as a successor of the other node.
|
|
void addPredecessor(ExplodedNode *V, ExplodedGraph &G);
|
|
|
|
unsigned succ_size() const { return Succs.size(); }
|
|
unsigned pred_size() const { return Preds.size(); }
|
|
bool succ_empty() const { return Succs.empty(); }
|
|
bool pred_empty() const { return Preds.empty(); }
|
|
|
|
bool isSink() const { return Succs.getFlag(); }
|
|
|
|
bool hasSinglePred() const {
|
|
return (pred_size() == 1);
|
|
}
|
|
|
|
ExplodedNode *getFirstPred() {
|
|
return pred_empty() ? nullptr : *(pred_begin());
|
|
}
|
|
|
|
const ExplodedNode *getFirstPred() const {
|
|
return const_cast<ExplodedNode*>(this)->getFirstPred();
|
|
}
|
|
|
|
ExplodedNode *getFirstSucc() {
|
|
return succ_empty() ? nullptr : *(succ_begin());
|
|
}
|
|
|
|
const ExplodedNode *getFirstSucc() const {
|
|
return const_cast<ExplodedNode*>(this)->getFirstSucc();
|
|
}
|
|
|
|
// Iterators over successor and predecessor vertices.
|
|
using succ_iterator = ExplodedNode * const *;
|
|
using succ_range = llvm::iterator_range<succ_iterator>;
|
|
|
|
using const_succ_iterator = const ExplodedNode * const *;
|
|
using const_succ_range = llvm::iterator_range<const_succ_iterator>;
|
|
|
|
using pred_iterator = ExplodedNode * const *;
|
|
using pred_range = llvm::iterator_range<pred_iterator>;
|
|
|
|
using const_pred_iterator = const ExplodedNode * const *;
|
|
using const_pred_range = llvm::iterator_range<const_pred_iterator>;
|
|
|
|
pred_iterator pred_begin() { return Preds.begin(); }
|
|
pred_iterator pred_end() { return Preds.end(); }
|
|
pred_range preds() { return {Preds.begin(), Preds.end()}; }
|
|
|
|
const_pred_iterator pred_begin() const {
|
|
return const_cast<ExplodedNode*>(this)->pred_begin();
|
|
}
|
|
const_pred_iterator pred_end() const {
|
|
return const_cast<ExplodedNode*>(this)->pred_end();
|
|
}
|
|
const_pred_range preds() const { return {Preds.begin(), Preds.end()}; }
|
|
|
|
succ_iterator succ_begin() { return Succs.begin(); }
|
|
succ_iterator succ_end() { return Succs.end(); }
|
|
succ_range succs() { return {Succs.begin(), Succs.end()}; }
|
|
|
|
const_succ_iterator succ_begin() const {
|
|
return const_cast<ExplodedNode*>(this)->succ_begin();
|
|
}
|
|
const_succ_iterator succ_end() const {
|
|
return const_cast<ExplodedNode*>(this)->succ_end();
|
|
}
|
|
const_succ_range succs() const { return {Succs.begin(), Succs.end()}; }
|
|
|
|
int64_t getID() const { return Id; }
|
|
|
|
/// The node is trivial if it has only one successor, only one predecessor,
|
|
/// it's predecessor has only one successor,
|
|
/// and its program state is the same as the program state of the previous
|
|
/// node.
|
|
/// Trivial nodes may be skipped while printing exploded graph.
|
|
bool isTrivial() const;
|
|
|
|
/// If the node's program point corresponds to a statement, retrieve that
|
|
/// statement. Useful for figuring out where to put a warning or a note.
|
|
/// If the statement belongs to a body-farmed definition,
|
|
/// retrieve the call site for that definition.
|
|
const Stmt *getStmtForDiagnostics() const;
|
|
|
|
/// Find the next statement that was executed on this node's execution path.
|
|
/// Useful for explaining control flow that follows the current node.
|
|
/// If the statement belongs to a body-farmed definition, retrieve the
|
|
/// call site for that definition.
|
|
const Stmt *getNextStmtForDiagnostics() const;
|
|
|
|
/// Find the statement that was executed immediately before this node.
|
|
/// Useful when the node corresponds to a CFG block entrance.
|
|
/// If the statement belongs to a body-farmed definition, retrieve the
|
|
/// call site for that definition.
|
|
const Stmt *getPreviousStmtForDiagnostics() const;
|
|
|
|
/// Find the statement that was executed at or immediately before this node.
|
|
/// Useful when any nearby statement will do.
|
|
/// If the statement belongs to a body-farmed definition, retrieve the
|
|
/// call site for that definition.
|
|
const Stmt *getCurrentOrPreviousStmtForDiagnostics() const;
|
|
|
|
private:
|
|
void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); }
|
|
void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); }
|
|
};
|
|
|
|
using InterExplodedGraphMap =
|
|
llvm::DenseMap<const ExplodedNode *, const ExplodedNode *>;
|
|
|
|
class ExplodedGraph {
|
|
protected:
|
|
friend class CoreEngine;
|
|
|
|
// Type definitions.
|
|
using NodeVector = std::vector<ExplodedNode *>;
|
|
|
|
/// The roots of the simulation graph. Usually there will be only
|
|
/// one, but clients are free to establish multiple subgraphs within a single
|
|
/// SimulGraph. Moreover, these subgraphs can often merge when paths from
|
|
/// different roots reach the same state at the same program location.
|
|
NodeVector Roots;
|
|
|
|
/// The nodes in the simulation graph which have been
|
|
/// specially marked as the endpoint of an abstract simulation path.
|
|
NodeVector EndNodes;
|
|
|
|
/// Nodes - The nodes in the graph.
|
|
llvm::FoldingSet<ExplodedNode> Nodes;
|
|
|
|
/// BVC - Allocator and context for allocating nodes and their predecessor
|
|
/// and successor groups.
|
|
BumpVectorContext BVC;
|
|
|
|
/// NumNodes - The number of nodes in the graph.
|
|
int64_t NumNodes = 0;
|
|
|
|
/// A list of recently allocated nodes that can potentially be recycled.
|
|
NodeVector ChangedNodes;
|
|
|
|
/// A list of nodes that can be reused.
|
|
NodeVector FreeNodes;
|
|
|
|
/// Determines how often nodes are reclaimed.
|
|
///
|
|
/// If this is 0, nodes will never be reclaimed.
|
|
unsigned ReclaimNodeInterval = 0;
|
|
|
|
/// Counter to determine when to reclaim nodes.
|
|
unsigned ReclaimCounter;
|
|
|
|
public:
|
|
ExplodedGraph();
|
|
~ExplodedGraph();
|
|
|
|
/// Retrieve the node associated with a (Location,State) pair,
|
|
/// where the 'Location' is a ProgramPoint in the CFG. If no node for
|
|
/// this pair exists, it is created. IsNew is set to true if
|
|
/// the node was freshly created.
|
|
ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State,
|
|
bool IsSink = false,
|
|
bool* IsNew = nullptr);
|
|
|
|
/// Create a node for a (Location, State) pair,
|
|
/// but don't store it for deduplication later. This
|
|
/// is useful when copying an already completed
|
|
/// ExplodedGraph for further processing.
|
|
ExplodedNode *createUncachedNode(const ProgramPoint &L,
|
|
ProgramStateRef State,
|
|
int64_t Id,
|
|
bool IsSink = false);
|
|
|
|
std::unique_ptr<ExplodedGraph> MakeEmptyGraph() const {
|
|
return std::make_unique<ExplodedGraph>();
|
|
}
|
|
|
|
/// addRoot - Add an untyped node to the set of roots.
|
|
ExplodedNode *addRoot(ExplodedNode *V) {
|
|
Roots.push_back(V);
|
|
return V;
|
|
}
|
|
|
|
/// addEndOfPath - Add an untyped node to the set of EOP nodes.
|
|
ExplodedNode *addEndOfPath(ExplodedNode *V) {
|
|
EndNodes.push_back(V);
|
|
return V;
|
|
}
|
|
|
|
unsigned num_roots() const { return Roots.size(); }
|
|
unsigned num_eops() const { return EndNodes.size(); }
|
|
|
|
bool empty() const { return NumNodes == 0; }
|
|
unsigned size() const { return NumNodes; }
|
|
|
|
void reserve(unsigned NodeCount) { Nodes.reserve(NodeCount); }
|
|
|
|
// Iterators.
|
|
using NodeTy = ExplodedNode;
|
|
using AllNodesTy = llvm::FoldingSet<ExplodedNode>;
|
|
using roots_iterator = NodeVector::iterator;
|
|
using const_roots_iterator = NodeVector::const_iterator;
|
|
using eop_iterator = NodeVector::iterator;
|
|
using const_eop_iterator = NodeVector::const_iterator;
|
|
using node_iterator = AllNodesTy::iterator;
|
|
using const_node_iterator = AllNodesTy::const_iterator;
|
|
|
|
llvm::iterator_range<node_iterator> nodes() { return Nodes; }
|
|
|
|
llvm::iterator_range<const_node_iterator> nodes() const { return Nodes; }
|
|
|
|
roots_iterator roots_begin() { return Roots.begin(); }
|
|
|
|
roots_iterator roots_end() { return Roots.end(); }
|
|
|
|
const_roots_iterator roots_begin() const { return Roots.begin(); }
|
|
|
|
const_roots_iterator roots_end() const { return Roots.end(); }
|
|
|
|
eop_iterator eop_begin() { return EndNodes.begin(); }
|
|
|
|
eop_iterator eop_end() { return EndNodes.end(); }
|
|
|
|
const_eop_iterator eop_begin() const { return EndNodes.begin(); }
|
|
|
|
const_eop_iterator eop_end() const { return EndNodes.end(); }
|
|
|
|
llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); }
|
|
BumpVectorContext &getNodeAllocator() { return BVC; }
|
|
|
|
using NodeMap = llvm::DenseMap<const ExplodedNode *, ExplodedNode *>;
|
|
|
|
/// Creates a trimmed version of the graph that only contains paths leading
|
|
/// to the given nodes.
|
|
///
|
|
/// \param Nodes The nodes which must appear in the final graph. Presumably
|
|
/// these are end-of-path nodes (i.e. they have no successors).
|
|
/// \param[out] ForwardMap A optional map from nodes in this graph to nodes in
|
|
/// the returned graph.
|
|
/// \param[out] InverseMap An optional map from nodes in the returned graph to
|
|
/// nodes in this graph.
|
|
/// \returns The trimmed graph
|
|
std::unique_ptr<ExplodedGraph>
|
|
trim(ArrayRef<const NodeTy *> Nodes,
|
|
InterExplodedGraphMap *ForwardMap = nullptr,
|
|
InterExplodedGraphMap *InverseMap = nullptr) const;
|
|
|
|
/// Enable tracking of recently allocated nodes for potential reclamation
|
|
/// when calling reclaimRecentlyAllocatedNodes().
|
|
void enableNodeReclamation(unsigned Interval) {
|
|
ReclaimCounter = ReclaimNodeInterval = Interval;
|
|
}
|
|
|
|
/// Reclaim "uninteresting" nodes created since the last time this method
|
|
/// was called.
|
|
void reclaimRecentlyAllocatedNodes();
|
|
|
|
/// Returns true if nodes for the given expression kind are always
|
|
/// kept around.
|
|
static bool isInterestingLValueExpr(const Expr *Ex);
|
|
|
|
private:
|
|
bool shouldCollect(const ExplodedNode *node);
|
|
void collectNode(ExplodedNode *node);
|
|
};
|
|
|
|
class ExplodedNodeSet {
|
|
using ImplTy = llvm::SmallSetVector<ExplodedNode *, 4>;
|
|
ImplTy Impl;
|
|
|
|
public:
|
|
ExplodedNodeSet(ExplodedNode *N) {
|
|
assert(N && !static_cast<ExplodedNode*>(N)->isSink());
|
|
Impl.insert(N);
|
|
}
|
|
|
|
ExplodedNodeSet() = default;
|
|
|
|
void Add(ExplodedNode *N) {
|
|
if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N);
|
|
}
|
|
|
|
using iterator = ImplTy::iterator;
|
|
using const_iterator = ImplTy::const_iterator;
|
|
|
|
unsigned size() const { return Impl.size(); }
|
|
bool empty() const { return Impl.empty(); }
|
|
bool erase(ExplodedNode *N) { return Impl.remove(N); }
|
|
|
|
void clear() { Impl.clear(); }
|
|
|
|
void insert(const ExplodedNodeSet &S) {
|
|
assert(&S != this);
|
|
if (empty())
|
|
Impl = S.Impl;
|
|
else
|
|
Impl.insert(S.begin(), S.end());
|
|
}
|
|
|
|
iterator begin() { return Impl.begin(); }
|
|
iterator end() { return Impl.end(); }
|
|
|
|
const_iterator begin() const { return Impl.begin(); }
|
|
const_iterator end() const { return Impl.end(); }
|
|
};
|
|
|
|
} // namespace ento
|
|
|
|
} // namespace clang
|
|
|
|
// GraphTraits
|
|
|
|
namespace llvm {
|
|
template <> struct GraphTraits<clang::ento::ExplodedGraph *> {
|
|
using GraphTy = clang::ento::ExplodedGraph *;
|
|
using NodeRef = clang::ento::ExplodedNode *;
|
|
using ChildIteratorType = clang::ento::ExplodedNode::succ_iterator;
|
|
using nodes_iterator = llvm::df_iterator<GraphTy>;
|
|
|
|
static NodeRef getEntryNode(const GraphTy G) {
|
|
return *G->roots_begin();
|
|
}
|
|
|
|
static bool predecessorOfTrivial(NodeRef N) {
|
|
return N->succ_size() == 1 && N->getFirstSucc()->isTrivial();
|
|
}
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) {
|
|
if (predecessorOfTrivial(N))
|
|
return child_begin(*N->succ_begin());
|
|
return N->succ_begin();
|
|
}
|
|
|
|
static ChildIteratorType child_end(NodeRef N) {
|
|
if (predecessorOfTrivial(N))
|
|
return child_end(N->getFirstSucc());
|
|
return N->succ_end();
|
|
}
|
|
|
|
static nodes_iterator nodes_begin(const GraphTy G) {
|
|
return df_begin(G);
|
|
}
|
|
|
|
static nodes_iterator nodes_end(const GraphTy G) {
|
|
return df_end(G);
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
|