clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
15091 lines
657 KiB
C++
15091 lines
657 KiB
C++
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Sema class, which performs semantic analysis and
|
|
// builds ASTs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_SEMA_SEMA_H
|
|
#define LLVM_CLANG_SEMA_SEMA_H
|
|
|
|
#include "clang/APINotes/APINotesManager.h"
|
|
#include "clang/AST/ASTFwd.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/AttrIterator.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprConcepts.h"
|
|
#include "clang/AST/ExternalASTSource.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/AttrSubjectMatchRules.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CapturedStmt.h"
|
|
#include "clang/Basic/Cuda.h"
|
|
#include "clang/Basic/DiagnosticSema.h"
|
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
|
#include "clang/Basic/ExpressionTraits.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/Lambda.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/OpenCLOptions.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/PragmaKinds.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TemplateKinds.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Basic/TypeTraits.h"
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/Sema/Attr.h"
|
|
#include "clang/Sema/CleanupInfo.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/ExternalSemaSource.h"
|
|
#include "clang/Sema/IdentifierResolver.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/ParsedAttr.h"
|
|
#include "clang/Sema/Redeclaration.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/SemaBase.h"
|
|
#include "clang/Sema/TypoCorrection.h"
|
|
#include "clang/Sema/Weak.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitmaskEnum.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FloatingPointMode.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/STLForwardCompat.h"
|
|
#include "llvm/ADT/STLFunctionalExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
struct InlineAsmIdentifierInfo;
|
|
} // namespace llvm
|
|
|
|
namespace clang {
|
|
class ADLResult;
|
|
class APValue;
|
|
struct ASTConstraintSatisfaction;
|
|
class ASTConsumer;
|
|
class ASTContext;
|
|
class ASTDeclReader;
|
|
class ASTMutationListener;
|
|
class ASTReader;
|
|
class ASTWriter;
|
|
class CXXBasePath;
|
|
class CXXBasePaths;
|
|
class CXXFieldCollector;
|
|
class CodeCompleteConsumer;
|
|
enum class ComparisonCategoryType : unsigned char;
|
|
class ConstraintSatisfaction;
|
|
class DarwinSDKInfo;
|
|
class DeclGroupRef;
|
|
class DeducedTemplateArgument;
|
|
struct DeductionFailureInfo;
|
|
class DependentDiagnostic;
|
|
class Designation;
|
|
class IdentifierInfo;
|
|
class ImplicitConversionSequence;
|
|
typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
|
|
class InitializationKind;
|
|
class InitializationSequence;
|
|
class InitializedEntity;
|
|
enum class LangAS : unsigned int;
|
|
class LocalInstantiationScope;
|
|
class LookupResult;
|
|
class MangleNumberingContext;
|
|
typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
|
|
class ModuleLoader;
|
|
class MultiLevelTemplateArgumentList;
|
|
struct NormalizedConstraint;
|
|
class ObjCInterfaceDecl;
|
|
class ObjCMethodDecl;
|
|
struct OverloadCandidate;
|
|
enum class OverloadCandidateParamOrder : char;
|
|
enum OverloadCandidateRewriteKind : unsigned;
|
|
class OverloadCandidateSet;
|
|
class Preprocessor;
|
|
class SemaAMDGPU;
|
|
class SemaARM;
|
|
class SemaAVR;
|
|
class SemaBPF;
|
|
class SemaCodeCompletion;
|
|
class SemaCUDA;
|
|
class SemaHLSL;
|
|
class SemaHexagon;
|
|
class SemaLoongArch;
|
|
class SemaM68k;
|
|
class SemaMIPS;
|
|
class SemaMSP430;
|
|
class SemaNVPTX;
|
|
class SemaObjC;
|
|
class SemaOpenACC;
|
|
class SemaOpenCL;
|
|
class SemaOpenMP;
|
|
class SemaPPC;
|
|
class SemaPseudoObject;
|
|
class SemaRISCV;
|
|
class SemaSYCL;
|
|
class SemaSwift;
|
|
class SemaSystemZ;
|
|
class SemaWasm;
|
|
class SemaX86;
|
|
class StandardConversionSequence;
|
|
class TemplateArgument;
|
|
class TemplateArgumentLoc;
|
|
class TemplateInstantiationCallback;
|
|
class TemplatePartialOrderingContext;
|
|
class TemplateSpecCandidateSet;
|
|
class Token;
|
|
class TypeConstraint;
|
|
class TypoCorrectionConsumer;
|
|
class UnresolvedSetImpl;
|
|
class UnresolvedSetIterator;
|
|
class VisibleDeclConsumer;
|
|
|
|
namespace sema {
|
|
class BlockScopeInfo;
|
|
class Capture;
|
|
class CapturedRegionScopeInfo;
|
|
class CapturingScopeInfo;
|
|
class CompoundScopeInfo;
|
|
class DelayedDiagnostic;
|
|
class DelayedDiagnosticPool;
|
|
class FunctionScopeInfo;
|
|
class LambdaScopeInfo;
|
|
class SemaPPCallbacks;
|
|
class TemplateDeductionInfo;
|
|
} // namespace sema
|
|
|
|
namespace threadSafety {
|
|
class BeforeSet;
|
|
void threadSafetyCleanup(BeforeSet *Cache);
|
|
} // namespace threadSafety
|
|
|
|
// FIXME: No way to easily map from TemplateTypeParmTypes to
|
|
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
|
|
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType *, NamedDecl *>,
|
|
SourceLocation>
|
|
UnexpandedParameterPack;
|
|
|
|
/// Describes whether we've seen any nullability information for the given
|
|
/// file.
|
|
struct FileNullability {
|
|
/// The first pointer declarator (of any pointer kind) in the file that does
|
|
/// not have a corresponding nullability annotation.
|
|
SourceLocation PointerLoc;
|
|
|
|
/// The end location for the first pointer declarator in the file. Used for
|
|
/// placing fix-its.
|
|
SourceLocation PointerEndLoc;
|
|
|
|
/// Which kind of pointer declarator we saw.
|
|
uint8_t PointerKind;
|
|
|
|
/// Whether we saw any type nullability annotations in the given file.
|
|
bool SawTypeNullability = false;
|
|
};
|
|
|
|
/// A mapping from file IDs to a record of whether we've seen nullability
|
|
/// information in that file.
|
|
class FileNullabilityMap {
|
|
/// A mapping from file IDs to the nullability information for each file ID.
|
|
llvm::DenseMap<FileID, FileNullability> Map;
|
|
|
|
/// A single-element cache based on the file ID.
|
|
struct {
|
|
FileID File;
|
|
FileNullability Nullability;
|
|
} Cache;
|
|
|
|
public:
|
|
FileNullability &operator[](FileID file) {
|
|
// Check the single-element cache.
|
|
if (file == Cache.File)
|
|
return Cache.Nullability;
|
|
|
|
// It's not in the single-element cache; flush the cache if we have one.
|
|
if (!Cache.File.isInvalid()) {
|
|
Map[Cache.File] = Cache.Nullability;
|
|
}
|
|
|
|
// Pull this entry into the cache.
|
|
Cache.File = file;
|
|
Cache.Nullability = Map[file];
|
|
return Cache.Nullability;
|
|
}
|
|
};
|
|
|
|
/// Tracks expected type during expression parsing, for use in code completion.
|
|
/// The type is tied to a particular token, all functions that update or consume
|
|
/// the type take a start location of the token they are looking at as a
|
|
/// parameter. This avoids updating the type on hot paths in the parser.
|
|
class PreferredTypeBuilder {
|
|
public:
|
|
PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
|
|
|
|
void enterCondition(Sema &S, SourceLocation Tok);
|
|
void enterReturn(Sema &S, SourceLocation Tok);
|
|
void enterVariableInit(SourceLocation Tok, Decl *D);
|
|
/// Handles e.g. BaseType{ .D = Tok...
|
|
void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
|
|
const Designation &D);
|
|
/// Computing a type for the function argument may require running
|
|
/// overloading, so we postpone its computation until it is actually needed.
|
|
///
|
|
/// Clients should be very careful when using this function, as it stores a
|
|
/// function_ref, clients should make sure all calls to get() with the same
|
|
/// location happen while function_ref is alive.
|
|
///
|
|
/// The callback should also emit signature help as a side-effect, but only
|
|
/// if the completion point has been reached.
|
|
void enterFunctionArgument(SourceLocation Tok,
|
|
llvm::function_ref<QualType()> ComputeType);
|
|
|
|
void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
|
|
void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
|
|
SourceLocation OpLoc);
|
|
void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
|
|
void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
|
|
void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
|
|
/// Handles all type casts, including C-style cast, C++ casts, etc.
|
|
void enterTypeCast(SourceLocation Tok, QualType CastType);
|
|
|
|
/// Get the expected type associated with this location, if any.
|
|
///
|
|
/// If the location is a function argument, determining the expected type
|
|
/// involves considering all function overloads and the arguments so far.
|
|
/// In this case, signature help for these function overloads will be reported
|
|
/// as a side-effect (only if the completion point has been reached).
|
|
QualType get(SourceLocation Tok) const {
|
|
if (!Enabled || Tok != ExpectedLoc)
|
|
return QualType();
|
|
if (!Type.isNull())
|
|
return Type;
|
|
if (ComputeType)
|
|
return ComputeType();
|
|
return QualType();
|
|
}
|
|
|
|
private:
|
|
bool Enabled;
|
|
/// Start position of a token for which we store expected type.
|
|
SourceLocation ExpectedLoc;
|
|
/// Expected type for a token starting at ExpectedLoc.
|
|
QualType Type;
|
|
/// A function to compute expected type at ExpectedLoc. It is only considered
|
|
/// if Type is null.
|
|
llvm::function_ref<QualType()> ComputeType;
|
|
};
|
|
|
|
struct SkipBodyInfo {
|
|
SkipBodyInfo() = default;
|
|
bool ShouldSkip = false;
|
|
bool CheckSameAsPrevious = false;
|
|
NamedDecl *Previous = nullptr;
|
|
NamedDecl *New = nullptr;
|
|
};
|
|
|
|
/// Describes the result of template argument deduction.
|
|
///
|
|
/// The TemplateDeductionResult enumeration describes the result of
|
|
/// template argument deduction, as returned from
|
|
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
|
|
/// structure provides additional information about the results of
|
|
/// template argument deduction, e.g., the deduced template argument
|
|
/// list (if successful) or the specific template parameters or
|
|
/// deduced arguments that were involved in the failure.
|
|
enum class TemplateDeductionResult {
|
|
/// Template argument deduction was successful.
|
|
Success = 0,
|
|
/// The declaration was invalid; do nothing.
|
|
Invalid,
|
|
/// Template argument deduction exceeded the maximum template
|
|
/// instantiation depth (which has already been diagnosed).
|
|
InstantiationDepth,
|
|
/// Template argument deduction did not deduce a value
|
|
/// for every template parameter.
|
|
Incomplete,
|
|
/// Template argument deduction did not deduce a value for every
|
|
/// expansion of an expanded template parameter pack.
|
|
IncompletePack,
|
|
/// Template argument deduction produced inconsistent
|
|
/// deduced values for the given template parameter.
|
|
Inconsistent,
|
|
/// Template argument deduction failed due to inconsistent
|
|
/// cv-qualifiers on a template parameter type that would
|
|
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
|
|
/// but were given a non-const "X".
|
|
Underqualified,
|
|
/// Substitution of the deduced template argument values
|
|
/// resulted in an error.
|
|
SubstitutionFailure,
|
|
/// After substituting deduced template arguments, a dependent
|
|
/// parameter type did not match the corresponding argument.
|
|
DeducedMismatch,
|
|
/// After substituting deduced template arguments, an element of
|
|
/// a dependent parameter type did not match the corresponding element
|
|
/// of the corresponding argument (when deducing from an initializer list).
|
|
DeducedMismatchNested,
|
|
/// A non-depnedent component of the parameter did not match the
|
|
/// corresponding component of the argument.
|
|
NonDeducedMismatch,
|
|
/// When performing template argument deduction for a function
|
|
/// template, there were too many call arguments.
|
|
TooManyArguments,
|
|
/// When performing template argument deduction for a function
|
|
/// template, there were too few call arguments.
|
|
TooFewArguments,
|
|
/// The explicitly-specified template arguments were not valid
|
|
/// template arguments for the given template.
|
|
InvalidExplicitArguments,
|
|
/// Checking non-dependent argument conversions failed.
|
|
NonDependentConversionFailure,
|
|
/// The deduced arguments did not satisfy the constraints associated
|
|
/// with the template.
|
|
ConstraintsNotSatisfied,
|
|
/// Deduction failed; that's all we know.
|
|
MiscellaneousDeductionFailure,
|
|
/// CUDA Target attributes do not match.
|
|
CUDATargetMismatch,
|
|
/// Some error which was already diagnosed.
|
|
AlreadyDiagnosed
|
|
};
|
|
|
|
/// Kinds of C++ special members.
|
|
enum class CXXSpecialMemberKind {
|
|
DefaultConstructor,
|
|
CopyConstructor,
|
|
MoveConstructor,
|
|
CopyAssignment,
|
|
MoveAssignment,
|
|
Destructor,
|
|
Invalid
|
|
};
|
|
|
|
/// The kind of conversion being performed.
|
|
enum class CheckedConversionKind {
|
|
/// An implicit conversion.
|
|
Implicit,
|
|
/// A C-style cast.
|
|
CStyleCast,
|
|
/// A functional-style cast.
|
|
FunctionalCast,
|
|
/// A cast other than a C-style cast.
|
|
OtherCast,
|
|
/// A conversion for an operand of a builtin overloaded operator.
|
|
ForBuiltinOverloadedOp
|
|
};
|
|
|
|
enum class TagUseKind {
|
|
Reference, // Reference to a tag: 'struct foo *X;'
|
|
Declaration, // Fwd decl of a tag: 'struct foo;'
|
|
Definition, // Definition of a tag: 'struct foo { int X; } Y;'
|
|
Friend // Friend declaration: 'friend struct foo;'
|
|
};
|
|
|
|
/// Used with attributes/effects with a boolean condition, e.g. `nonblocking`.
|
|
enum class FunctionEffectMode : uint8_t {
|
|
None, // effect is not present.
|
|
False, // effect(false).
|
|
True, // effect(true).
|
|
Dependent // effect(expr) where expr is dependent.
|
|
};
|
|
|
|
struct FunctionEffectDiff {
|
|
enum class Kind { Added, Removed, ConditionMismatch };
|
|
|
|
FunctionEffect::Kind EffectKind;
|
|
Kind DiffKind;
|
|
FunctionEffectWithCondition Old; // invalid when Added.
|
|
FunctionEffectWithCondition New; // invalid when Removed.
|
|
|
|
StringRef effectName() const {
|
|
if (Old.Effect.kind() != FunctionEffect::Kind::None)
|
|
return Old.Effect.name();
|
|
return New.Effect.name();
|
|
}
|
|
|
|
/// Describes the result of effects differing between a base class's virtual
|
|
/// method and an overriding method in a subclass.
|
|
enum class OverrideResult {
|
|
NoAction,
|
|
Warn,
|
|
Merge // Merge missing effect from base to derived.
|
|
};
|
|
|
|
/// Return true if adding or removing the effect as part of a type conversion
|
|
/// should generate a diagnostic.
|
|
bool shouldDiagnoseConversion(QualType SrcType,
|
|
const FunctionEffectsRef &SrcFX,
|
|
QualType DstType,
|
|
const FunctionEffectsRef &DstFX) const;
|
|
|
|
/// Return true if adding or removing the effect in a redeclaration should
|
|
/// generate a diagnostic.
|
|
bool shouldDiagnoseRedeclaration(const FunctionDecl &OldFunction,
|
|
const FunctionEffectsRef &OldFX,
|
|
const FunctionDecl &NewFunction,
|
|
const FunctionEffectsRef &NewFX) const;
|
|
|
|
/// Return true if adding or removing the effect in a C++ virtual method
|
|
/// override should generate a diagnostic.
|
|
OverrideResult shouldDiagnoseMethodOverride(
|
|
const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
|
|
const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const;
|
|
};
|
|
|
|
struct FunctionEffectDifferences : public SmallVector<FunctionEffectDiff> {
|
|
/// Caller should short-circuit by checking for equality first.
|
|
FunctionEffectDifferences(const FunctionEffectsRef &Old,
|
|
const FunctionEffectsRef &New);
|
|
};
|
|
|
|
/// Sema - This implements semantic analysis and AST building for C.
|
|
/// \nosubgrouping
|
|
class Sema final : public SemaBase {
|
|
// Table of Contents
|
|
// -----------------
|
|
// 1. Semantic Analysis (Sema.cpp)
|
|
// 2. API Notes (SemaAPINotes.cpp)
|
|
// 3. C++ Access Control (SemaAccess.cpp)
|
|
// 4. Attributes (SemaAttr.cpp)
|
|
// 5. Availability Attribute Handling (SemaAvailability.cpp)
|
|
// 6. Bounds Safety (SemaBoundsSafety.cpp)
|
|
// 7. Casts (SemaCast.cpp)
|
|
// 8. Extra Semantic Checking (SemaChecking.cpp)
|
|
// 9. C++ Coroutines (SemaCoroutine.cpp)
|
|
// 10. C++ Scope Specifiers (SemaCXXScopeSpec.cpp)
|
|
// 11. Declarations (SemaDecl.cpp)
|
|
// 12. Declaration Attribute Handling (SemaDeclAttr.cpp)
|
|
// 13. C++ Declarations (SemaDeclCXX.cpp)
|
|
// 14. C++ Exception Specifications (SemaExceptionSpec.cpp)
|
|
// 15. Expressions (SemaExpr.cpp)
|
|
// 16. C++ Expressions (SemaExprCXX.cpp)
|
|
// 17. Member Access Expressions (SemaExprMember.cpp)
|
|
// 18. Initializers (SemaInit.cpp)
|
|
// 19. C++ Lambda Expressions (SemaLambda.cpp)
|
|
// 20. Name Lookup (SemaLookup.cpp)
|
|
// 21. Modules (SemaModule.cpp)
|
|
// 22. C++ Overloading (SemaOverload.cpp)
|
|
// 23. Statements (SemaStmt.cpp)
|
|
// 24. `inline asm` Statement (SemaStmtAsm.cpp)
|
|
// 25. Statement Attribute Handling (SemaStmtAttr.cpp)
|
|
// 26. C++ Templates (SemaTemplate.cpp)
|
|
// 27. C++ Template Argument Deduction (SemaTemplateDeduction.cpp)
|
|
// 28. C++ Template Deduction Guide (SemaTemplateDeductionGuide.cpp)
|
|
// 29. C++ Template Instantiation (SemaTemplateInstantiate.cpp)
|
|
// 30. C++ Template Declaration Instantiation
|
|
// (SemaTemplateInstantiateDecl.cpp)
|
|
// 31. C++ Variadic Templates (SemaTemplateVariadic.cpp)
|
|
// 32. Constraints and Concepts (SemaConcept.cpp)
|
|
// 33. Types (SemaType.cpp)
|
|
// 34. FixIt Helpers (SemaFixItUtils.cpp)
|
|
|
|
/// \name Semantic Analysis
|
|
/// Implementations are in Sema.cpp
|
|
///@{
|
|
|
|
public:
|
|
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
|
|
TranslationUnitKind TUKind = TU_Complete,
|
|
CodeCompleteConsumer *CompletionConsumer = nullptr);
|
|
~Sema();
|
|
|
|
/// Perform initialization that occurs after the parser has been
|
|
/// initialized but before it parses anything.
|
|
void Initialize();
|
|
|
|
/// This virtual key function only exists to limit the emission of debug info
|
|
/// describing the Sema class. GCC and Clang only emit debug info for a class
|
|
/// with a vtable when the vtable is emitted. Sema is final and not
|
|
/// polymorphic, but the debug info size savings are so significant that it is
|
|
/// worth adding a vtable just to take advantage of this optimization.
|
|
virtual void anchor();
|
|
|
|
const LangOptions &getLangOpts() const { return LangOpts; }
|
|
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
|
|
FPOptions &getCurFPFeatures() { return CurFPFeatures; }
|
|
|
|
DiagnosticsEngine &getDiagnostics() const { return Diags; }
|
|
SourceManager &getSourceManager() const { return SourceMgr; }
|
|
Preprocessor &getPreprocessor() const { return PP; }
|
|
ASTContext &getASTContext() const { return Context; }
|
|
ASTConsumer &getASTConsumer() const { return Consumer; }
|
|
ASTMutationListener *getASTMutationListener() const;
|
|
ExternalSemaSource *getExternalSource() const { return ExternalSource.get(); }
|
|
|
|
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
|
|
StringRef Platform);
|
|
DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking();
|
|
|
|
/// Registers an external source. If an external source already exists,
|
|
/// creates a multiplex external source and appends to it.
|
|
///
|
|
///\param[in] E - A non-null external sema source.
|
|
///
|
|
void addExternalSource(ExternalSemaSource *E);
|
|
|
|
/// Print out statistics about the semantic analysis.
|
|
void PrintStats() const;
|
|
|
|
/// Warn that the stack is nearly exhausted.
|
|
void warnStackExhausted(SourceLocation Loc);
|
|
|
|
/// Run some code with "sufficient" stack space. (Currently, at least 256K is
|
|
/// guaranteed). Produces a warning if we're low on stack space and allocates
|
|
/// more in that case. Use this in code that may recurse deeply (for example,
|
|
/// in template instantiation) to avoid stack overflow.
|
|
void runWithSufficientStackSpace(SourceLocation Loc,
|
|
llvm::function_ref<void()> Fn);
|
|
|
|
/// Returns default addr space for method qualifiers.
|
|
LangAS getDefaultCXXMethodAddrSpace() const;
|
|
|
|
/// Load weak undeclared identifiers from the external source.
|
|
void LoadExternalWeakUndeclaredIdentifiers();
|
|
|
|
/// Determine if VD, which must be a variable or function, is an external
|
|
/// symbol that nonetheless can't be referenced from outside this translation
|
|
/// unit because its type has no linkage and it's not extern "C".
|
|
bool isExternalWithNoLinkageType(const ValueDecl *VD) const;
|
|
|
|
/// Obtain a sorted list of functions that are undefined but ODR-used.
|
|
void getUndefinedButUsed(
|
|
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation>> &Undefined);
|
|
|
|
typedef std::pair<SourceLocation, bool> DeleteExprLoc;
|
|
typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
|
|
/// Retrieves list of suspicious delete-expressions that will be checked at
|
|
/// the end of translation unit.
|
|
const llvm::MapVector<FieldDecl *, DeleteLocs> &
|
|
getMismatchingDeleteExpressions() const;
|
|
|
|
/// Cause the active diagnostic on the DiagosticsEngine to be
|
|
/// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
|
|
/// should not be used elsewhere.
|
|
void EmitCurrentDiagnostic(unsigned DiagID);
|
|
|
|
void addImplicitTypedef(StringRef Name, QualType T);
|
|
|
|
/// Whether uncompilable error has occurred. This includes error happens
|
|
/// in deferred diagnostics.
|
|
bool hasUncompilableErrorOccurred() const;
|
|
|
|
/// Looks through the macro-expansion chain for the given
|
|
/// location, looking for a macro expansion with the given name.
|
|
/// If one is found, returns true and sets the location to that
|
|
/// expansion loc.
|
|
bool findMacroSpelling(SourceLocation &loc, StringRef name);
|
|
|
|
/// Calls \c Lexer::getLocForEndOfToken()
|
|
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
|
|
|
|
/// Retrieve the module loader associated with the preprocessor.
|
|
ModuleLoader &getModuleLoader() const;
|
|
|
|
/// Invent a new identifier for parameters of abbreviated templates.
|
|
IdentifierInfo *
|
|
InventAbbreviatedTemplateParameterTypeName(const IdentifierInfo *ParamName,
|
|
unsigned Index);
|
|
|
|
void emitAndClearUnusedLocalTypedefWarnings();
|
|
|
|
// Emit all deferred diagnostics.
|
|
void emitDeferredDiags();
|
|
|
|
enum TUFragmentKind {
|
|
/// The global module fragment, between 'module;' and a module-declaration.
|
|
Global,
|
|
/// A normal translation unit fragment. For a non-module unit, this is the
|
|
/// entire translation unit. Otherwise, it runs from the module-declaration
|
|
/// to the private-module-fragment (if any) or the end of the TU (if not).
|
|
Normal,
|
|
/// The private module fragment, between 'module :private;' and the end of
|
|
/// the translation unit.
|
|
Private
|
|
};
|
|
|
|
/// This is called before the very first declaration in the translation unit
|
|
/// is parsed. Note that the ASTContext may have already injected some
|
|
/// declarations.
|
|
void ActOnStartOfTranslationUnit();
|
|
/// ActOnEndOfTranslationUnit - This is called at the very end of the
|
|
/// translation unit when EOF is reached and all but the top-level scope is
|
|
/// popped.
|
|
void ActOnEndOfTranslationUnit();
|
|
void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
|
|
|
|
/// Determines the active Scope associated with the given declaration
|
|
/// context.
|
|
///
|
|
/// This routine maps a declaration context to the active Scope object that
|
|
/// represents that declaration context in the parser. It is typically used
|
|
/// from "scope-less" code (e.g., template instantiation, lazy creation of
|
|
/// declarations) that injects a name for name-lookup purposes and, therefore,
|
|
/// must update the Scope.
|
|
///
|
|
/// \returns The scope corresponding to the given declaraion context, or NULL
|
|
/// if no such scope is open.
|
|
Scope *getScopeForContext(DeclContext *Ctx);
|
|
|
|
void PushFunctionScope();
|
|
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
|
|
sema::LambdaScopeInfo *PushLambdaScope();
|
|
|
|
/// This is used to inform Sema what the current TemplateParameterDepth
|
|
/// is during Parsing. Currently it is used to pass on the depth
|
|
/// when parsing generic lambda 'auto' parameters.
|
|
void RecordParsingTemplateParameterDepth(unsigned Depth);
|
|
|
|
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
|
|
RecordDecl *RD, CapturedRegionKind K,
|
|
unsigned OpenMPCaptureLevel = 0);
|
|
|
|
/// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
|
|
/// time after they've been popped.
|
|
class PoppedFunctionScopeDeleter {
|
|
Sema *Self;
|
|
|
|
public:
|
|
explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
|
|
void operator()(sema::FunctionScopeInfo *Scope) const;
|
|
};
|
|
|
|
using PoppedFunctionScopePtr =
|
|
std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
|
|
|
|
/// Pop a function (or block or lambda or captured region) scope from the
|
|
/// stack.
|
|
///
|
|
/// \param WP The warning policy to use for CFG-based warnings, or null if
|
|
/// such warnings should not be produced.
|
|
/// \param D The declaration corresponding to this function scope, if
|
|
/// producing CFG-based warnings.
|
|
/// \param BlockType The type of the block expression, if D is a BlockDecl.
|
|
PoppedFunctionScopePtr
|
|
PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
|
|
const Decl *D = nullptr,
|
|
QualType BlockType = QualType());
|
|
|
|
sema::FunctionScopeInfo *getEnclosingFunction() const;
|
|
|
|
void setFunctionHasBranchIntoScope();
|
|
void setFunctionHasBranchProtectedScope();
|
|
void setFunctionHasIndirectGoto();
|
|
void setFunctionHasMustTail();
|
|
|
|
void PushCompoundScope(bool IsStmtExpr);
|
|
void PopCompoundScope();
|
|
|
|
/// Determine whether any errors occurred within this function/method/
|
|
/// block.
|
|
bool hasAnyUnrecoverableErrorsInThisFunction() const;
|
|
|
|
/// Retrieve the current block, if any.
|
|
sema::BlockScopeInfo *getCurBlock();
|
|
|
|
/// Get the innermost lambda enclosing the current location, if any. This
|
|
/// looks through intervening non-lambda scopes such as local functions and
|
|
/// blocks.
|
|
sema::LambdaScopeInfo *getEnclosingLambda() const;
|
|
|
|
/// Retrieve the current lambda scope info, if any.
|
|
/// \param IgnoreNonLambdaCapturingScope true if should find the top-most
|
|
/// lambda scope info ignoring all inner capturing scopes that are not
|
|
/// lambda scopes.
|
|
sema::LambdaScopeInfo *
|
|
getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
|
|
|
|
/// Retrieve the current generic lambda info, if any.
|
|
sema::LambdaScopeInfo *getCurGenericLambda();
|
|
|
|
/// Retrieve the current captured region, if any.
|
|
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
|
|
|
|
void ActOnComment(SourceRange Comment);
|
|
|
|
/// Retrieve the parser's current scope.
|
|
///
|
|
/// This routine must only be used when it is certain that semantic analysis
|
|
/// and the parser are in precisely the same context, which is not the case
|
|
/// when, e.g., we are performing any kind of template instantiation.
|
|
/// Therefore, the only safe places to use this scope are in the parser
|
|
/// itself and in routines directly invoked from the parser and *never* from
|
|
/// template substitution or instantiation.
|
|
Scope *getCurScope() const { return CurScope; }
|
|
|
|
IdentifierInfo *getSuperIdentifier() const;
|
|
|
|
DeclContext *getCurLexicalContext() const {
|
|
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
|
|
}
|
|
|
|
SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
|
|
const FunctionDecl *FD = nullptr);
|
|
SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
|
|
const PartialDiagnostic &PD,
|
|
const FunctionDecl *FD = nullptr) {
|
|
return targetDiag(Loc, PD.getDiagID(), FD) << PD;
|
|
}
|
|
|
|
/// Check if the type is allowed to be used for the current target.
|
|
void checkTypeSupport(QualType Ty, SourceLocation Loc,
|
|
ValueDecl *D = nullptr);
|
|
|
|
// /// The kind of conversion being performed.
|
|
// enum CheckedConversionKind {
|
|
// /// An implicit conversion.
|
|
// CCK_ImplicitConversion,
|
|
// /// A C-style cast.
|
|
// CCK_CStyleCast,
|
|
// /// A functional-style cast.
|
|
// CCK_FunctionalCast,
|
|
// /// A cast other than a C-style cast.
|
|
// CCK_OtherCast,
|
|
// /// A conversion for an operand of a builtin overloaded operator.
|
|
// CCK_ForBuiltinOverloadedOp
|
|
// };
|
|
|
|
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
|
|
/// cast. If there is already an implicit cast, merge into the existing one.
|
|
/// If isLvalue, the result of the cast is an lvalue.
|
|
ExprResult ImpCastExprToType(
|
|
Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_PRValue,
|
|
const CXXCastPath *BasePath = nullptr,
|
|
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
|
|
|
|
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
|
|
/// to the conversion from scalar type ScalarTy to the Boolean type.
|
|
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
|
|
|
|
/// If \p AllowLambda is true, treat lambda as function.
|
|
DeclContext *getFunctionLevelDeclContext(bool AllowLambda = false) const;
|
|
|
|
/// Returns a pointer to the innermost enclosing function, or nullptr if the
|
|
/// current context is not inside a function. If \p AllowLambda is true,
|
|
/// this can return the call operator of an enclosing lambda, otherwise
|
|
/// lambdas are skipped when looking for an enclosing function.
|
|
FunctionDecl *getCurFunctionDecl(bool AllowLambda = false) const;
|
|
|
|
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
|
|
/// the method decl for the method being parsed. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
ObjCMethodDecl *getCurMethodDecl();
|
|
|
|
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
|
|
/// or C function we're in, otherwise return null. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
NamedDecl *getCurFunctionOrMethodDecl() const;
|
|
|
|
/// Warn if we're implicitly casting from a _Nullable pointer type to a
|
|
/// _Nonnull one.
|
|
void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
|
|
SourceLocation Loc);
|
|
|
|
/// Warn when implicitly casting 0 to nullptr.
|
|
void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
|
|
|
|
// ----- function effects ---
|
|
|
|
/// Warn when implicitly changing function effects.
|
|
void diagnoseFunctionEffectConversion(QualType DstType, QualType SrcType,
|
|
SourceLocation Loc);
|
|
|
|
/// Warn and return true if adding an effect to a set would create a conflict.
|
|
bool diagnoseConflictingFunctionEffect(const FunctionEffectsRef &FX,
|
|
const FunctionEffectWithCondition &EC,
|
|
SourceLocation NewAttrLoc);
|
|
|
|
// Report a failure to merge function effects between declarations due to a
|
|
// conflict.
|
|
void
|
|
diagnoseFunctionEffectMergeConflicts(const FunctionEffectSet::Conflicts &Errs,
|
|
SourceLocation NewLoc,
|
|
SourceLocation OldLoc);
|
|
|
|
/// Try to parse the conditional expression attached to an effect attribute
|
|
/// (e.g. 'nonblocking'). (c.f. Sema::ActOnNoexceptSpec). Return an empty
|
|
/// optional on error.
|
|
std::optional<FunctionEffectMode>
|
|
ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName);
|
|
|
|
/// makeUnavailableInSystemHeader - There is an error in the current
|
|
/// context. If we're still in a system header, and we can plausibly
|
|
/// make the relevant declaration unavailable instead of erroring, do
|
|
/// so and return true.
|
|
bool makeUnavailableInSystemHeader(SourceLocation loc,
|
|
UnavailableAttr::ImplicitReason reason);
|
|
|
|
/// Retrieve a suitable printing policy for diagnostics.
|
|
PrintingPolicy getPrintingPolicy() const {
|
|
return getPrintingPolicy(Context, PP);
|
|
}
|
|
|
|
/// Retrieve a suitable printing policy for diagnostics.
|
|
static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
|
|
const Preprocessor &PP);
|
|
|
|
/// Scope actions.
|
|
void ActOnTranslationUnitScope(Scope *S);
|
|
|
|
/// Determine whether \param D is function like (function or function
|
|
/// template) for parsing.
|
|
bool isDeclaratorFunctionLike(Declarator &D);
|
|
|
|
/// The maximum alignment, same as in llvm::Value. We duplicate them here
|
|
/// because that allows us not to duplicate the constants in clang code,
|
|
/// which we must to since we can't directly use the llvm constants.
|
|
/// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
|
|
///
|
|
/// This is the greatest alignment value supported by load, store, and alloca
|
|
/// instructions, and global values.
|
|
static const unsigned MaxAlignmentExponent = 32;
|
|
static const uint64_t MaximumAlignment = 1ull << MaxAlignmentExponent;
|
|
|
|
/// Flag indicating whether or not to collect detailed statistics.
|
|
bool CollectStats;
|
|
|
|
std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
|
|
|
|
/// Stack containing information about each of the nested
|
|
/// function, block, and method scopes that are currently active.
|
|
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
|
|
|
|
/// The index of the first FunctionScope that corresponds to the current
|
|
/// context.
|
|
unsigned FunctionScopesStart = 0;
|
|
|
|
/// Track the number of currently active capturing scopes.
|
|
unsigned CapturingFunctionScopes = 0;
|
|
|
|
llvm::BumpPtrAllocator BumpAlloc;
|
|
|
|
/// The kind of translation unit we are processing.
|
|
///
|
|
/// When we're processing a complete translation unit, Sema will perform
|
|
/// end-of-translation-unit semantic tasks (such as creating
|
|
/// initializers for tentative definitions in C) once parsing has
|
|
/// completed. Modules and precompiled headers perform different kinds of
|
|
/// checks.
|
|
const TranslationUnitKind TUKind;
|
|
|
|
/// Translation Unit Scope - useful to Objective-C actions that need
|
|
/// to lookup file scope declarations in the "ordinary" C decl namespace.
|
|
/// For example, user-defined classes, built-in "id" type, etc.
|
|
Scope *TUScope;
|
|
|
|
bool WarnedStackExhausted = false;
|
|
|
|
void incrementMSManglingNumber() const {
|
|
return CurScope->incrementMSManglingNumber();
|
|
}
|
|
|
|
/// Try to recover by turning the given expression into a
|
|
/// call. Returns true if recovery was attempted or an error was
|
|
/// emitted; this may also leave the ExprResult invalid.
|
|
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
|
|
bool ForceComplain = false,
|
|
bool (*IsPlausibleResult)(QualType) = nullptr);
|
|
|
|
/// Figure out if an expression could be turned into a call.
|
|
///
|
|
/// Use this when trying to recover from an error where the programmer may
|
|
/// have written just the name of a function instead of actually calling it.
|
|
///
|
|
/// \param E - The expression to examine.
|
|
/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
|
|
/// with no arguments, this parameter is set to the type returned by such a
|
|
/// call; otherwise, it is set to an empty QualType.
|
|
/// \param OverloadSet - If the expression is an overloaded function
|
|
/// name, this parameter is populated with the decls of the various
|
|
/// overloads.
|
|
bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
|
|
UnresolvedSetImpl &NonTemplateOverloads);
|
|
|
|
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
|
|
typedef OpaquePtr<TemplateName> TemplateTy;
|
|
typedef OpaquePtr<QualType> TypeTy;
|
|
|
|
OpenCLOptions OpenCLFeatures;
|
|
FPOptions CurFPFeatures;
|
|
|
|
const LangOptions &LangOpts;
|
|
Preprocessor &PP;
|
|
ASTContext &Context;
|
|
ASTConsumer &Consumer;
|
|
DiagnosticsEngine &Diags;
|
|
SourceManager &SourceMgr;
|
|
api_notes::APINotesManager APINotes;
|
|
|
|
/// A RAII object to enter scope of a compound statement.
|
|
class CompoundScopeRAII {
|
|
public:
|
|
CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
|
|
S.ActOnStartOfCompoundStmt(IsStmtExpr);
|
|
}
|
|
|
|
~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); }
|
|
|
|
private:
|
|
Sema &S;
|
|
};
|
|
|
|
/// An RAII helper that pops function a function scope on exit.
|
|
struct FunctionScopeRAII {
|
|
Sema &S;
|
|
bool Active;
|
|
FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
|
|
~FunctionScopeRAII() {
|
|
if (Active)
|
|
S.PopFunctionScopeInfo();
|
|
}
|
|
void disable() { Active = false; }
|
|
};
|
|
|
|
sema::FunctionScopeInfo *getCurFunction() const {
|
|
return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
|
|
}
|
|
|
|
/// Worker object for performing CFG-based warnings.
|
|
sema::AnalysisBasedWarnings AnalysisWarnings;
|
|
threadSafety::BeforeSet *ThreadSafetyDeclCache;
|
|
|
|
/// Callback to the parser to parse templated functions when needed.
|
|
typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
|
|
typedef void LateTemplateParserCleanupCB(void *P);
|
|
LateTemplateParserCB *LateTemplateParser;
|
|
LateTemplateParserCleanupCB *LateTemplateParserCleanup;
|
|
void *OpaqueParser;
|
|
|
|
void SetLateTemplateParser(LateTemplateParserCB *LTP,
|
|
LateTemplateParserCleanupCB *LTPCleanup, void *P) {
|
|
LateTemplateParser = LTP;
|
|
LateTemplateParserCleanup = LTPCleanup;
|
|
OpaqueParser = P;
|
|
}
|
|
|
|
/// Callback to the parser to parse a type expressed as a string.
|
|
std::function<TypeResult(StringRef, StringRef, SourceLocation)>
|
|
ParseTypeFromStringCallback;
|
|
|
|
/// VAListTagName - The declaration name corresponding to __va_list_tag.
|
|
/// This is used as part of a hack to omit that class from ADL results.
|
|
DeclarationName VAListTagName;
|
|
|
|
/// Is the last error level diagnostic immediate. This is used to determined
|
|
/// whether the next info diagnostic should be immediate.
|
|
bool IsLastErrorImmediate = true;
|
|
|
|
class DelayedDiagnostics;
|
|
|
|
class DelayedDiagnosticsState {
|
|
sema::DelayedDiagnosticPool *SavedPool = nullptr;
|
|
friend class Sema::DelayedDiagnostics;
|
|
};
|
|
typedef DelayedDiagnosticsState ParsingDeclState;
|
|
typedef DelayedDiagnosticsState ProcessingContextState;
|
|
|
|
/// A class which encapsulates the logic for delaying diagnostics
|
|
/// during parsing and other processing.
|
|
class DelayedDiagnostics {
|
|
/// The current pool of diagnostics into which delayed
|
|
/// diagnostics should go.
|
|
sema::DelayedDiagnosticPool *CurPool = nullptr;
|
|
|
|
public:
|
|
DelayedDiagnostics() = default;
|
|
|
|
/// Adds a delayed diagnostic.
|
|
void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
|
|
|
|
/// Determines whether diagnostics should be delayed.
|
|
bool shouldDelayDiagnostics() { return CurPool != nullptr; }
|
|
|
|
/// Returns the current delayed-diagnostics pool.
|
|
sema::DelayedDiagnosticPool *getCurrentPool() const { return CurPool; }
|
|
|
|
/// Enter a new scope. Access and deprecation diagnostics will be
|
|
/// collected in this pool.
|
|
DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
|
|
DelayedDiagnosticsState state;
|
|
state.SavedPool = CurPool;
|
|
CurPool = &pool;
|
|
return state;
|
|
}
|
|
|
|
/// Leave a delayed-diagnostic state that was previously pushed.
|
|
/// Do not emit any of the diagnostics. This is performed as part
|
|
/// of the bookkeeping of popping a pool "properly".
|
|
void popWithoutEmitting(DelayedDiagnosticsState state) {
|
|
CurPool = state.SavedPool;
|
|
}
|
|
|
|
/// Enter a new scope where access and deprecation diagnostics are
|
|
/// not delayed.
|
|
DelayedDiagnosticsState pushUndelayed() {
|
|
DelayedDiagnosticsState state;
|
|
state.SavedPool = CurPool;
|
|
CurPool = nullptr;
|
|
return state;
|
|
}
|
|
|
|
/// Undo a previous pushUndelayed().
|
|
void popUndelayed(DelayedDiagnosticsState state) {
|
|
assert(CurPool == nullptr);
|
|
CurPool = state.SavedPool;
|
|
}
|
|
} DelayedDiagnostics;
|
|
|
|
ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
|
|
return DelayedDiagnostics.push(pool);
|
|
}
|
|
|
|
/// Diagnostics that are emitted only if we discover that the given function
|
|
/// must be codegen'ed. Because handling these correctly adds overhead to
|
|
/// compilation, this is currently only enabled for CUDA compilations.
|
|
SemaDiagnosticBuilder::DeferredDiagnosticsType DeviceDeferredDiags;
|
|
|
|
/// CurContext - This is the current declaration context of parsing.
|
|
DeclContext *CurContext;
|
|
|
|
SemaAMDGPU &AMDGPU() {
|
|
assert(AMDGPUPtr);
|
|
return *AMDGPUPtr;
|
|
}
|
|
|
|
SemaARM &ARM() {
|
|
assert(ARMPtr);
|
|
return *ARMPtr;
|
|
}
|
|
|
|
SemaAVR &AVR() {
|
|
assert(AVRPtr);
|
|
return *AVRPtr;
|
|
}
|
|
|
|
SemaBPF &BPF() {
|
|
assert(BPFPtr);
|
|
return *BPFPtr;
|
|
}
|
|
|
|
SemaCodeCompletion &CodeCompletion() {
|
|
assert(CodeCompletionPtr);
|
|
return *CodeCompletionPtr;
|
|
}
|
|
|
|
SemaCUDA &CUDA() {
|
|
assert(CUDAPtr);
|
|
return *CUDAPtr;
|
|
}
|
|
|
|
SemaHLSL &HLSL() {
|
|
assert(HLSLPtr);
|
|
return *HLSLPtr;
|
|
}
|
|
|
|
SemaHexagon &Hexagon() {
|
|
assert(HexagonPtr);
|
|
return *HexagonPtr;
|
|
}
|
|
|
|
SemaLoongArch &LoongArch() {
|
|
assert(LoongArchPtr);
|
|
return *LoongArchPtr;
|
|
}
|
|
|
|
SemaM68k &M68k() {
|
|
assert(M68kPtr);
|
|
return *M68kPtr;
|
|
}
|
|
|
|
SemaMIPS &MIPS() {
|
|
assert(MIPSPtr);
|
|
return *MIPSPtr;
|
|
}
|
|
|
|
SemaMSP430 &MSP430() {
|
|
assert(MSP430Ptr);
|
|
return *MSP430Ptr;
|
|
}
|
|
|
|
SemaNVPTX &NVPTX() {
|
|
assert(NVPTXPtr);
|
|
return *NVPTXPtr;
|
|
}
|
|
|
|
SemaObjC &ObjC() {
|
|
assert(ObjCPtr);
|
|
return *ObjCPtr;
|
|
}
|
|
|
|
SemaOpenACC &OpenACC() {
|
|
assert(OpenACCPtr);
|
|
return *OpenACCPtr;
|
|
}
|
|
|
|
SemaOpenCL &OpenCL() {
|
|
assert(OpenCLPtr);
|
|
return *OpenCLPtr;
|
|
}
|
|
|
|
SemaOpenMP &OpenMP() {
|
|
assert(OpenMPPtr && "SemaOpenMP is dead");
|
|
return *OpenMPPtr;
|
|
}
|
|
|
|
SemaPPC &PPC() {
|
|
assert(PPCPtr);
|
|
return *PPCPtr;
|
|
}
|
|
|
|
SemaPseudoObject &PseudoObject() {
|
|
assert(PseudoObjectPtr);
|
|
return *PseudoObjectPtr;
|
|
}
|
|
|
|
SemaRISCV &RISCV() {
|
|
assert(RISCVPtr);
|
|
return *RISCVPtr;
|
|
}
|
|
|
|
SemaSYCL &SYCL() {
|
|
assert(SYCLPtr);
|
|
return *SYCLPtr;
|
|
}
|
|
|
|
SemaSwift &Swift() {
|
|
assert(SwiftPtr);
|
|
return *SwiftPtr;
|
|
}
|
|
|
|
SemaSystemZ &SystemZ() {
|
|
assert(SystemZPtr);
|
|
return *SystemZPtr;
|
|
}
|
|
|
|
SemaWasm &Wasm() {
|
|
assert(WasmPtr);
|
|
return *WasmPtr;
|
|
}
|
|
|
|
SemaX86 &X86() {
|
|
assert(X86Ptr);
|
|
return *X86Ptr;
|
|
}
|
|
|
|
/// Source of additional semantic information.
|
|
IntrusiveRefCntPtr<ExternalSemaSource> ExternalSource;
|
|
|
|
protected:
|
|
friend class Parser;
|
|
friend class InitializationSequence;
|
|
friend class ASTReader;
|
|
friend class ASTDeclReader;
|
|
friend class ASTWriter;
|
|
|
|
private:
|
|
std::optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
|
|
bool WarnedDarwinSDKInfoMissing = false;
|
|
|
|
Sema(const Sema &) = delete;
|
|
void operator=(const Sema &) = delete;
|
|
|
|
/// The handler for the FileChanged preprocessor events.
|
|
///
|
|
/// Used for diagnostics that implement custom semantic analysis for #include
|
|
/// directives, like -Wpragma-pack.
|
|
sema::SemaPPCallbacks *SemaPPCallbackHandler;
|
|
|
|
/// The parser's current scope.
|
|
///
|
|
/// The parser maintains this state here.
|
|
Scope *CurScope;
|
|
|
|
mutable IdentifierInfo *Ident_super;
|
|
|
|
std::unique_ptr<SemaAMDGPU> AMDGPUPtr;
|
|
std::unique_ptr<SemaARM> ARMPtr;
|
|
std::unique_ptr<SemaAVR> AVRPtr;
|
|
std::unique_ptr<SemaBPF> BPFPtr;
|
|
std::unique_ptr<SemaCodeCompletion> CodeCompletionPtr;
|
|
std::unique_ptr<SemaCUDA> CUDAPtr;
|
|
std::unique_ptr<SemaHLSL> HLSLPtr;
|
|
std::unique_ptr<SemaHexagon> HexagonPtr;
|
|
std::unique_ptr<SemaLoongArch> LoongArchPtr;
|
|
std::unique_ptr<SemaM68k> M68kPtr;
|
|
std::unique_ptr<SemaMIPS> MIPSPtr;
|
|
std::unique_ptr<SemaMSP430> MSP430Ptr;
|
|
std::unique_ptr<SemaNVPTX> NVPTXPtr;
|
|
std::unique_ptr<SemaObjC> ObjCPtr;
|
|
std::unique_ptr<SemaOpenACC> OpenACCPtr;
|
|
std::unique_ptr<SemaOpenCL> OpenCLPtr;
|
|
std::unique_ptr<SemaOpenMP> OpenMPPtr;
|
|
std::unique_ptr<SemaPPC> PPCPtr;
|
|
std::unique_ptr<SemaPseudoObject> PseudoObjectPtr;
|
|
std::unique_ptr<SemaRISCV> RISCVPtr;
|
|
std::unique_ptr<SemaSYCL> SYCLPtr;
|
|
std::unique_ptr<SemaSwift> SwiftPtr;
|
|
std::unique_ptr<SemaSystemZ> SystemZPtr;
|
|
std::unique_ptr<SemaWasm> WasmPtr;
|
|
std::unique_ptr<SemaX86> X86Ptr;
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name API Notes
|
|
/// Implementations are in SemaAPINotes.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Map any API notes provided for this declaration to attributes on the
|
|
/// declaration.
|
|
///
|
|
/// Triggered by declaration-attribute processing.
|
|
void ProcessAPINotes(Decl *D);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Access Control
|
|
/// Implementations are in SemaAccess.cpp
|
|
///@{
|
|
|
|
public:
|
|
enum AccessResult {
|
|
AR_accessible,
|
|
AR_inaccessible,
|
|
AR_dependent,
|
|
AR_delayed
|
|
};
|
|
|
|
/// SetMemberAccessSpecifier - Set the access specifier of a member.
|
|
/// Returns true on error (when the previous member decl access specifier
|
|
/// is different from the new member decl access specifier).
|
|
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
|
|
NamedDecl *PrevMemberDecl,
|
|
AccessSpecifier LexicalAS);
|
|
|
|
/// Perform access-control checking on a previously-unresolved member
|
|
/// access which has now been resolved to a member.
|
|
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
|
|
DeclAccessPair FoundDecl);
|
|
|
|
/// Checks access to an overloaded operator new or delete.
|
|
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
|
|
SourceRange PlacementRange,
|
|
CXXRecordDecl *NamingClass,
|
|
DeclAccessPair FoundDecl,
|
|
bool Diagnose = true);
|
|
|
|
/// Checks access to a constructor.
|
|
AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D,
|
|
DeclAccessPair FoundDecl,
|
|
const InitializedEntity &Entity,
|
|
bool IsCopyBindingRefToTemp = false);
|
|
|
|
/// Checks access to a constructor.
|
|
AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D,
|
|
DeclAccessPair FoundDecl,
|
|
const InitializedEntity &Entity,
|
|
const PartialDiagnostic &PDiag);
|
|
AccessResult CheckDestructorAccess(SourceLocation Loc,
|
|
CXXDestructorDecl *Dtor,
|
|
const PartialDiagnostic &PDiag,
|
|
QualType objectType = QualType());
|
|
|
|
/// Checks access to the target of a friend declaration.
|
|
AccessResult CheckFriendAccess(NamedDecl *D);
|
|
|
|
/// Checks access to a member.
|
|
AccessResult CheckMemberAccess(SourceLocation UseLoc,
|
|
CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found);
|
|
|
|
/// Checks implicit access to a member in a structured binding.
|
|
AccessResult
|
|
CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
|
|
CXXRecordDecl *DecomposedClass,
|
|
DeclAccessPair Field);
|
|
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
|
|
const SourceRange &,
|
|
DeclAccessPair FoundDecl);
|
|
|
|
/// Checks access to an overloaded member operator, including
|
|
/// conversion operators.
|
|
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
|
|
Expr *ArgExpr,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr,
|
|
ArrayRef<Expr *> ArgExprs,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
|
|
DeclAccessPair FoundDecl);
|
|
|
|
/// Checks access for a hierarchy conversion.
|
|
///
|
|
/// \param ForceCheck true if this check should be performed even if access
|
|
/// control is disabled; some things rely on this for semantics
|
|
/// \param ForceUnprivileged true if this check should proceed as if the
|
|
/// context had no special privileges
|
|
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base,
|
|
QualType Derived, const CXXBasePath &Path,
|
|
unsigned DiagID, bool ForceCheck = false,
|
|
bool ForceUnprivileged = false);
|
|
|
|
/// Checks access to all the declarations in the given result set.
|
|
void CheckLookupAccess(const LookupResult &R);
|
|
|
|
/// Checks access to Target from the given class. The check will take access
|
|
/// specifiers into account, but no member access expressions and such.
|
|
///
|
|
/// \param Target the declaration to check if it can be accessed
|
|
/// \param NamingClass the class in which the lookup was started.
|
|
/// \param BaseType type of the left side of member access expression.
|
|
/// \p BaseType and \p NamingClass are used for C++ access control.
|
|
/// Depending on the lookup case, they should be set to the following:
|
|
/// - lhs.target (member access without a qualifier):
|
|
/// \p BaseType and \p NamingClass are both the type of 'lhs'.
|
|
/// - lhs.X::target (member access with a qualifier):
|
|
/// BaseType is the type of 'lhs', NamingClass is 'X'
|
|
/// - X::target (qualified lookup without member access):
|
|
/// BaseType is null, NamingClass is 'X'.
|
|
/// - target (unqualified lookup).
|
|
/// BaseType is null, NamingClass is the parent class of 'target'.
|
|
/// \return true if the Target is accessible from the Class, false otherwise.
|
|
bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
|
|
QualType BaseType);
|
|
|
|
/// Is the given member accessible for the purposes of deciding whether to
|
|
/// define a special member function as deleted?
|
|
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found, QualType ObjectType,
|
|
SourceLocation Loc,
|
|
const PartialDiagnostic &Diag);
|
|
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found,
|
|
QualType ObjectType) {
|
|
return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
|
|
SourceLocation(), PDiag());
|
|
}
|
|
|
|
void HandleDependentAccessCheck(
|
|
const DependentDiagnostic &DD,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Attributes
|
|
/// Implementations are in SemaAttr.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Controls member pointer representation format under the MS ABI.
|
|
LangOptions::PragmaMSPointersToMembersKind
|
|
MSPointerToMemberRepresentationMethod;
|
|
|
|
bool MSStructPragmaOn; // True when \#pragma ms_struct on
|
|
|
|
/// Source location for newly created implicit MSInheritanceAttrs
|
|
SourceLocation ImplicitMSInheritanceAttrLoc;
|
|
|
|
/// pragma clang section kind
|
|
enum PragmaClangSectionKind {
|
|
PCSK_Invalid = 0,
|
|
PCSK_BSS = 1,
|
|
PCSK_Data = 2,
|
|
PCSK_Rodata = 3,
|
|
PCSK_Text = 4,
|
|
PCSK_Relro = 5
|
|
};
|
|
|
|
enum PragmaClangSectionAction { PCSA_Set = 0, PCSA_Clear = 1 };
|
|
|
|
struct PragmaClangSection {
|
|
std::string SectionName;
|
|
bool Valid = false;
|
|
SourceLocation PragmaLocation;
|
|
};
|
|
|
|
PragmaClangSection PragmaClangBSSSection;
|
|
PragmaClangSection PragmaClangDataSection;
|
|
PragmaClangSection PragmaClangRodataSection;
|
|
PragmaClangSection PragmaClangRelroSection;
|
|
PragmaClangSection PragmaClangTextSection;
|
|
|
|
enum PragmaMsStackAction {
|
|
PSK_Reset = 0x0, // #pragma ()
|
|
PSK_Set = 0x1, // #pragma (value)
|
|
PSK_Push = 0x2, // #pragma (push[, id])
|
|
PSK_Pop = 0x4, // #pragma (pop[, id])
|
|
PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
|
|
PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
|
|
PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
|
|
};
|
|
|
|
struct PragmaPackInfo {
|
|
PragmaMsStackAction Action;
|
|
StringRef SlotLabel;
|
|
Token Alignment;
|
|
};
|
|
|
|
// #pragma pack and align.
|
|
class AlignPackInfo {
|
|
public:
|
|
// `Native` represents default align mode, which may vary based on the
|
|
// platform.
|
|
enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
|
|
|
|
// #pragma pack info constructor
|
|
AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
|
|
: PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
|
|
assert(Num == PackNumber && "The pack number has been truncated.");
|
|
}
|
|
|
|
// #pragma align info constructor
|
|
AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
|
|
: PackAttr(false), AlignMode(M),
|
|
PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
|
|
|
|
explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
|
|
|
|
AlignPackInfo() : AlignPackInfo(Native, false) {}
|
|
|
|
// When a AlignPackInfo itself cannot be used, this returns an 32-bit
|
|
// integer encoding for it. This should only be passed to
|
|
// AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
|
|
static uint32_t getRawEncoding(const AlignPackInfo &Info) {
|
|
std::uint32_t Encoding{};
|
|
if (Info.IsXLStack())
|
|
Encoding |= IsXLMask;
|
|
|
|
Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
|
|
|
|
if (Info.IsPackAttr())
|
|
Encoding |= PackAttrMask;
|
|
|
|
Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
|
|
|
|
return Encoding;
|
|
}
|
|
|
|
static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
|
|
bool IsXL = static_cast<bool>(Encoding & IsXLMask);
|
|
AlignPackInfo::Mode M =
|
|
static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
|
|
int PackNumber = (Encoding & PackNumMask) >> 4;
|
|
|
|
if (Encoding & PackAttrMask)
|
|
return AlignPackInfo(M, PackNumber, IsXL);
|
|
|
|
return AlignPackInfo(M, IsXL);
|
|
}
|
|
|
|
bool IsPackAttr() const { return PackAttr; }
|
|
|
|
bool IsAlignAttr() const { return !PackAttr; }
|
|
|
|
Mode getAlignMode() const { return AlignMode; }
|
|
|
|
unsigned getPackNumber() const { return PackNumber; }
|
|
|
|
bool IsPackSet() const {
|
|
// #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
|
|
// attriute on a decl.
|
|
return PackNumber != UninitPackVal && PackNumber != 0;
|
|
}
|
|
|
|
bool IsXLStack() const { return XLStack; }
|
|
|
|
bool operator==(const AlignPackInfo &Info) const {
|
|
return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
|
|
std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
|
|
Info.XLStack);
|
|
}
|
|
|
|
bool operator!=(const AlignPackInfo &Info) const {
|
|
return !(*this == Info);
|
|
}
|
|
|
|
private:
|
|
/// \brief True if this is a pragma pack attribute,
|
|
/// not a pragma align attribute.
|
|
bool PackAttr;
|
|
|
|
/// \brief The alignment mode that is in effect.
|
|
Mode AlignMode;
|
|
|
|
/// \brief The pack number of the stack.
|
|
unsigned char PackNumber;
|
|
|
|
/// \brief True if it is a XL #pragma align/pack stack.
|
|
bool XLStack;
|
|
|
|
/// \brief Uninitialized pack value.
|
|
static constexpr unsigned char UninitPackVal = -1;
|
|
|
|
// Masks to encode and decode an AlignPackInfo.
|
|
static constexpr uint32_t IsXLMask{0x0000'0001};
|
|
static constexpr uint32_t AlignModeMask{0x0000'0006};
|
|
static constexpr uint32_t PackAttrMask{0x00000'0008};
|
|
static constexpr uint32_t PackNumMask{0x0000'01F0};
|
|
};
|
|
|
|
template <typename ValueType> struct PragmaStack {
|
|
struct Slot {
|
|
llvm::StringRef StackSlotLabel;
|
|
ValueType Value;
|
|
SourceLocation PragmaLocation;
|
|
SourceLocation PragmaPushLocation;
|
|
Slot(llvm::StringRef StackSlotLabel, ValueType Value,
|
|
SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
|
|
: StackSlotLabel(StackSlotLabel), Value(Value),
|
|
PragmaLocation(PragmaLocation),
|
|
PragmaPushLocation(PragmaPushLocation) {}
|
|
};
|
|
|
|
void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
|
|
llvm::StringRef StackSlotLabel, ValueType Value) {
|
|
if (Action == PSK_Reset) {
|
|
CurrentValue = DefaultValue;
|
|
CurrentPragmaLocation = PragmaLocation;
|
|
return;
|
|
}
|
|
if (Action & PSK_Push)
|
|
Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
|
|
PragmaLocation);
|
|
else if (Action & PSK_Pop) {
|
|
if (!StackSlotLabel.empty()) {
|
|
// If we've got a label, try to find it and jump there.
|
|
auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
|
|
return x.StackSlotLabel == StackSlotLabel;
|
|
});
|
|
// If we found the label so pop from there.
|
|
if (I != Stack.rend()) {
|
|
CurrentValue = I->Value;
|
|
CurrentPragmaLocation = I->PragmaLocation;
|
|
Stack.erase(std::prev(I.base()), Stack.end());
|
|
}
|
|
} else if (!Stack.empty()) {
|
|
// We do not have a label, just pop the last entry.
|
|
CurrentValue = Stack.back().Value;
|
|
CurrentPragmaLocation = Stack.back().PragmaLocation;
|
|
Stack.pop_back();
|
|
}
|
|
}
|
|
if (Action & PSK_Set) {
|
|
CurrentValue = Value;
|
|
CurrentPragmaLocation = PragmaLocation;
|
|
}
|
|
}
|
|
|
|
// MSVC seems to add artificial slots to #pragma stacks on entering a C++
|
|
// method body to restore the stacks on exit, so it works like this:
|
|
//
|
|
// struct S {
|
|
// #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
|
|
// void Method {}
|
|
// #pragma <name>(pop, InternalPragmaSlot)
|
|
// };
|
|
//
|
|
// It works even with #pragma vtordisp, although MSVC doesn't support
|
|
// #pragma vtordisp(push [, id], n)
|
|
// syntax.
|
|
//
|
|
// Push / pop a named sentinel slot.
|
|
void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
|
|
assert((Action == PSK_Push || Action == PSK_Pop) &&
|
|
"Can only push / pop #pragma stack sentinels!");
|
|
Act(CurrentPragmaLocation, Action, Label, CurrentValue);
|
|
}
|
|
|
|
// Constructors.
|
|
explicit PragmaStack(const ValueType &Default)
|
|
: DefaultValue(Default), CurrentValue(Default) {}
|
|
|
|
bool hasValue() const { return CurrentValue != DefaultValue; }
|
|
|
|
SmallVector<Slot, 2> Stack;
|
|
ValueType DefaultValue; // Value used for PSK_Reset action.
|
|
ValueType CurrentValue;
|
|
SourceLocation CurrentPragmaLocation;
|
|
};
|
|
// FIXME: We should serialize / deserialize these if they occur in a PCH (but
|
|
// we shouldn't do so if they're in a module).
|
|
|
|
/// Whether to insert vtordisps prior to virtual bases in the Microsoft
|
|
/// C++ ABI. Possible values are 0, 1, and 2, which mean:
|
|
///
|
|
/// 0: Suppress all vtordisps
|
|
/// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
|
|
/// structors
|
|
/// 2: Always insert vtordisps to support RTTI on partially constructed
|
|
/// objects
|
|
PragmaStack<MSVtorDispMode> VtorDispStack;
|
|
PragmaStack<AlignPackInfo> AlignPackStack;
|
|
// The current #pragma align/pack values and locations at each #include.
|
|
struct AlignPackIncludeState {
|
|
AlignPackInfo CurrentValue;
|
|
SourceLocation CurrentPragmaLocation;
|
|
bool HasNonDefaultValue, ShouldWarnOnInclude;
|
|
};
|
|
SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
|
|
// Segment #pragmas.
|
|
PragmaStack<StringLiteral *> DataSegStack;
|
|
PragmaStack<StringLiteral *> BSSSegStack;
|
|
PragmaStack<StringLiteral *> ConstSegStack;
|
|
PragmaStack<StringLiteral *> CodeSegStack;
|
|
|
|
// #pragma strict_gs_check.
|
|
PragmaStack<bool> StrictGuardStackCheckStack;
|
|
|
|
// This stack tracks the current state of Sema.CurFPFeatures.
|
|
PragmaStack<FPOptionsOverride> FpPragmaStack;
|
|
FPOptionsOverride CurFPFeatureOverrides() {
|
|
FPOptionsOverride result;
|
|
if (!FpPragmaStack.hasValue()) {
|
|
result = FPOptionsOverride();
|
|
} else {
|
|
result = FpPragmaStack.CurrentValue;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
enum PragmaSectionKind {
|
|
PSK_DataSeg,
|
|
PSK_BSSSeg,
|
|
PSK_ConstSeg,
|
|
PSK_CodeSeg,
|
|
};
|
|
|
|
// RAII object to push / pop sentinel slots for all MS #pragma stacks.
|
|
// Actions should be performed only if we enter / exit a C++ method body.
|
|
class PragmaStackSentinelRAII {
|
|
public:
|
|
PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
|
|
~PragmaStackSentinelRAII();
|
|
|
|
private:
|
|
Sema &S;
|
|
StringRef SlotLabel;
|
|
bool ShouldAct;
|
|
};
|
|
|
|
/// Last section used with #pragma init_seg.
|
|
StringLiteral *CurInitSeg;
|
|
SourceLocation CurInitSegLoc;
|
|
|
|
/// Sections used with #pragma alloc_text.
|
|
llvm::StringMap<std::tuple<StringRef, SourceLocation>> FunctionToSectionMap;
|
|
|
|
/// VisContext - Manages the stack for \#pragma GCC visibility.
|
|
void *VisContext; // Really a "PragmaVisStack*"
|
|
|
|
/// This an attribute introduced by \#pragma clang attribute.
|
|
struct PragmaAttributeEntry {
|
|
SourceLocation Loc;
|
|
ParsedAttr *Attribute;
|
|
SmallVector<attr::SubjectMatchRule, 4> MatchRules;
|
|
bool IsUsed;
|
|
};
|
|
|
|
/// A push'd group of PragmaAttributeEntries.
|
|
struct PragmaAttributeGroup {
|
|
/// The location of the push attribute.
|
|
SourceLocation Loc;
|
|
/// The namespace of this push group.
|
|
const IdentifierInfo *Namespace;
|
|
SmallVector<PragmaAttributeEntry, 2> Entries;
|
|
};
|
|
|
|
SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
|
|
|
|
/// The declaration that is currently receiving an attribute from the
|
|
/// #pragma attribute stack.
|
|
const Decl *PragmaAttributeCurrentTargetDecl;
|
|
|
|
/// This represents the last location of a "#pragma clang optimize off"
|
|
/// directive if such a directive has not been closed by an "on" yet. If
|
|
/// optimizations are currently "on", this is set to an invalid location.
|
|
SourceLocation OptimizeOffPragmaLocation;
|
|
|
|
/// Get the location for the currently active "\#pragma clang optimize
|
|
/// off". If this location is invalid, then the state of the pragma is "on".
|
|
SourceLocation getOptimizeOffPragmaLocation() const {
|
|
return OptimizeOffPragmaLocation;
|
|
}
|
|
|
|
/// The "on" or "off" argument passed by \#pragma optimize, that denotes
|
|
/// whether the optimizations in the list passed to the pragma should be
|
|
/// turned off or on. This boolean is true by default because command line
|
|
/// options are honored when `#pragma optimize("", on)`.
|
|
/// (i.e. `ModifyFnAttributeMSPragmaOptimze()` does nothing)
|
|
bool MSPragmaOptimizeIsOn = true;
|
|
|
|
/// Set of no-builtin functions listed by \#pragma function.
|
|
llvm::SmallSetVector<StringRef, 4> MSFunctionNoBuiltins;
|
|
|
|
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
|
|
/// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
|
|
void AddAlignmentAttributesForRecord(RecordDecl *RD);
|
|
|
|
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
|
|
void AddMsStructLayoutForRecord(RecordDecl *RD);
|
|
|
|
/// Add gsl::Pointer attribute to std::container::iterator
|
|
/// \param ND The declaration that introduces the name
|
|
/// std::container::iterator. \param UnderlyingRecord The record named by ND.
|
|
void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
|
|
|
|
/// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
|
|
void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
|
|
|
|
/// Add [[gsl::Pointer]] attributes for std:: types.
|
|
void inferGslPointerAttribute(TypedefNameDecl *TD);
|
|
|
|
/// Add _Nullable attributes for std:: types.
|
|
void inferNullableClassAttribute(CXXRecordDecl *CRD);
|
|
|
|
enum PragmaOptionsAlignKind {
|
|
POAK_Native, // #pragma options align=native
|
|
POAK_Natural, // #pragma options align=natural
|
|
POAK_Packed, // #pragma options align=packed
|
|
POAK_Power, // #pragma options align=power
|
|
POAK_Mac68k, // #pragma options align=mac68k
|
|
POAK_Reset // #pragma options align=reset
|
|
};
|
|
|
|
/// ActOnPragmaClangSection - Called on well formed \#pragma clang section
|
|
void ActOnPragmaClangSection(SourceLocation PragmaLoc,
|
|
PragmaClangSectionAction Action,
|
|
PragmaClangSectionKind SecKind,
|
|
StringRef SecName);
|
|
|
|
/// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
|
|
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// ActOnPragmaPack - Called on well formed \#pragma pack(...).
|
|
void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
|
|
StringRef SlotLabel, Expr *Alignment);
|
|
|
|
/// ConstantFoldAttrArgs - Folds attribute arguments into ConstantExprs
|
|
/// (unless they are value dependent or type dependent). Returns false
|
|
/// and emits a diagnostic if one or more of the arguments could not be
|
|
/// folded into a constant.
|
|
bool ConstantFoldAttrArgs(const AttributeCommonInfo &CI,
|
|
MutableArrayRef<Expr *> Args);
|
|
|
|
enum class PragmaAlignPackDiagnoseKind {
|
|
NonDefaultStateAtInclude,
|
|
ChangedStateAtExit
|
|
};
|
|
|
|
void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
|
|
SourceLocation IncludeLoc);
|
|
void DiagnoseUnterminatedPragmaAlignPack();
|
|
|
|
/// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
|
|
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
|
|
|
|
/// ActOnPragmaMSComment - Called on well formed
|
|
/// \#pragma comment(kind, "arg").
|
|
void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
|
|
StringRef Arg);
|
|
|
|
/// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
|
|
void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
|
|
StringRef Value);
|
|
|
|
/// Are precise floating point semantics currently enabled?
|
|
bool isPreciseFPEnabled() {
|
|
return !CurFPFeatures.getAllowFPReassociate() &&
|
|
!CurFPFeatures.getNoSignedZero() &&
|
|
!CurFPFeatures.getAllowReciprocal() &&
|
|
!CurFPFeatures.getAllowApproxFunc();
|
|
}
|
|
|
|
void ActOnPragmaFPEvalMethod(SourceLocation Loc,
|
|
LangOptions::FPEvalMethodKind Value);
|
|
|
|
/// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
|
|
void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
|
|
PragmaFloatControlKind Value);
|
|
|
|
/// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
|
|
/// pointers_to_members(representation method[, general purpose
|
|
/// representation]).
|
|
void ActOnPragmaMSPointersToMembers(
|
|
LangOptions::PragmaMSPointersToMembersKind Kind,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// Called on well formed \#pragma vtordisp().
|
|
void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
|
|
SourceLocation PragmaLoc, MSVtorDispMode Value);
|
|
|
|
bool UnifySection(StringRef SectionName, int SectionFlags,
|
|
NamedDecl *TheDecl);
|
|
bool UnifySection(StringRef SectionName, int SectionFlags,
|
|
SourceLocation PragmaSectionLocation);
|
|
|
|
/// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
|
|
void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
|
|
PragmaMsStackAction Action,
|
|
llvm::StringRef StackSlotLabel,
|
|
StringLiteral *SegmentName, llvm::StringRef PragmaName);
|
|
|
|
/// Called on well formed \#pragma section().
|
|
void ActOnPragmaMSSection(SourceLocation PragmaLocation, int SectionFlags,
|
|
StringLiteral *SegmentName);
|
|
|
|
/// Called on well-formed \#pragma init_seg().
|
|
void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
|
|
StringLiteral *SegmentName);
|
|
|
|
/// Called on well-formed \#pragma alloc_text().
|
|
void ActOnPragmaMSAllocText(
|
|
SourceLocation PragmaLocation, StringRef Section,
|
|
const SmallVector<std::tuple<IdentifierInfo *, SourceLocation>>
|
|
&Functions);
|
|
|
|
/// ActOnPragmaMSStrictGuardStackCheck - Called on well formed \#pragma
|
|
/// strict_gs_check.
|
|
void ActOnPragmaMSStrictGuardStackCheck(SourceLocation PragmaLocation,
|
|
PragmaMsStackAction Action,
|
|
bool Value);
|
|
|
|
/// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
|
|
void ActOnPragmaUnused(const Token &Identifier, Scope *curScope,
|
|
SourceLocation PragmaLoc);
|
|
|
|
void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
|
|
SourceLocation PragmaLoc,
|
|
attr::ParsedSubjectMatchRuleSet Rules);
|
|
void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
|
|
const IdentifierInfo *Namespace);
|
|
|
|
/// Called on well-formed '\#pragma clang attribute pop'.
|
|
void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
|
|
const IdentifierInfo *Namespace);
|
|
|
|
/// Adds the attributes that have been specified using the
|
|
/// '\#pragma clang attribute push' directives to the given declaration.
|
|
void AddPragmaAttributes(Scope *S, Decl *D);
|
|
|
|
void PrintPragmaAttributeInstantiationPoint();
|
|
|
|
void DiagnoseUnterminatedPragmaAttribute();
|
|
|
|
/// Called on well formed \#pragma clang optimize.
|
|
void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
|
|
|
|
/// #pragma optimize("[optimization-list]", on | off).
|
|
void ActOnPragmaMSOptimize(SourceLocation Loc, bool IsOn);
|
|
|
|
/// Call on well formed \#pragma function.
|
|
void
|
|
ActOnPragmaMSFunction(SourceLocation Loc,
|
|
const llvm::SmallVectorImpl<StringRef> &NoBuiltins);
|
|
|
|
/// Only called on function definitions; if there is a pragma in scope
|
|
/// with the effect of a range-based optnone, consider marking the function
|
|
/// with attribute optnone.
|
|
void AddRangeBasedOptnone(FunctionDecl *FD);
|
|
|
|
/// Only called on function definitions; if there is a `#pragma alloc_text`
|
|
/// that decides which code section the function should be in, add
|
|
/// attribute section to the function.
|
|
void AddSectionMSAllocText(FunctionDecl *FD);
|
|
|
|
/// Adds the 'optnone' attribute to the function declaration if there
|
|
/// are no conflicts; Loc represents the location causing the 'optnone'
|
|
/// attribute to be added (usually because of a pragma).
|
|
void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
|
|
|
|
/// Only called on function definitions; if there is a MSVC #pragma optimize
|
|
/// in scope, consider changing the function's attributes based on the
|
|
/// optimization list passed to the pragma.
|
|
void ModifyFnAttributesMSPragmaOptimize(FunctionDecl *FD);
|
|
|
|
/// Only called on function definitions; if there is a pragma in scope
|
|
/// with the effect of a range-based no_builtin, consider marking the function
|
|
/// with attribute no_builtin.
|
|
void AddImplicitMSFunctionNoBuiltinAttr(FunctionDecl *FD);
|
|
|
|
/// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
|
|
/// add an appropriate visibility attribute.
|
|
void AddPushedVisibilityAttribute(Decl *RD);
|
|
|
|
/// FreeVisContext - Deallocate and null out VisContext.
|
|
void FreeVisContext();
|
|
|
|
/// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
|
|
void ActOnPragmaVisibility(const IdentifierInfo *VisType,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// ActOnPragmaFPContract - Called on well formed
|
|
/// \#pragma {STDC,OPENCL} FP_CONTRACT and
|
|
/// \#pragma clang fp contract
|
|
void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
|
|
|
|
/// Called on well formed
|
|
/// \#pragma clang fp reassociate
|
|
/// or
|
|
/// \#pragma clang fp reciprocal
|
|
void ActOnPragmaFPValueChangingOption(SourceLocation Loc, PragmaFPKind Kind,
|
|
bool IsEnabled);
|
|
|
|
/// ActOnPragmaFenvAccess - Called on well formed
|
|
/// \#pragma STDC FENV_ACCESS
|
|
void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
|
|
|
|
/// ActOnPragmaCXLimitedRange - Called on well formed
|
|
/// \#pragma STDC CX_LIMITED_RANGE
|
|
void ActOnPragmaCXLimitedRange(SourceLocation Loc,
|
|
LangOptions::ComplexRangeKind Range);
|
|
|
|
/// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
|
|
void ActOnPragmaFPExceptions(SourceLocation Loc,
|
|
LangOptions::FPExceptionModeKind);
|
|
|
|
/// Called to set constant rounding mode for floating point operations.
|
|
void ActOnPragmaFEnvRound(SourceLocation Loc, llvm::RoundingMode);
|
|
|
|
/// Called to set exception behavior for floating point operations.
|
|
void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
|
|
|
|
/// PushNamespaceVisibilityAttr - Note that we've entered a
|
|
/// namespace with a visibility attribute.
|
|
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
|
|
SourceLocation Loc);
|
|
|
|
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
|
|
/// for '\#pragma GCC visibility' and visibility attributes on namespaces.
|
|
void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
|
|
|
|
/// Handles semantic checking for features that are common to all attributes,
|
|
/// such as checking whether a parameter was properly specified, or the
|
|
/// correct number of arguments were passed, etc. Returns true if the
|
|
/// attribute has been diagnosed.
|
|
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A,
|
|
bool SkipArgCountCheck = false);
|
|
bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A,
|
|
bool SkipArgCountCheck = false);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Availability Attribute Handling
|
|
/// Implementations are in SemaAvailability.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Issue any -Wunguarded-availability warnings in \c FD
|
|
void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
|
|
|
|
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
|
|
|
|
/// Retrieve the current function, if any, that should be analyzed for
|
|
/// potential availability violations.
|
|
sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
|
|
|
|
void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
bool ObjCPropertyAccess,
|
|
bool AvoidPartialAvailabilityChecks = false,
|
|
ObjCInterfaceDecl *ClassReceiver = nullptr);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Bounds Safety
|
|
/// Implementations are in SemaBoundsSafety.cpp
|
|
///@{
|
|
public:
|
|
/// Check if applying the specified attribute variant from the "counted by"
|
|
/// family of attributes to FieldDecl \p FD is semantically valid. If
|
|
/// semantically invalid diagnostics will be emitted explaining the problems.
|
|
///
|
|
/// \param FD The FieldDecl to apply the attribute to
|
|
/// \param E The count expression on the attribute
|
|
/// \param CountInBytes If true the attribute is from the "sized_by" family of
|
|
/// attributes. If the false the attribute is from
|
|
/// "counted_by" family of attributes.
|
|
/// \param OrNull If true the attribute is from the "_or_null" suffixed family
|
|
/// of attributes. If false the attribute does not have the
|
|
/// suffix.
|
|
///
|
|
/// Together \p CountInBytes and \p OrNull decide the attribute variant. E.g.
|
|
/// \p CountInBytes and \p OrNull both being true indicates the
|
|
/// `counted_by_or_null` attribute.
|
|
///
|
|
/// \returns false iff semantically valid.
|
|
bool CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes,
|
|
bool OrNull);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Casts
|
|
/// Implementations are in SemaCast.cpp
|
|
///@{
|
|
|
|
public:
|
|
static bool isCast(CheckedConversionKind CCK) {
|
|
return CCK == CheckedConversionKind::CStyleCast ||
|
|
CCK == CheckedConversionKind::FunctionalCast ||
|
|
CCK == CheckedConversionKind::OtherCast;
|
|
}
|
|
|
|
/// ActOnCXXNamedCast - Parse
|
|
/// {dynamic,static,reinterpret,const,addrspace}_cast's.
|
|
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
|
|
SourceLocation LAngleBracketLoc, Declarator &D,
|
|
SourceLocation RAngleBracketLoc,
|
|
SourceLocation LParenLoc, Expr *E,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
|
|
TypeSourceInfo *Ty, Expr *E,
|
|
SourceRange AngleBrackets, SourceRange Parens);
|
|
|
|
ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
|
|
ExprResult Operand,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
|
|
Expr *Operand, SourceLocation RParenLoc);
|
|
|
|
// Checks that reinterpret casts don't have undefined behavior.
|
|
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
|
|
bool IsDereference, SourceRange Range);
|
|
|
|
// Checks that the vector type should be initialized from a scalar
|
|
// by splatting the value rather than populating a single element.
|
|
// This is the case for AltiVecVector types as well as with
|
|
// AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
|
|
bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
|
|
|
|
// Checks if the -faltivec-src-compat=gcc option is specified.
|
|
// If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
|
|
// treated the same way as they are when trying to initialize
|
|
// these vectors on gcc (an error is emitted).
|
|
bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
|
|
QualType SrcTy);
|
|
|
|
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
|
|
SourceLocation RParenLoc, Expr *Op);
|
|
|
|
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
|
|
SourceLocation LParenLoc,
|
|
Expr *CastExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Extra Semantic Checking
|
|
/// Implementations are in SemaChecking.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Used to change context to isConstantEvaluated without pushing a heavy
|
|
/// ExpressionEvaluationContextRecord object.
|
|
bool isConstantEvaluatedOverride = false;
|
|
|
|
bool isConstantEvaluatedContext() const {
|
|
return currentEvaluationContext().isConstantEvaluated() ||
|
|
isConstantEvaluatedOverride;
|
|
}
|
|
|
|
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
|
|
unsigned ByteNo) const;
|
|
|
|
enum FormatArgumentPassingKind {
|
|
FAPK_Fixed, // values to format are fixed (no C-style variadic arguments)
|
|
FAPK_Variadic, // values to format are passed as variadic arguments
|
|
FAPK_VAList, // values to format are passed in a va_list
|
|
};
|
|
|
|
// Used to grab the relevant information from a FormatAttr and a
|
|
// FunctionDeclaration.
|
|
struct FormatStringInfo {
|
|
unsigned FormatIdx;
|
|
unsigned FirstDataArg;
|
|
FormatArgumentPassingKind ArgPassingKind;
|
|
};
|
|
|
|
/// Given a FunctionDecl's FormatAttr, attempts to populate the
|
|
/// FomatStringInfo parameter with the FormatAttr's correct format_idx and
|
|
/// firstDataArg. Returns true when the format fits the function and the
|
|
/// FormatStringInfo has been populated.
|
|
static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
|
|
bool IsVariadic, FormatStringInfo *FSI);
|
|
|
|
// Used by C++ template instantiation.
|
|
ExprResult BuiltinShuffleVector(CallExpr *TheCall);
|
|
|
|
/// ConvertVectorExpr - Handle __builtin_convertvector
|
|
ExprResult ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
enum FormatStringType {
|
|
FST_Scanf,
|
|
FST_Printf,
|
|
FST_NSString,
|
|
FST_Strftime,
|
|
FST_Strfmon,
|
|
FST_Kprintf,
|
|
FST_FreeBSDKPrintf,
|
|
FST_OSTrace,
|
|
FST_OSLog,
|
|
FST_Syslog,
|
|
FST_Unknown
|
|
};
|
|
static FormatStringType GetFormatStringType(const FormatAttr *Format);
|
|
|
|
bool FormatStringHasSArg(const StringLiteral *FExpr);
|
|
|
|
/// Check for comparisons of floating-point values using == and !=. Issue a
|
|
/// warning if the comparison is not likely to do what the programmer
|
|
/// intended.
|
|
void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
|
|
BinaryOperatorKind Opcode);
|
|
|
|
/// Register a magic integral constant to be used as a type tag.
|
|
void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
|
|
uint64_t MagicValue, QualType Type,
|
|
bool LayoutCompatible, bool MustBeNull);
|
|
|
|
struct TypeTagData {
|
|
TypeTagData() {}
|
|
|
|
TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull)
|
|
: Type(Type), LayoutCompatible(LayoutCompatible),
|
|
MustBeNull(MustBeNull) {}
|
|
|
|
QualType Type;
|
|
|
|
/// If true, \c Type should be compared with other expression's types for
|
|
/// layout-compatibility.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned LayoutCompatible : 1;
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned MustBeNull : 1;
|
|
};
|
|
|
|
/// A pair of ArgumentKind identifier and magic value. This uniquely
|
|
/// identifies the magic value.
|
|
typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
|
|
|
|
/// Diagnoses the current set of gathered accesses. This typically
|
|
/// happens at full expression level. The set is cleared after emitting the
|
|
/// diagnostics.
|
|
void DiagnoseMisalignedMembers();
|
|
|
|
/// This function checks if the expression is in the sef of potentially
|
|
/// misaligned members and it is converted to some pointer type T with lower
|
|
/// or equal alignment requirements. If so it removes it. This is used when
|
|
/// we do not want to diagnose such misaligned access (e.g. in conversions to
|
|
/// void*).
|
|
void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
|
|
|
|
/// This function calls Action when it determines that E designates a
|
|
/// misaligned member due to the packed attribute. This is used to emit
|
|
/// local diagnostics like in reference binding.
|
|
void RefersToMemberWithReducedAlignment(
|
|
Expr *E,
|
|
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
|
|
Action);
|
|
|
|
enum class AtomicArgumentOrder { API, AST };
|
|
ExprResult
|
|
BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
|
|
SourceLocation RParenLoc, MultiExprArg Args,
|
|
AtomicExpr::AtomicOp Op,
|
|
AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
|
|
|
|
/// Check to see if a given expression could have '.c_str()' called on it.
|
|
bool hasCStrMethod(const Expr *E);
|
|
|
|
/// Diagnose pointers that are always non-null.
|
|
/// \param E the expression containing the pointer
|
|
/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
|
|
/// compared to a null pointer
|
|
/// \param IsEqual True when the comparison is equal to a null pointer
|
|
/// \param Range Extra SourceRange to highlight in the diagnostic
|
|
void DiagnoseAlwaysNonNullPointer(Expr *E,
|
|
Expr::NullPointerConstantKind NullType,
|
|
bool IsEqual, SourceRange Range);
|
|
|
|
/// CheckParmsForFunctionDef - Check that the parameters of the given
|
|
/// function are appropriate for the definition of a function. This
|
|
/// takes care of any checks that cannot be performed on the
|
|
/// declaration itself, e.g., that the types of each of the function
|
|
/// parameters are complete.
|
|
bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
|
|
bool CheckParameterNames);
|
|
|
|
/// CheckCastAlign - Implements -Wcast-align, which warns when a
|
|
/// pointer cast increases the alignment requirements.
|
|
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
|
|
|
|
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
|
|
/// to weak/__unsafe_unretained type.
|
|
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
|
|
|
|
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
|
|
/// to weak/__unsafe_unretained expression.
|
|
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
|
|
|
|
/// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
|
|
/// statement as a \p Body, and it is located on the same line.
|
|
///
|
|
/// This helps prevent bugs due to typos, such as:
|
|
/// if (condition);
|
|
/// do_stuff();
|
|
void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body,
|
|
unsigned DiagID);
|
|
|
|
/// Warn if a for/while loop statement \p S, which is followed by
|
|
/// \p PossibleBody, has a suspicious null statement as a body.
|
|
void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody);
|
|
|
|
/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
|
|
void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
|
|
SourceLocation OpLoc);
|
|
|
|
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
|
|
enum VariadicCallType {
|
|
VariadicFunction,
|
|
VariadicBlock,
|
|
VariadicMethod,
|
|
VariadicConstructor,
|
|
VariadicDoesNotApply
|
|
};
|
|
|
|
bool IsLayoutCompatible(QualType T1, QualType T2) const;
|
|
bool IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
|
|
const TypeSourceInfo *Derived);
|
|
|
|
/// CheckFunctionCall - Check a direct function call for various correctness
|
|
/// and safety properties not strictly enforced by the C type system.
|
|
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto);
|
|
|
|
bool BuiltinVectorMath(CallExpr *TheCall, QualType &Res);
|
|
bool BuiltinVectorToScalarMath(CallExpr *TheCall);
|
|
|
|
/// Handles the checks for format strings, non-POD arguments to vararg
|
|
/// functions, NULL arguments passed to non-NULL parameters, diagnose_if
|
|
/// attributes and AArch64 SME attributes.
|
|
void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
|
|
const Expr *ThisArg, ArrayRef<const Expr *> Args,
|
|
bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
|
|
VariadicCallType CallType);
|
|
|
|
/// \brief Enforce the bounds of a TCB
|
|
/// CheckTCBEnforcement - Enforces that every function in a named TCB only
|
|
/// directly calls other functions in the same TCB as marked by the
|
|
/// enforce_tcb and enforce_tcb_leaf attributes.
|
|
void CheckTCBEnforcement(const SourceLocation CallExprLoc,
|
|
const NamedDecl *Callee);
|
|
|
|
void CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc);
|
|
|
|
/// BuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
|
|
/// TheCall is a constant expression.
|
|
bool BuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result);
|
|
|
|
/// BuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
|
|
/// TheCall is a constant expression in the range [Low, High].
|
|
bool BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High,
|
|
bool RangeIsError = true);
|
|
|
|
/// BuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
|
|
/// TheCall is a constant expression is a multiple of Num..
|
|
bool BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
|
|
unsigned Multiple);
|
|
|
|
/// BuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
|
|
/// constant expression representing a power of 2.
|
|
bool BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
|
|
|
|
/// BuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
|
|
/// a constant expression representing an arbitrary byte value shifted left by
|
|
/// a multiple of 8 bits.
|
|
bool BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
|
|
unsigned ArgBits);
|
|
|
|
/// BuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
|
|
/// TheCall is a constant expression representing either a shifted byte value,
|
|
/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
|
|
/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
|
|
/// Arm MVE intrinsics.
|
|
bool BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
|
|
unsigned ArgBits);
|
|
|
|
/// Checks that a call expression's argument count is at least the desired
|
|
/// number. This is useful when doing custom type-checking on a variadic
|
|
/// function. Returns true on error.
|
|
bool checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount);
|
|
|
|
/// Checks that a call expression's argument count is at most the desired
|
|
/// number. This is useful when doing custom type-checking on a variadic
|
|
/// function. Returns true on error.
|
|
bool checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount);
|
|
|
|
/// Checks that a call expression's argument count is in the desired range.
|
|
/// This is useful when doing custom type-checking on a variadic function.
|
|
/// Returns true on error.
|
|
bool checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
|
|
unsigned MaxArgCount);
|
|
|
|
/// Checks that a call expression's argument count is the desired number.
|
|
/// This is useful when doing custom type-checking. Returns true on error.
|
|
bool checkArgCount(CallExpr *Call, unsigned DesiredArgCount);
|
|
|
|
/// Returns true if the argument consists of one contiguous run of 1s with any
|
|
/// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB,
|
|
/// so 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
|
|
/// since all 1s are not contiguous.
|
|
bool ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
|
|
|
|
void CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
|
|
bool *ICContext = nullptr,
|
|
bool IsListInit = false);
|
|
|
|
bool BuiltinElementwiseTernaryMath(CallExpr *TheCall,
|
|
bool CheckForFloatArgs = true);
|
|
bool PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall);
|
|
|
|
private:
|
|
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
|
|
const ArraySubscriptExpr *ASE = nullptr,
|
|
bool AllowOnePastEnd = true, bool IndexNegated = false);
|
|
void CheckArrayAccess(const Expr *E);
|
|
|
|
bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto);
|
|
|
|
/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
|
|
/// such as function pointers returned from functions.
|
|
bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
|
|
|
|
/// CheckConstructorCall - Check a constructor call for correctness and safety
|
|
/// properties not enforced by the C type system.
|
|
void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
|
|
ArrayRef<const Expr *> Args,
|
|
const FunctionProtoType *Proto, SourceLocation Loc);
|
|
|
|
/// Warn if a pointer or reference argument passed to a function points to an
|
|
/// object that is less aligned than the parameter. This can happen when
|
|
/// creating a typedef with a lower alignment than the original type and then
|
|
/// calling functions defined in terms of the original type.
|
|
void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
|
|
StringRef ParamName, QualType ArgTy, QualType ParamTy);
|
|
|
|
ExprResult CheckOSLogFormatStringArg(Expr *Arg);
|
|
|
|
ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
|
|
CallExpr *TheCall);
|
|
|
|
bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
|
|
CallExpr *TheCall);
|
|
|
|
void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
|
|
|
|
/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
|
|
/// for validity. Emit an error and return true on failure; return false
|
|
/// on success.
|
|
bool BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool BuiltinVAStartARMMicrosoft(CallExpr *Call);
|
|
|
|
/// BuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
|
|
/// friends. This is declared to take (...), so we have to check everything.
|
|
bool BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID);
|
|
|
|
/// BuiltinSemaBuiltinFPClassification - Handle functions like
|
|
/// __builtin_isnan and friends. This is declared to take (...), so we have
|
|
/// to check everything.
|
|
bool BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
|
|
unsigned BuiltinID);
|
|
|
|
/// Perform semantic analysis for a call to __builtin_complex.
|
|
bool BuiltinComplex(CallExpr *TheCall);
|
|
bool BuiltinOSLogFormat(CallExpr *TheCall);
|
|
|
|
/// BuiltinPrefetch - Handle __builtin_prefetch.
|
|
/// This is declared to take (const void*, ...) and can take two
|
|
/// optional constant int args.
|
|
bool BuiltinPrefetch(CallExpr *TheCall);
|
|
|
|
/// Handle __builtin_alloca_with_align. This is declared
|
|
/// as (size_t, size_t) where the second size_t must be a power of 2 greater
|
|
/// than 8.
|
|
bool BuiltinAllocaWithAlign(CallExpr *TheCall);
|
|
|
|
/// BuiltinArithmeticFence - Handle __arithmetic_fence.
|
|
bool BuiltinArithmeticFence(CallExpr *TheCall);
|
|
|
|
/// BuiltinAssume - Handle __assume (MS Extension).
|
|
/// __assume does not evaluate its arguments, and should warn if its argument
|
|
/// has side effects.
|
|
bool BuiltinAssume(CallExpr *TheCall);
|
|
|
|
/// Handle __builtin_assume_aligned. This is declared
|
|
/// as (const void*, size_t, ...) and can take one optional constant int arg.
|
|
bool BuiltinAssumeAligned(CallExpr *TheCall);
|
|
|
|
/// BuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
|
|
/// This checks that the target supports __builtin_longjmp and
|
|
/// that val is a constant 1.
|
|
bool BuiltinLongjmp(CallExpr *TheCall);
|
|
|
|
/// BuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
|
|
/// This checks that the target supports __builtin_setjmp.
|
|
bool BuiltinSetjmp(CallExpr *TheCall);
|
|
|
|
/// We have a call to a function like __sync_fetch_and_add, which is an
|
|
/// overloaded function based on the pointer type of its first argument.
|
|
/// The main BuildCallExpr routines have already promoted the types of
|
|
/// arguments because all of these calls are prototyped as void(...).
|
|
///
|
|
/// This function goes through and does final semantic checking for these
|
|
/// builtins, as well as generating any warnings.
|
|
ExprResult BuiltinAtomicOverloaded(ExprResult TheCallResult);
|
|
|
|
/// BuiltinNontemporalOverloaded - We have a call to
|
|
/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
|
|
/// overloaded function based on the pointer type of its last argument.
|
|
///
|
|
/// This function goes through and does final semantic checking for these
|
|
/// builtins.
|
|
ExprResult BuiltinNontemporalOverloaded(ExprResult TheCallResult);
|
|
ExprResult AtomicOpsOverloaded(ExprResult TheCallResult,
|
|
AtomicExpr::AtomicOp Op);
|
|
|
|
bool BuiltinElementwiseMath(CallExpr *TheCall);
|
|
bool PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall);
|
|
|
|
bool BuiltinNonDeterministicValue(CallExpr *TheCall);
|
|
|
|
// Matrix builtin handling.
|
|
ExprResult BuiltinMatrixTranspose(CallExpr *TheCall, ExprResult CallResult);
|
|
ExprResult BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
|
|
ExprResult CallResult);
|
|
ExprResult BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
|
|
ExprResult CallResult);
|
|
|
|
/// CheckFormatArguments - Check calls to printf and scanf (and similar
|
|
/// functions) for correct use of format strings.
|
|
/// Returns true if a format string has been fully checked.
|
|
bool CheckFormatArguments(const FormatAttr *Format,
|
|
ArrayRef<const Expr *> Args, bool IsCXXMember,
|
|
VariadicCallType CallType, SourceLocation Loc,
|
|
SourceRange Range,
|
|
llvm::SmallBitVector &CheckedVarArgs);
|
|
bool CheckFormatArguments(ArrayRef<const Expr *> Args,
|
|
FormatArgumentPassingKind FAPK, unsigned format_idx,
|
|
unsigned firstDataArg, FormatStringType Type,
|
|
VariadicCallType CallType, SourceLocation Loc,
|
|
SourceRange range,
|
|
llvm::SmallBitVector &CheckedVarArgs);
|
|
|
|
void CheckInfNaNFunction(const CallExpr *Call, const FunctionDecl *FDecl);
|
|
|
|
/// Warn when using the wrong abs() function.
|
|
void CheckAbsoluteValueFunction(const CallExpr *Call,
|
|
const FunctionDecl *FDecl);
|
|
|
|
void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
|
|
|
|
/// Check for dangerous or invalid arguments to memset().
|
|
///
|
|
/// This issues warnings on known problematic, dangerous or unspecified
|
|
/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
|
|
/// function calls.
|
|
///
|
|
/// \param Call The call expression to diagnose.
|
|
void CheckMemaccessArguments(const CallExpr *Call, unsigned BId,
|
|
IdentifierInfo *FnName);
|
|
|
|
// Warn if the user has made the 'size' argument to strlcpy or strlcat
|
|
// be the size of the source, instead of the destination.
|
|
void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName);
|
|
|
|
// Warn on anti-patterns as the 'size' argument to strncat.
|
|
// The correct size argument should look like following:
|
|
// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
|
|
void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName);
|
|
|
|
/// Alerts the user that they are attempting to free a non-malloc'd object.
|
|
void CheckFreeArguments(const CallExpr *E);
|
|
|
|
void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc, bool isObjCMethod = false,
|
|
const AttrVec *Attrs = nullptr,
|
|
const FunctionDecl *FD = nullptr);
|
|
|
|
/// Diagnoses "dangerous" implicit conversions within the given
|
|
/// expression (which is a full expression). Implements -Wconversion
|
|
/// and -Wsign-compare.
|
|
///
|
|
/// \param CC the "context" location of the implicit conversion, i.e.
|
|
/// the most location of the syntactic entity requiring the implicit
|
|
/// conversion
|
|
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
|
|
|
|
/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
|
|
/// Input argument E is a logical expression.
|
|
void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
|
|
|
|
/// Diagnose when expression is an integer constant expression and its
|
|
/// evaluation results in integer overflow
|
|
void CheckForIntOverflow(const Expr *E);
|
|
void CheckUnsequencedOperations(const Expr *E);
|
|
|
|
/// Perform semantic checks on a completed expression. This will either
|
|
/// be a full-expression or a default argument expression.
|
|
void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
|
|
bool IsConstexpr = false);
|
|
|
|
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
|
|
Expr *Init);
|
|
|
|
/// A map from magic value to type information.
|
|
std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
|
|
TypeTagForDatatypeMagicValues;
|
|
|
|
/// Peform checks on a call of a function with argument_with_type_tag
|
|
/// or pointer_with_type_tag attributes.
|
|
void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
|
|
const ArrayRef<const Expr *> ExprArgs,
|
|
SourceLocation CallSiteLoc);
|
|
|
|
/// Check if we are taking the address of a packed field
|
|
/// as this may be a problem if the pointer value is dereferenced.
|
|
void CheckAddressOfPackedMember(Expr *rhs);
|
|
|
|
/// Helper class that collects misaligned member designations and
|
|
/// their location info for delayed diagnostics.
|
|
struct MisalignedMember {
|
|
Expr *E;
|
|
RecordDecl *RD;
|
|
ValueDecl *MD;
|
|
CharUnits Alignment;
|
|
|
|
MisalignedMember() : E(), RD(), MD() {}
|
|
MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
|
|
CharUnits Alignment)
|
|
: E(E), RD(RD), MD(MD), Alignment(Alignment) {}
|
|
explicit MisalignedMember(Expr *E)
|
|
: MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
|
|
|
|
bool operator==(const MisalignedMember &m) { return this->E == m.E; }
|
|
};
|
|
/// Small set of gathered accesses to potentially misaligned members
|
|
/// due to the packed attribute.
|
|
SmallVector<MisalignedMember, 4> MisalignedMembers;
|
|
|
|
/// Adds an expression to the set of gathered misaligned members.
|
|
void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
|
|
CharUnits Alignment);
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Coroutines
|
|
/// Implementations are in SemaCoroutine.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// The C++ "std::coroutine_traits" template, which is defined in
|
|
/// \<coroutine_traits>
|
|
ClassTemplateDecl *StdCoroutineTraitsCache;
|
|
|
|
bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
|
|
StringRef Keyword);
|
|
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
|
|
ExprResult BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc);
|
|
ExprResult BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
|
|
UnresolvedLookupExpr *Lookup);
|
|
ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
|
|
Expr *Awaiter, bool IsImplicit = false);
|
|
ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *Operand,
|
|
UnresolvedLookupExpr *Lookup);
|
|
ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
|
|
StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
|
|
bool IsImplicit = false);
|
|
StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
|
|
bool buildCoroutineParameterMoves(SourceLocation Loc);
|
|
VarDecl *buildCoroutinePromise(SourceLocation Loc);
|
|
void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
|
|
|
|
// As a clang extension, enforces that a non-coroutine function must be marked
|
|
// with [[clang::coro_wrapper]] if it returns a type marked with
|
|
// [[clang::coro_return_type]].
|
|
// Expects that FD is not a coroutine.
|
|
void CheckCoroutineWrapper(FunctionDecl *FD);
|
|
/// Lookup 'coroutine_traits' in std namespace and std::experimental
|
|
/// namespace. The namespace found is recorded in Namespace.
|
|
ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
|
|
SourceLocation FuncLoc);
|
|
/// Check that the expression co_await promise.final_suspend() shall not be
|
|
/// potentially-throwing.
|
|
bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Scope Specifiers
|
|
/// Implementations are in SemaCXXScopeSpec.cpp
|
|
///@{
|
|
|
|
public:
|
|
// Marks SS invalid if it represents an incomplete type.
|
|
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
|
|
// Complete an enum decl, maybe without a scope spec.
|
|
bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
|
|
CXXScopeSpec *SS = nullptr);
|
|
|
|
/// Compute the DeclContext that is associated with the given type.
|
|
///
|
|
/// \param T the type for which we are attempting to find a DeclContext.
|
|
///
|
|
/// \returns the declaration context represented by the type T,
|
|
/// or NULL if the declaration context cannot be computed (e.g., because it is
|
|
/// dependent and not the current instantiation).
|
|
DeclContext *computeDeclContext(QualType T);
|
|
|
|
/// Compute the DeclContext that is associated with the given
|
|
/// scope specifier.
|
|
///
|
|
/// \param SS the C++ scope specifier as it appears in the source
|
|
///
|
|
/// \param EnteringContext when true, we will be entering the context of
|
|
/// this scope specifier, so we can retrieve the declaration context of a
|
|
/// class template or class template partial specialization even if it is
|
|
/// not the current instantiation.
|
|
///
|
|
/// \returns the declaration context represented by the scope specifier @p SS,
|
|
/// or NULL if the declaration context cannot be computed (e.g., because it is
|
|
/// dependent and not the current instantiation).
|
|
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
|
|
bool EnteringContext = false);
|
|
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
|
|
|
|
/// If the given nested name specifier refers to the current
|
|
/// instantiation, return the declaration that corresponds to that
|
|
/// current instantiation (C++0x [temp.dep.type]p1).
|
|
///
|
|
/// \param NNS a dependent nested name specifier.
|
|
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
|
|
|
|
/// The parser has parsed a global nested-name-specifier '::'.
|
|
///
|
|
/// \param CCLoc The location of the '::'.
|
|
///
|
|
/// \param SS The nested-name-specifier, which will be updated in-place
|
|
/// to reflect the parsed nested-name-specifier.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
|
|
|
|
/// The parser has parsed a '__super' nested-name-specifier.
|
|
///
|
|
/// \param SuperLoc The location of the '__super' keyword.
|
|
///
|
|
/// \param ColonColonLoc The location of the '::'.
|
|
///
|
|
/// \param SS The nested-name-specifier, which will be updated in-place
|
|
/// to reflect the parsed nested-name-specifier.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
|
|
SourceLocation ColonColonLoc, CXXScopeSpec &SS);
|
|
|
|
/// Determines whether the given declaration is an valid acceptable
|
|
/// result for name lookup of a nested-name-specifier.
|
|
/// \param SD Declaration checked for nested-name-specifier.
|
|
/// \param IsExtension If not null and the declaration is accepted as an
|
|
/// extension, the pointed variable is assigned true.
|
|
bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
|
|
bool *CanCorrect = nullptr);
|
|
|
|
/// If the given nested-name-specifier begins with a bare identifier
|
|
/// (e.g., Base::), perform name lookup for that identifier as a
|
|
/// nested-name-specifier within the given scope, and return the result of
|
|
/// that name lookup.
|
|
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
|
|
|
|
/// Keeps information about an identifier in a nested-name-spec.
|
|
///
|
|
struct NestedNameSpecInfo {
|
|
/// The type of the object, if we're parsing nested-name-specifier in
|
|
/// a member access expression.
|
|
ParsedType ObjectType;
|
|
|
|
/// The identifier preceding the '::'.
|
|
IdentifierInfo *Identifier;
|
|
|
|
/// The location of the identifier.
|
|
SourceLocation IdentifierLoc;
|
|
|
|
/// The location of the '::'.
|
|
SourceLocation CCLoc;
|
|
|
|
/// Creates info object for the most typical case.
|
|
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
|
|
SourceLocation ColonColonLoc,
|
|
ParsedType ObjectType = ParsedType())
|
|
: ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
|
|
CCLoc(ColonColonLoc) {}
|
|
|
|
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
|
|
SourceLocation ColonColonLoc, QualType ObjectType)
|
|
: ObjectType(ParsedType::make(ObjectType)), Identifier(II),
|
|
IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {}
|
|
};
|
|
|
|
/// Build a new nested-name-specifier for "identifier::", as described
|
|
/// by ActOnCXXNestedNameSpecifier.
|
|
///
|
|
/// \param S Scope in which the nested-name-specifier occurs.
|
|
/// \param IdInfo Parser information about an identifier in the
|
|
/// nested-name-spec.
|
|
/// \param EnteringContext If true, enter the context specified by the
|
|
/// nested-name-specifier.
|
|
/// \param SS Optional nested name specifier preceding the identifier.
|
|
/// \param ScopeLookupResult Provides the result of name lookup within the
|
|
/// scope of the nested-name-specifier that was computed at template
|
|
/// definition time.
|
|
/// \param ErrorRecoveryLookup Specifies if the method is called to improve
|
|
/// error recovery and what kind of recovery is performed.
|
|
/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
|
|
/// are allowed. The bool value pointed by this parameter is set to
|
|
/// 'true' if the identifier is treated as if it was followed by ':',
|
|
/// not '::'.
|
|
/// \param OnlyNamespace If true, only considers namespaces in lookup.
|
|
///
|
|
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
|
|
/// that it contains an extra parameter \p ScopeLookupResult, which provides
|
|
/// the result of name lookup within the scope of the nested-name-specifier
|
|
/// that was computed at template definition time.
|
|
///
|
|
/// If ErrorRecoveryLookup is true, then this call is used to improve error
|
|
/// recovery. This means that it should not emit diagnostics, it should
|
|
/// just return true on failure. It also means it should only return a valid
|
|
/// scope if it *knows* that the result is correct. It should not return in a
|
|
/// dependent context, for example. Nor will it extend \p SS with the scope
|
|
/// specifier.
|
|
bool BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext, CXXScopeSpec &SS,
|
|
NamedDecl *ScopeLookupResult,
|
|
bool ErrorRecoveryLookup,
|
|
bool *IsCorrectedToColon = nullptr,
|
|
bool OnlyNamespace = false);
|
|
|
|
/// The parser has parsed a nested-name-specifier 'identifier::'.
|
|
///
|
|
/// \param S The scope in which this nested-name-specifier occurs.
|
|
///
|
|
/// \param IdInfo Parser information about an identifier in the
|
|
/// nested-name-spec.
|
|
///
|
|
/// \param EnteringContext Whether we're entering the context nominated by
|
|
/// this nested-name-specifier.
|
|
///
|
|
/// \param SS The nested-name-specifier, which is both an input
|
|
/// parameter (the nested-name-specifier before this type) and an
|
|
/// output parameter (containing the full nested-name-specifier,
|
|
/// including this new type).
|
|
///
|
|
/// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
|
|
/// are allowed. The bool value pointed by this parameter is set to 'true'
|
|
/// if the identifier is treated as if it was followed by ':', not '::'.
|
|
///
|
|
/// \param OnlyNamespace If true, only considers namespaces in lookup.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext, CXXScopeSpec &SS,
|
|
bool *IsCorrectedToColon = nullptr,
|
|
bool OnlyNamespace = false);
|
|
|
|
/// The parser has parsed a nested-name-specifier
|
|
/// 'template[opt] template-name < template-args >::'.
|
|
///
|
|
/// \param S The scope in which this nested-name-specifier occurs.
|
|
///
|
|
/// \param SS The nested-name-specifier, which is both an input
|
|
/// parameter (the nested-name-specifier before this type) and an
|
|
/// output parameter (containing the full nested-name-specifier,
|
|
/// including this new type).
|
|
///
|
|
/// \param TemplateKWLoc the location of the 'template' keyword, if any.
|
|
/// \param TemplateName the template name.
|
|
/// \param TemplateNameLoc The location of the template name.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<').
|
|
/// \param TemplateArgs The template arguments.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>').
|
|
/// \param CCLoc The location of the '::'.
|
|
///
|
|
/// \param EnteringContext Whether we're entering the context of the
|
|
/// nested-name-specifier.
|
|
///
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXNestedNameSpecifier(
|
|
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateName, SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
|
|
SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext);
|
|
|
|
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS,
|
|
SourceLocation ColonColonLoc);
|
|
|
|
bool ActOnCXXNestedNameSpecifierIndexedPack(CXXScopeSpec &SS,
|
|
const DeclSpec &DS,
|
|
SourceLocation ColonColonLoc,
|
|
QualType Type);
|
|
|
|
/// IsInvalidUnlessNestedName - This method is used for error recovery
|
|
/// purposes to determine whether the specified identifier is only valid as
|
|
/// a nested name specifier, for example a namespace name. It is
|
|
/// conservatively correct to always return false from this method.
|
|
///
|
|
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
|
|
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
|
|
NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext);
|
|
|
|
/// Given a C++ nested-name-specifier, produce an annotation value
|
|
/// that the parser can use later to reconstruct the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param SS A nested-name-specifier.
|
|
///
|
|
/// \returns A pointer containing all of the information in the
|
|
/// nested-name-specifier \p SS.
|
|
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
|
|
|
|
/// Given an annotation pointer for a nested-name-specifier, restore
|
|
/// the nested-name-specifier structure.
|
|
///
|
|
/// \param Annotation The annotation pointer, produced by
|
|
/// \c SaveNestedNameSpecifierAnnotation().
|
|
///
|
|
/// \param AnnotationRange The source range corresponding to the annotation.
|
|
///
|
|
/// \param SS The nested-name-specifier that will be updated with the contents
|
|
/// of the annotation pointer.
|
|
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
|
|
SourceRange AnnotationRange,
|
|
CXXScopeSpec &SS);
|
|
|
|
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
|
|
|
|
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
|
|
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
|
|
/// After this method is called, according to [C++ 3.4.3p3], names should be
|
|
/// looked up in the declarator-id's scope, until the declarator is parsed and
|
|
/// ActOnCXXExitDeclaratorScope is called.
|
|
/// The 'SS' should be a non-empty valid CXXScopeSpec.
|
|
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
|
|
|
|
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
|
|
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
|
|
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
|
|
/// Used to indicate that names should revert to being looked up in the
|
|
/// defining scope.
|
|
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Declarations
|
|
/// Implementations are in SemaDecl.cpp
|
|
///@{
|
|
|
|
public:
|
|
IdentifierResolver IdResolver;
|
|
|
|
/// The index of the first InventedParameterInfo that refers to the current
|
|
/// context.
|
|
unsigned InventedParameterInfosStart = 0;
|
|
|
|
/// A RAII object to temporarily push a declaration context.
|
|
class ContextRAII {
|
|
private:
|
|
Sema &S;
|
|
DeclContext *SavedContext;
|
|
ProcessingContextState SavedContextState;
|
|
QualType SavedCXXThisTypeOverride;
|
|
unsigned SavedFunctionScopesStart;
|
|
unsigned SavedInventedParameterInfosStart;
|
|
|
|
public:
|
|
ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
|
|
: S(S), SavedContext(S.CurContext),
|
|
SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
|
|
SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
|
|
SavedFunctionScopesStart(S.FunctionScopesStart),
|
|
SavedInventedParameterInfosStart(S.InventedParameterInfosStart) {
|
|
assert(ContextToPush && "pushing null context");
|
|
S.CurContext = ContextToPush;
|
|
if (NewThisContext)
|
|
S.CXXThisTypeOverride = QualType();
|
|
// Any saved FunctionScopes do not refer to this context.
|
|
S.FunctionScopesStart = S.FunctionScopes.size();
|
|
S.InventedParameterInfosStart = S.InventedParameterInfos.size();
|
|
}
|
|
|
|
void pop() {
|
|
if (!SavedContext)
|
|
return;
|
|
S.CurContext = SavedContext;
|
|
S.DelayedDiagnostics.popUndelayed(SavedContextState);
|
|
S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
|
|
S.FunctionScopesStart = SavedFunctionScopesStart;
|
|
S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
|
|
SavedContext = nullptr;
|
|
}
|
|
|
|
~ContextRAII() { pop(); }
|
|
};
|
|
|
|
void DiagnoseInvalidJumps(Stmt *Body);
|
|
|
|
/// The function definitions which were renamed as part of typo-correction
|
|
/// to match their respective declarations. We want to keep track of them
|
|
/// to ensure that we don't emit a "redefinition" error if we encounter a
|
|
/// correctly named definition after the renamed definition.
|
|
llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
|
|
|
|
/// A cache of the flags available in enumerations with the flag_bits
|
|
/// attribute.
|
|
mutable llvm::DenseMap<const EnumDecl *, llvm::APInt> FlagBitsCache;
|
|
|
|
/// WeakUndeclaredIdentifiers - Identifiers contained in \#pragma weak before
|
|
/// declared. Rare. May alias another identifier, declared or undeclared.
|
|
///
|
|
/// For aliases, the target identifier is used as a key for eventual
|
|
/// processing when the target is declared. For the single-identifier form,
|
|
/// the sole identifier is used as the key. Each entry is a `SetVector`
|
|
/// (ordered by parse order) of aliases (identified by the alias name) in case
|
|
/// of multiple aliases to the same undeclared identifier.
|
|
llvm::MapVector<
|
|
IdentifierInfo *,
|
|
llvm::SetVector<
|
|
WeakInfo, llvm::SmallVector<WeakInfo, 1u>,
|
|
llvm::SmallDenseSet<WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly>>>
|
|
WeakUndeclaredIdentifiers;
|
|
|
|
/// ExtnameUndeclaredIdentifiers - Identifiers contained in
|
|
/// \#pragma redefine_extname before declared. Used in Solaris system headers
|
|
/// to define functions that occur in multiple standards to call the version
|
|
/// in the currently selected standard.
|
|
llvm::DenseMap<IdentifierInfo *, AsmLabelAttr *> ExtnameUndeclaredIdentifiers;
|
|
|
|
/// Set containing all typedefs that are likely unused.
|
|
llvm::SmallSetVector<const TypedefNameDecl *, 4>
|
|
UnusedLocalTypedefNameCandidates;
|
|
|
|
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
|
|
UnusedFileScopedDeclsType;
|
|
|
|
/// The set of file scoped decls seen so far that have not been used
|
|
/// and must warn if not used. Only contains the first declaration.
|
|
UnusedFileScopedDeclsType UnusedFileScopedDecls;
|
|
|
|
typedef LazyVector<VarDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
|
|
TentativeDefinitionsType;
|
|
|
|
/// All the tentative definitions encountered in the TU.
|
|
TentativeDefinitionsType TentativeDefinitions;
|
|
|
|
/// All the external declarations encoutered and used in the TU.
|
|
SmallVector<DeclaratorDecl *, 4> ExternalDeclarations;
|
|
|
|
/// Generally null except when we temporarily switch decl contexts,
|
|
/// like in \see SemaObjC::ActOnObjCTemporaryExitContainerContext.
|
|
DeclContext *OriginalLexicalContext;
|
|
|
|
/// Is the module scope we are in a C++ Header Unit?
|
|
bool currentModuleIsHeaderUnit() const {
|
|
return ModuleScopes.empty() ? false
|
|
: ModuleScopes.back().Module->isHeaderUnit();
|
|
}
|
|
|
|
/// Get the module owning an entity.
|
|
Module *getOwningModule(const Decl *Entity) {
|
|
return Entity->getOwningModule();
|
|
}
|
|
|
|
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
|
|
|
|
/// If the identifier refers to a type name within this scope,
|
|
/// return the declaration of that type.
|
|
///
|
|
/// This routine performs ordinary name lookup of the identifier II
|
|
/// within the given scope, with optional C++ scope specifier SS, to
|
|
/// determine whether the name refers to a type. If so, returns an
|
|
/// opaque pointer (actually a QualType) corresponding to that
|
|
/// type. Otherwise, returns NULL.
|
|
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec *SS = nullptr,
|
|
bool isClassName = false, bool HasTrailingDot = false,
|
|
ParsedType ObjectType = nullptr,
|
|
bool IsCtorOrDtorName = false,
|
|
bool WantNontrivialTypeSourceInfo = false,
|
|
bool IsClassTemplateDeductionContext = true,
|
|
ImplicitTypenameContext AllowImplicitTypename =
|
|
ImplicitTypenameContext::No,
|
|
IdentifierInfo **CorrectedII = nullptr);
|
|
|
|
/// isTagName() - This method is called *for error recovery purposes only*
|
|
/// to determine if the specified name is a valid tag name ("struct foo"). If
|
|
/// so, this returns the TST for the tag corresponding to it (TST_enum,
|
|
/// TST_union, TST_struct, TST_interface, TST_class). This is used to
|
|
/// diagnose cases in C where the user forgot to specify the tag.
|
|
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
|
|
|
|
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
|
|
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
|
|
/// then downgrade the missing typename error to a warning.
|
|
/// This is needed for MSVC compatibility; Example:
|
|
/// @code
|
|
/// template<class T> class A {
|
|
/// public:
|
|
/// typedef int TYPE;
|
|
/// };
|
|
/// template<class T> class B : public A<T> {
|
|
/// public:
|
|
/// A<T>::TYPE a; // no typename required because A<T> is a base class.
|
|
/// };
|
|
/// @endcode
|
|
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
|
|
void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc,
|
|
Scope *S, CXXScopeSpec *SS,
|
|
ParsedType &SuggestedType,
|
|
bool IsTemplateName = false);
|
|
|
|
/// Attempt to behave like MSVC in situations where lookup of an unqualified
|
|
/// type name has failed in a dependent context. In these situations, we
|
|
/// automatically form a DependentTypeName that will retry lookup in a related
|
|
/// scope during instantiation.
|
|
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
|
|
SourceLocation NameLoc,
|
|
bool IsTemplateTypeArg);
|
|
|
|
/// Describes the result of the name lookup and resolution performed
|
|
/// by \c ClassifyName().
|
|
enum NameClassificationKind {
|
|
/// This name is not a type or template in this context, but might be
|
|
/// something else.
|
|
NC_Unknown,
|
|
/// Classification failed; an error has been produced.
|
|
NC_Error,
|
|
/// The name has been typo-corrected to a keyword.
|
|
NC_Keyword,
|
|
/// The name was classified as a type.
|
|
NC_Type,
|
|
/// The name was classified as a specific non-type, non-template
|
|
/// declaration. ActOnNameClassifiedAsNonType should be called to
|
|
/// convert the declaration to an expression.
|
|
NC_NonType,
|
|
/// The name was classified as an ADL-only function name.
|
|
/// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
|
|
/// result to an expression.
|
|
NC_UndeclaredNonType,
|
|
/// The name denotes a member of a dependent type that could not be
|
|
/// resolved. ActOnNameClassifiedAsDependentNonType should be called to
|
|
/// convert the result to an expression.
|
|
NC_DependentNonType,
|
|
/// The name was classified as an overload set, and an expression
|
|
/// representing that overload set has been formed.
|
|
/// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
|
|
/// expression referencing the overload set.
|
|
NC_OverloadSet,
|
|
/// The name was classified as a template whose specializations are types.
|
|
NC_TypeTemplate,
|
|
/// The name was classified as a variable template name.
|
|
NC_VarTemplate,
|
|
/// The name was classified as a function template name.
|
|
NC_FunctionTemplate,
|
|
/// The name was classified as an ADL-only function template name.
|
|
NC_UndeclaredTemplate,
|
|
/// The name was classified as a concept name.
|
|
NC_Concept,
|
|
};
|
|
|
|
class NameClassification {
|
|
NameClassificationKind Kind;
|
|
union {
|
|
ExprResult Expr;
|
|
NamedDecl *NonTypeDecl;
|
|
TemplateName Template;
|
|
ParsedType Type;
|
|
};
|
|
|
|
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
|
|
|
|
public:
|
|
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
|
|
|
|
NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
|
|
|
|
static NameClassification Error() { return NameClassification(NC_Error); }
|
|
|
|
static NameClassification Unknown() {
|
|
return NameClassification(NC_Unknown);
|
|
}
|
|
|
|
static NameClassification OverloadSet(ExprResult E) {
|
|
NameClassification Result(NC_OverloadSet);
|
|
Result.Expr = E;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification NonType(NamedDecl *D) {
|
|
NameClassification Result(NC_NonType);
|
|
Result.NonTypeDecl = D;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification UndeclaredNonType() {
|
|
return NameClassification(NC_UndeclaredNonType);
|
|
}
|
|
|
|
static NameClassification DependentNonType() {
|
|
return NameClassification(NC_DependentNonType);
|
|
}
|
|
|
|
static NameClassification TypeTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_TypeTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification VarTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_VarTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification FunctionTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_FunctionTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification Concept(TemplateName Name) {
|
|
NameClassification Result(NC_Concept);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification UndeclaredTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_UndeclaredTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
NameClassificationKind getKind() const { return Kind; }
|
|
|
|
ExprResult getExpression() const {
|
|
assert(Kind == NC_OverloadSet);
|
|
return Expr;
|
|
}
|
|
|
|
ParsedType getType() const {
|
|
assert(Kind == NC_Type);
|
|
return Type;
|
|
}
|
|
|
|
NamedDecl *getNonTypeDecl() const {
|
|
assert(Kind == NC_NonType);
|
|
return NonTypeDecl;
|
|
}
|
|
|
|
TemplateName getTemplateName() const {
|
|
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||
|
|
Kind == NC_VarTemplate || Kind == NC_Concept ||
|
|
Kind == NC_UndeclaredTemplate);
|
|
return Template;
|
|
}
|
|
|
|
TemplateNameKind getTemplateNameKind() const {
|
|
switch (Kind) {
|
|
case NC_TypeTemplate:
|
|
return TNK_Type_template;
|
|
case NC_FunctionTemplate:
|
|
return TNK_Function_template;
|
|
case NC_VarTemplate:
|
|
return TNK_Var_template;
|
|
case NC_Concept:
|
|
return TNK_Concept_template;
|
|
case NC_UndeclaredTemplate:
|
|
return TNK_Undeclared_template;
|
|
default:
|
|
llvm_unreachable("unsupported name classification.");
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Perform name lookup on the given name, classifying it based on
|
|
/// the results of name lookup and the following token.
|
|
///
|
|
/// This routine is used by the parser to resolve identifiers and help direct
|
|
/// parsing. When the identifier cannot be found, this routine will attempt
|
|
/// to correct the typo and classify based on the resulting name.
|
|
///
|
|
/// \param S The scope in which we're performing name lookup.
|
|
///
|
|
/// \param SS The nested-name-specifier that precedes the name.
|
|
///
|
|
/// \param Name The identifier. If typo correction finds an alternative name,
|
|
/// this pointer parameter will be updated accordingly.
|
|
///
|
|
/// \param NameLoc The location of the identifier.
|
|
///
|
|
/// \param NextToken The token following the identifier. Used to help
|
|
/// disambiguate the name.
|
|
///
|
|
/// \param CCC The correction callback, if typo correction is desired.
|
|
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
|
|
IdentifierInfo *&Name, SourceLocation NameLoc,
|
|
const Token &NextToken,
|
|
CorrectionCandidateCallback *CCC = nullptr);
|
|
|
|
/// Act on the result of classifying a name as an undeclared (ADL-only)
|
|
/// non-type declaration.
|
|
ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
|
|
SourceLocation NameLoc);
|
|
/// Act on the result of classifying a name as an undeclared member of a
|
|
/// dependent base class.
|
|
ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
bool IsAddressOfOperand);
|
|
/// Act on the result of classifying a name as a specific non-type
|
|
/// declaration.
|
|
ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
|
|
NamedDecl *Found,
|
|
SourceLocation NameLoc,
|
|
const Token &NextToken);
|
|
/// Act on the result of classifying a name as an overload set.
|
|
ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
|
|
|
|
/// Describes the detailed kind of a template name. Used in diagnostics.
|
|
enum class TemplateNameKindForDiagnostics {
|
|
ClassTemplate,
|
|
FunctionTemplate,
|
|
VarTemplate,
|
|
AliasTemplate,
|
|
TemplateTemplateParam,
|
|
Concept,
|
|
DependentTemplate
|
|
};
|
|
TemplateNameKindForDiagnostics
|
|
getTemplateNameKindForDiagnostics(TemplateName Name);
|
|
|
|
/// Determine whether it's plausible that E was intended to be a
|
|
/// template-name.
|
|
bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
|
|
if (!getLangOpts().CPlusPlus || E.isInvalid())
|
|
return false;
|
|
Dependent = false;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
|
|
return !DRE->hasExplicitTemplateArgs();
|
|
if (auto *ME = dyn_cast<MemberExpr>(E.get()))
|
|
return !ME->hasExplicitTemplateArgs();
|
|
Dependent = true;
|
|
if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
|
|
return !DSDRE->hasExplicitTemplateArgs();
|
|
if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
|
|
return !DSME->hasExplicitTemplateArgs();
|
|
// Any additional cases recognized here should also be handled by
|
|
// diagnoseExprIntendedAsTemplateName.
|
|
return false;
|
|
}
|
|
|
|
void warnOnReservedIdentifier(const NamedDecl *D);
|
|
|
|
Decl *ActOnDeclarator(Scope *S, Declarator &D);
|
|
|
|
NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists);
|
|
|
|
/// Attempt to fold a variable-sized type to a constant-sized type, returning
|
|
/// true if we were successful.
|
|
bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, QualType &T,
|
|
SourceLocation Loc,
|
|
unsigned FailedFoldDiagID);
|
|
|
|
/// Register the given locally-scoped extern "C" declaration so
|
|
/// that it can be found later for redeclarations. We include any extern "C"
|
|
/// declaration that is not visible in the translation unit here, not just
|
|
/// function-scope declarations.
|
|
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
|
|
|
|
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
|
|
/// If T is the name of a class, then each of the following shall have a
|
|
/// name different from T:
|
|
/// - every static data member of class T;
|
|
/// - every member function of class T
|
|
/// - every member of class T that is itself a type;
|
|
/// \returns true if the declaration name violates these rules.
|
|
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
|
|
|
|
/// Diagnose a declaration whose declarator-id has the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param SS The nested-name-specifier of the declarator-id.
|
|
///
|
|
/// \param DC The declaration context to which the nested-name-specifier
|
|
/// resolves.
|
|
///
|
|
/// \param Name The name of the entity being declared.
|
|
///
|
|
/// \param Loc The location of the name of the entity being declared.
|
|
///
|
|
/// \param IsMemberSpecialization Whether we are declaring a member
|
|
/// specialization.
|
|
///
|
|
/// \param TemplateId The template-id, if any.
|
|
///
|
|
/// \returns true if we cannot safely recover from this error, false
|
|
/// otherwise.
|
|
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
|
|
DeclarationName Name, SourceLocation Loc,
|
|
TemplateIdAnnotation *TemplateId,
|
|
bool IsMemberSpecialization);
|
|
|
|
bool checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range);
|
|
|
|
bool checkConstantPointerAuthKey(Expr *keyExpr, unsigned &key);
|
|
|
|
/// Diagnose function specifiers on a declaration of an identifier that
|
|
/// does not identify a function.
|
|
void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
|
|
|
|
/// Return the declaration shadowed by the given typedef \p D, or null
|
|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
|
|
NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
|
|
const LookupResult &R);
|
|
|
|
/// Return the declaration shadowed by the given variable \p D, or null
|
|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
|
|
NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
|
|
|
|
/// Return the declaration shadowed by the given variable \p D, or null
|
|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
|
|
NamedDecl *getShadowedDeclaration(const BindingDecl *D,
|
|
const LookupResult &R);
|
|
/// Diagnose variable or built-in function shadowing. Implements
|
|
/// -Wshadow.
|
|
///
|
|
/// This method is called whenever a VarDecl is added to a "useful"
|
|
/// scope.
|
|
///
|
|
/// \param ShadowedDecl the declaration that is shadowed by the given variable
|
|
/// \param R the lookup of the name
|
|
void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
|
|
const LookupResult &R);
|
|
|
|
/// Check -Wshadow without the advantage of a previous lookup.
|
|
void CheckShadow(Scope *S, VarDecl *D);
|
|
|
|
/// Warn if 'E', which is an expression that is about to be modified, refers
|
|
/// to a shadowing declaration.
|
|
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
|
|
|
|
/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
|
|
/// when these variables are captured by the lambda.
|
|
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
|
|
|
|
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
|
|
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
|
|
TypedefNameDecl *NewTD);
|
|
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
|
|
NamedDecl *ActOnTypedefDeclarator(Scope *S, Declarator &D, DeclContext *DC,
|
|
TypeSourceInfo *TInfo,
|
|
LookupResult &Previous);
|
|
|
|
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
|
|
/// declares a typedef-name, either using the 'typedef' type specifier or via
|
|
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
|
|
NamedDecl *ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *D,
|
|
LookupResult &Previous, bool &Redeclaration);
|
|
NamedDecl *ActOnVariableDeclarator(
|
|
Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
|
|
LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope, ArrayRef<BindingDecl *> Bindings = std::nullopt);
|
|
|
|
/// Perform semantic checking on a newly-created variable
|
|
/// declaration.
|
|
///
|
|
/// This routine performs all of the type-checking required for a
|
|
/// variable declaration once it has been built. It is used both to
|
|
/// check variables after they have been parsed and their declarators
|
|
/// have been translated into a declaration, and to check variables
|
|
/// that have been instantiated from a template.
|
|
///
|
|
/// Sets NewVD->isInvalidDecl() if an error was encountered.
|
|
///
|
|
/// Returns true if the variable declaration is a redeclaration.
|
|
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
|
|
void CheckVariableDeclarationType(VarDecl *NewVD);
|
|
void CheckCompleteVariableDeclaration(VarDecl *VD);
|
|
|
|
NamedDecl *ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
|
|
TypeSourceInfo *TInfo,
|
|
LookupResult &Previous,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope);
|
|
|
|
/// AddOverriddenMethods - See if a method overrides any in the base classes,
|
|
/// and if so, check that it's a valid override and remember it.
|
|
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
|
|
|
|
/// Perform semantic checking of a new function declaration.
|
|
///
|
|
/// Performs semantic analysis of the new function declaration
|
|
/// NewFD. This routine performs all semantic checking that does not
|
|
/// require the actual declarator involved in the declaration, and is
|
|
/// used both for the declaration of functions as they are parsed
|
|
/// (called via ActOnDeclarator) and for the declaration of functions
|
|
/// that have been instantiated via C++ template instantiation (called
|
|
/// via InstantiateDecl).
|
|
///
|
|
/// \param IsMemberSpecialization whether this new function declaration is
|
|
/// a member specialization (that replaces any definition provided by the
|
|
/// previous declaration).
|
|
///
|
|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
|
|
///
|
|
/// \returns true if the function declaration is a redeclaration.
|
|
bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
|
|
LookupResult &Previous,
|
|
bool IsMemberSpecialization, bool DeclIsDefn);
|
|
|
|
/// Checks if the new declaration declared in dependent context must be
|
|
/// put in the same redeclaration chain as the specified declaration.
|
|
///
|
|
/// \param D Declaration that is checked.
|
|
/// \param PrevDecl Previous declaration found with proper lookup method for
|
|
/// the same declaration name.
|
|
/// \returns True if D must be added to the redeclaration chain which PrevDecl
|
|
/// belongs to.
|
|
bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
|
|
|
|
/// Determines if we can perform a correct type check for \p D as a
|
|
/// redeclaration of \p PrevDecl. If not, we can generally still perform a
|
|
/// best-effort check.
|
|
///
|
|
/// \param NewD The new declaration.
|
|
/// \param OldD The old declaration.
|
|
/// \param NewT The portion of the type of the new declaration to check.
|
|
/// \param OldT The portion of the type of the old declaration to check.
|
|
bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
|
|
QualType NewT, QualType OldT);
|
|
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
|
|
void CheckMSVCRTEntryPoint(FunctionDecl *FD);
|
|
|
|
/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
|
|
/// containing class. Otherwise it will return implicit SectionAttr if the
|
|
/// function is a definition and there is an active value on CodeSegStack
|
|
/// (from the current #pragma code-seg value).
|
|
///
|
|
/// \param FD Function being declared.
|
|
/// \param IsDefinition Whether it is a definition or just a declaration.
|
|
/// \returns A CodeSegAttr or SectionAttr to apply to the function or
|
|
/// nullptr if no attribute should be added.
|
|
Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
|
|
bool IsDefinition);
|
|
|
|
/// Common checks for a parameter-declaration that should apply to both
|
|
/// function parameters and non-type template parameters.
|
|
void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
|
|
|
|
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
|
|
/// to introduce parameters into function prototype scope.
|
|
Decl *ActOnParamDeclarator(Scope *S, Declarator &D,
|
|
SourceLocation ExplicitThisLoc = {});
|
|
|
|
/// Synthesizes a variable for a parameter arising from a
|
|
/// typedef.
|
|
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc,
|
|
QualType T);
|
|
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation NameLoc,
|
|
const IdentifierInfo *Name, QualType T,
|
|
TypeSourceInfo *TSInfo, StorageClass SC);
|
|
|
|
// Contexts where using non-trivial C union types can be disallowed. This is
|
|
// passed to err_non_trivial_c_union_in_invalid_context.
|
|
enum NonTrivialCUnionContext {
|
|
// Function parameter.
|
|
NTCUC_FunctionParam,
|
|
// Function return.
|
|
NTCUC_FunctionReturn,
|
|
// Default-initialized object.
|
|
NTCUC_DefaultInitializedObject,
|
|
// Variable with automatic storage duration.
|
|
NTCUC_AutoVar,
|
|
// Initializer expression that might copy from another object.
|
|
NTCUC_CopyInit,
|
|
// Assignment.
|
|
NTCUC_Assignment,
|
|
// Compound literal.
|
|
NTCUC_CompoundLiteral,
|
|
// Block capture.
|
|
NTCUC_BlockCapture,
|
|
// lvalue-to-rvalue conversion of volatile type.
|
|
NTCUC_LValueToRValueVolatile,
|
|
};
|
|
|
|
/// Emit diagnostics if the initializer or any of its explicit or
|
|
/// implicitly-generated subexpressions require copying or
|
|
/// default-initializing a type that is or contains a C union type that is
|
|
/// non-trivial to copy or default-initialize.
|
|
void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
|
|
|
|
// These flags are passed to checkNonTrivialCUnion.
|
|
enum NonTrivialCUnionKind {
|
|
NTCUK_Init = 0x1,
|
|
NTCUK_Destruct = 0x2,
|
|
NTCUK_Copy = 0x4,
|
|
};
|
|
|
|
/// Emit diagnostics if a non-trivial C union type or a struct that contains
|
|
/// a non-trivial C union is used in an invalid context.
|
|
void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
|
|
NonTrivialCUnionContext UseContext,
|
|
unsigned NonTrivialKind);
|
|
|
|
/// AddInitializerToDecl - Adds the initializer Init to the
|
|
/// declaration dcl. If DirectInit is true, this is C++ direct
|
|
/// initialization rather than copy initialization.
|
|
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
|
|
void ActOnUninitializedDecl(Decl *dcl);
|
|
|
|
/// ActOnInitializerError - Given that there was an error parsing an
|
|
/// initializer for the given declaration, try to at least re-establish
|
|
/// invariants such as whether a variable's type is either dependent or
|
|
/// complete.
|
|
void ActOnInitializerError(Decl *Dcl);
|
|
|
|
void ActOnCXXForRangeDecl(Decl *D);
|
|
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident,
|
|
ParsedAttributes &Attrs);
|
|
|
|
/// Check if VD needs to be dllexport/dllimport due to being in a
|
|
/// dllexport/import function.
|
|
void CheckStaticLocalForDllExport(VarDecl *VD);
|
|
void CheckThreadLocalForLargeAlignment(VarDecl *VD);
|
|
|
|
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
|
|
/// any semantic actions necessary after any initializer has been attached.
|
|
void FinalizeDeclaration(Decl *D);
|
|
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
|
|
ArrayRef<Decl *> Group);
|
|
|
|
/// BuildDeclaratorGroup - convert a list of declarations into a declaration
|
|
/// group, performing any necessary semantic checking.
|
|
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
|
|
|
|
/// Should be called on all declarations that might have attached
|
|
/// documentation comments.
|
|
void ActOnDocumentableDecl(Decl *D);
|
|
void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
|
|
|
|
enum class FnBodyKind {
|
|
/// C++26 [dcl.fct.def.general]p1
|
|
/// function-body:
|
|
/// ctor-initializer[opt] compound-statement
|
|
/// function-try-block
|
|
Other,
|
|
/// = default ;
|
|
Default,
|
|
/// deleted-function-body
|
|
///
|
|
/// deleted-function-body:
|
|
/// = delete ;
|
|
/// = delete ( unevaluated-string ) ;
|
|
Delete
|
|
};
|
|
|
|
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
|
|
SourceLocation LocAfterDecls);
|
|
void CheckForFunctionRedefinition(
|
|
FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
SkipBodyInfo *SkipBody = nullptr,
|
|
FnBodyKind BodyKind = FnBodyKind::Other);
|
|
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
|
|
SkipBodyInfo *SkipBody = nullptr,
|
|
FnBodyKind BodyKind = FnBodyKind::Other);
|
|
void applyFunctionAttributesBeforeParsingBody(Decl *FD);
|
|
|
|
/// Determine whether we can delay parsing the body of a function or
|
|
/// function template until it is used, assuming we don't care about emitting
|
|
/// code for that function.
|
|
///
|
|
/// This will be \c false if we may need the body of the function in the
|
|
/// middle of parsing an expression (where it's impractical to switch to
|
|
/// parsing a different function), for instance, if it's constexpr in C++11
|
|
/// or has an 'auto' return type in C++14. These cases are essentially bugs.
|
|
bool canDelayFunctionBody(const Declarator &D);
|
|
|
|
/// Determine whether we can skip parsing the body of a function
|
|
/// definition, assuming we don't care about analyzing its body or emitting
|
|
/// code for that function.
|
|
///
|
|
/// This will be \c false only if we may need the body of the function in
|
|
/// order to parse the rest of the program (for instance, if it is
|
|
/// \c constexpr in C++11 or has an 'auto' return type in C++14).
|
|
bool canSkipFunctionBody(Decl *D);
|
|
|
|
/// Given the set of return statements within a function body,
|
|
/// compute the variables that are subject to the named return value
|
|
/// optimization.
|
|
///
|
|
/// Each of the variables that is subject to the named return value
|
|
/// optimization will be marked as NRVO variables in the AST, and any
|
|
/// return statement that has a marked NRVO variable as its NRVO candidate can
|
|
/// use the named return value optimization.
|
|
///
|
|
/// This function applies a very simplistic algorithm for NRVO: if every
|
|
/// return statement in the scope of a variable has the same NRVO candidate,
|
|
/// that candidate is an NRVO variable.
|
|
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
|
|
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
|
|
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
|
|
Decl *ActOnSkippedFunctionBody(Decl *Decl);
|
|
void ActOnFinishInlineFunctionDef(FunctionDecl *D);
|
|
|
|
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
|
|
/// attribute for which parsing is delayed.
|
|
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
|
|
|
|
/// Diagnose any unused parameters in the given sequence of
|
|
/// ParmVarDecl pointers.
|
|
void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
|
|
|
|
/// Diagnose whether the size of parameters or return value of a
|
|
/// function or obj-c method definition is pass-by-value and larger than a
|
|
/// specified threshold.
|
|
void
|
|
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
|
|
QualType ReturnTy, NamedDecl *D);
|
|
|
|
Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
TopLevelStmtDecl *ActOnStartTopLevelStmtDecl(Scope *S);
|
|
void ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl *D, Stmt *Statement);
|
|
|
|
void ActOnPopScope(SourceLocation Loc, Scope *S);
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed.
|
|
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
const ParsedAttributesView &DeclAttrs,
|
|
RecordDecl *&AnonRecord);
|
|
|
|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
|
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
|
|
/// parameters to cope with template friend declarations.
|
|
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
const ParsedAttributesView &DeclAttrs,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
bool IsExplicitInstantiation,
|
|
RecordDecl *&AnonRecord,
|
|
SourceLocation EllipsisLoc = {});
|
|
|
|
/// BuildAnonymousStructOrUnion - Handle the declaration of an
|
|
/// anonymous structure or union. Anonymous unions are a C++ feature
|
|
/// (C++ [class.union]) and a C11 feature; anonymous structures
|
|
/// are a C11 feature and GNU C++ extension.
|
|
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS,
|
|
RecordDecl *Record,
|
|
const PrintingPolicy &Policy);
|
|
|
|
/// Called once it is known whether
|
|
/// a tag declaration is an anonymous union or struct.
|
|
void ActOnDefinedDeclarationSpecifier(Decl *D);
|
|
|
|
/// Emit diagnostic warnings for placeholder members.
|
|
/// We can only do that after the class is fully constructed,
|
|
/// as anonymous union/structs can insert placeholders
|
|
/// in their parent scope (which might be a Record).
|
|
void DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record);
|
|
|
|
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
|
|
/// Microsoft C anonymous structure.
|
|
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
|
|
/// Example:
|
|
///
|
|
/// struct A { int a; };
|
|
/// struct B { struct A; int b; };
|
|
///
|
|
/// void foo() {
|
|
/// B var;
|
|
/// var.a = 3;
|
|
/// }
|
|
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
|
|
RecordDecl *Record);
|
|
|
|
/// Common ways to introduce type names without a tag for use in diagnostics.
|
|
/// Keep in sync with err_tag_reference_non_tag.
|
|
enum NonTagKind {
|
|
NTK_NonStruct,
|
|
NTK_NonClass,
|
|
NTK_NonUnion,
|
|
NTK_NonEnum,
|
|
NTK_Typedef,
|
|
NTK_TypeAlias,
|
|
NTK_Template,
|
|
NTK_TypeAliasTemplate,
|
|
NTK_TemplateTemplateArgument,
|
|
};
|
|
|
|
/// Given a non-tag type declaration, returns an enum useful for indicating
|
|
/// what kind of non-tag type this is.
|
|
NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
|
|
|
|
/// Determine whether a tag with a given kind is acceptable
|
|
/// as a redeclaration of the given tag declaration.
|
|
///
|
|
/// \returns true if the new tag kind is acceptable, false otherwise.
|
|
bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag,
|
|
bool isDefinition, SourceLocation NewTagLoc,
|
|
const IdentifierInfo *Name);
|
|
|
|
enum OffsetOfKind {
|
|
// Not parsing a type within __builtin_offsetof.
|
|
OOK_Outside,
|
|
// Parsing a type within __builtin_offsetof.
|
|
OOK_Builtin,
|
|
// Parsing a type within macro "offsetof", defined in __buitin_offsetof
|
|
// To improve our diagnostic message.
|
|
OOK_Macro,
|
|
};
|
|
|
|
/// This is invoked when we see 'struct foo' or 'struct {'. In the
|
|
/// former case, Name will be non-null. In the later case, Name will be null.
|
|
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is
|
|
/// a reference/declaration/definition of a tag.
|
|
///
|
|
/// \param IsTypeSpecifier \c true if this is a type-specifier (or
|
|
/// trailing-type-specifier) other than one in an alias-declaration.
|
|
///
|
|
/// \param SkipBody If non-null, will be set to indicate if the caller should
|
|
/// skip the definition of this tag and treat it as if it were a declaration.
|
|
DeclResult ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
SourceLocation KWLoc, CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr, AccessSpecifier AS,
|
|
SourceLocation ModulePrivateLoc,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
bool &OwnedDecl, bool &IsDependent,
|
|
SourceLocation ScopedEnumKWLoc,
|
|
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
|
|
bool IsTypeSpecifier, bool IsTemplateParamOrArg,
|
|
OffsetOfKind OOK, SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
/// ActOnField - Each field of a C struct/union is passed into this in order
|
|
/// to create a FieldDecl object for it.
|
|
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth);
|
|
|
|
/// HandleField - Analyze a field of a C struct or a C++ data member.
|
|
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth,
|
|
InClassInitStyle InitStyle, AccessSpecifier AS);
|
|
|
|
/// Build a new FieldDecl and check its well-formedness.
|
|
///
|
|
/// This routine builds a new FieldDecl given the fields name, type,
|
|
/// record, etc. \p PrevDecl should refer to any previous declaration
|
|
/// with the same name and in the same scope as the field to be
|
|
/// created.
|
|
///
|
|
/// \returns a new FieldDecl.
|
|
///
|
|
/// \todo The Declarator argument is a hack. It will be removed once
|
|
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
|
|
TypeSourceInfo *TInfo, RecordDecl *Record,
|
|
SourceLocation Loc, bool Mutable,
|
|
Expr *BitfieldWidth, InClassInitStyle InitStyle,
|
|
SourceLocation TSSL, AccessSpecifier AS,
|
|
NamedDecl *PrevDecl, Declarator *D = nullptr);
|
|
|
|
bool CheckNontrivialField(FieldDecl *FD);
|
|
|
|
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
|
|
/// class and class extensions. For every class \@interface and class
|
|
/// extension \@interface, if the last ivar is a bitfield of any type,
|
|
/// then add an implicit `char :0` ivar to the end of that interface.
|
|
void ActOnLastBitfield(SourceLocation DeclStart,
|
|
SmallVectorImpl<Decl *> &AllIvarDecls);
|
|
|
|
// This is used for both record definitions and ObjC interface declarations.
|
|
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
|
|
ArrayRef<Decl *> Fields, SourceLocation LBrac,
|
|
SourceLocation RBrac, const ParsedAttributesView &AttrList);
|
|
|
|
/// ActOnTagStartDefinition - Invoked when we have entered the
|
|
/// scope of a tag's definition (e.g., for an enumeration, class,
|
|
/// struct, or union).
|
|
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
|
|
|
|
/// Perform ODR-like check for C/ObjC when merging tag types from modules.
|
|
/// Differently from C++, actually parse the body and reject / error out
|
|
/// in case of a structural mismatch.
|
|
bool ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody);
|
|
|
|
typedef void *SkippedDefinitionContext;
|
|
|
|
/// Invoked when we enter a tag definition that we're skipping.
|
|
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
|
|
|
|
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
|
|
/// C++ record definition's base-specifiers clause and are starting its
|
|
/// member declarations.
|
|
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
|
|
SourceLocation FinalLoc,
|
|
bool IsFinalSpelledSealed,
|
|
bool IsAbstract,
|
|
SourceLocation LBraceLoc);
|
|
|
|
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
|
|
/// the definition of a tag (enumeration, class, struct, or union).
|
|
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
|
|
SourceRange BraceRange);
|
|
|
|
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
|
|
|
|
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
|
|
/// error parsing the definition of a tag.
|
|
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
|
|
|
|
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
|
|
EnumConstantDecl *LastEnumConst,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
Expr *val);
|
|
|
|
/// Check that this is a valid underlying type for an enum declaration.
|
|
bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
|
|
|
|
/// Check whether this is a valid redeclaration of a previous enumeration.
|
|
/// \return true if the redeclaration was invalid.
|
|
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
|
|
QualType EnumUnderlyingTy, bool IsFixed,
|
|
const EnumDecl *Prev);
|
|
|
|
/// Determine whether the body of an anonymous enumeration should be skipped.
|
|
/// \param II The name of the first enumerator.
|
|
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
|
|
SourceLocation IILoc);
|
|
|
|
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
const ParsedAttributesView &Attrs,
|
|
SourceLocation EqualLoc, Expr *Val);
|
|
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
|
|
Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
|
|
const ParsedAttributesView &Attr);
|
|
|
|
/// Set the current declaration context until it gets popped.
|
|
void PushDeclContext(Scope *S, DeclContext *DC);
|
|
void PopDeclContext();
|
|
|
|
/// EnterDeclaratorContext - Used when we must lookup names in the context
|
|
/// of a declarator's nested name specifier.
|
|
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
|
|
void ExitDeclaratorContext(Scope *S);
|
|
|
|
/// Enter a template parameter scope, after it's been associated with a
|
|
/// particular DeclContext. Causes lookup within the scope to chain through
|
|
/// enclosing contexts in the correct order.
|
|
void EnterTemplatedContext(Scope *S, DeclContext *DC);
|
|
|
|
/// Push the parameters of D, which must be a function, into scope.
|
|
void ActOnReenterFunctionContext(Scope *S, Decl *D);
|
|
void ActOnExitFunctionContext();
|
|
|
|
/// Add this decl to the scope shadowed decl chains.
|
|
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
|
|
|
|
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
|
|
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
|
|
/// true if 'D' belongs to the given declaration context.
|
|
///
|
|
/// \param AllowInlineNamespace If \c true, allow the declaration to be in the
|
|
/// enclosing namespace set of the context, rather than contained
|
|
/// directly within it.
|
|
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
|
|
bool AllowInlineNamespace = false) const;
|
|
|
|
/// Finds the scope corresponding to the given decl context, if it
|
|
/// happens to be an enclosing scope. Otherwise return NULL.
|
|
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
|
|
|
|
/// Subroutines of ActOnDeclarator().
|
|
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
|
TypeSourceInfo *TInfo);
|
|
bool isIncompatibleTypedef(const TypeDecl *Old, TypedefNameDecl *New);
|
|
|
|
/// Describes the kind of merge to perform for availability
|
|
/// attributes (including "deprecated", "unavailable", and "availability").
|
|
enum AvailabilityMergeKind {
|
|
/// Don't merge availability attributes at all.
|
|
AMK_None,
|
|
/// Merge availability attributes for a redeclaration, which requires
|
|
/// an exact match.
|
|
AMK_Redeclaration,
|
|
/// Merge availability attributes for an override, which requires
|
|
/// an exact match or a weakening of constraints.
|
|
AMK_Override,
|
|
/// Merge availability attributes for an implementation of
|
|
/// a protocol requirement.
|
|
AMK_ProtocolImplementation,
|
|
/// Merge availability attributes for an implementation of
|
|
/// an optional protocol requirement.
|
|
AMK_OptionalProtocolImplementation
|
|
};
|
|
|
|
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
|
|
void mergeDeclAttributes(NamedDecl *New, Decl *Old,
|
|
AvailabilityMergeKind AMK = AMK_Redeclaration);
|
|
|
|
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
|
|
/// same name and scope as a previous declaration 'Old'. Figure out
|
|
/// how to resolve this situation, merging decls or emitting
|
|
/// diagnostics as appropriate. If there was an error, set New to be invalid.
|
|
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
|
|
LookupResult &OldDecls);
|
|
|
|
/// MergeFunctionDecl - We just parsed a function 'New' from
|
|
/// declarator D which has the same name and scope as a previous
|
|
/// declaration 'Old'. Figure out how to resolve this situation,
|
|
/// merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// In C++, New and Old must be declarations that are not
|
|
/// overloaded. Use IsOverload to determine whether New and Old are
|
|
/// overloaded, and to select the Old declaration that New should be
|
|
/// merged with.
|
|
///
|
|
/// Returns true if there was an error, false otherwise.
|
|
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
|
|
bool MergeTypeWithOld, bool NewDeclIsDefn);
|
|
|
|
/// Completes the merge of two function declarations that are
|
|
/// known to be compatible.
|
|
///
|
|
/// This routine handles the merging of attributes and other
|
|
/// properties of function declarations from the old declaration to
|
|
/// the new declaration, once we know that New is in fact a
|
|
/// redeclaration of Old.
|
|
///
|
|
/// \returns false
|
|
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
|
|
Scope *S, bool MergeTypeWithOld);
|
|
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
|
|
|
|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
|
|
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
|
/// situation, merging decls or emitting diagnostics as appropriate.
|
|
///
|
|
/// Tentative definition rules (C99 6.9.2p2) are checked by
|
|
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
|
|
/// definitions here, since the initializer hasn't been attached.
|
|
void MergeVarDecl(VarDecl *New, LookupResult &Previous);
|
|
|
|
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
|
|
/// scope as a previous declaration 'Old'. Figure out how to merge their
|
|
/// types, emitting diagnostics as appropriate.
|
|
///
|
|
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call
|
|
/// back to here in AddInitializerToDecl. We can't check them before the
|
|
/// initializer is attached.
|
|
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
|
|
|
|
/// We've just determined that \p Old and \p New both appear to be definitions
|
|
/// of the same variable. Either diagnose or fix the problem.
|
|
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
|
|
void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
|
|
|
|
/// Filters out lookup results that don't fall within the given scope
|
|
/// as determined by isDeclInScope.
|
|
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
|
|
bool ConsiderLinkage, bool AllowInlineNamespace);
|
|
|
|
/// We've determined that \p New is a redeclaration of \p Old. Check that they
|
|
/// have compatible owning modules.
|
|
bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
|
|
|
|
/// [module.interface]p6:
|
|
/// A redeclaration of an entity X is implicitly exported if X was introduced
|
|
/// by an exported declaration; otherwise it shall not be exported.
|
|
bool CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old);
|
|
|
|
/// A wrapper function for checking the semantic restrictions of
|
|
/// a redeclaration within a module.
|
|
bool CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old);
|
|
|
|
/// Check the redefinition in C++20 Modules.
|
|
///
|
|
/// [basic.def.odr]p14:
|
|
/// For any definable item D with definitions in multiple translation units,
|
|
/// - if D is a non-inline non-templated function or variable, or
|
|
/// - if the definitions in different translation units do not satisfy the
|
|
/// following requirements,
|
|
/// the program is ill-formed; a diagnostic is required only if the
|
|
/// definable item is attached to a named module and a prior definition is
|
|
/// reachable at the point where a later definition occurs.
|
|
/// - Each such definition shall not be attached to a named module
|
|
/// ([module.unit]).
|
|
/// - Each such definition shall consist of the same sequence of tokens, ...
|
|
/// ...
|
|
///
|
|
/// Return true if the redefinition is not allowed. Return false otherwise.
|
|
bool IsRedefinitionInModule(const NamedDecl *New, const NamedDecl *Old) const;
|
|
|
|
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
|
|
|
|
/// If it's a file scoped decl that must warn if not used, keep track
|
|
/// of it.
|
|
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
|
|
|
|
typedef llvm::function_ref<void(SourceLocation Loc, PartialDiagnostic PD)>
|
|
DiagReceiverTy;
|
|
|
|
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
|
|
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
|
|
DiagReceiverTy DiagReceiver);
|
|
void DiagnoseUnusedDecl(const NamedDecl *ND);
|
|
|
|
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
|
|
/// unless they are marked attr(unused).
|
|
void DiagnoseUnusedDecl(const NamedDecl *ND, DiagReceiverTy DiagReceiver);
|
|
|
|
/// If VD is set but not otherwise used, diagnose, for a parameter or a
|
|
/// variable.
|
|
void DiagnoseUnusedButSetDecl(const VarDecl *VD, DiagReceiverTy DiagReceiver);
|
|
|
|
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
|
|
/// from S, where a non-field would be declared. This routine copes
|
|
/// with the difference between C and C++ scoping rules in structs and
|
|
/// unions. For example, the following code is well-formed in C but
|
|
/// ill-formed in C++:
|
|
/// @code
|
|
/// struct S6 {
|
|
/// enum { BAR } e;
|
|
/// };
|
|
///
|
|
/// void test_S6() {
|
|
/// struct S6 a;
|
|
/// a.e = BAR;
|
|
/// }
|
|
/// @endcode
|
|
/// For the declaration of BAR, this routine will return a different
|
|
/// scope. The scope S will be the scope of the unnamed enumeration
|
|
/// within S6. In C++, this routine will return the scope associated
|
|
/// with S6, because the enumeration's scope is a transparent
|
|
/// context but structures can contain non-field names. In C, this
|
|
/// routine will return the translation unit scope, since the
|
|
/// enumeration's scope is a transparent context and structures cannot
|
|
/// contain non-field names.
|
|
Scope *getNonFieldDeclScope(Scope *S);
|
|
|
|
FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
|
|
SourceLocation Loc);
|
|
|
|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
|
|
/// file scope. lazily create a decl for it. ForRedeclaration is true
|
|
/// if we're creating this built-in in anticipation of redeclaring the
|
|
/// built-in.
|
|
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S,
|
|
bool ForRedeclaration, SourceLocation Loc);
|
|
|
|
/// Get the outermost AttributedType node that sets a calling convention.
|
|
/// Valid types should not have multiple attributes with different CCs.
|
|
const AttributedType *getCallingConvAttributedType(QualType T) const;
|
|
|
|
/// GetNameForDeclarator - Determine the full declaration name for the
|
|
/// given Declarator.
|
|
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
|
|
|
|
/// Retrieves the declaration name from a parsed unqualified-id.
|
|
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
|
|
|
|
/// ParsingInitForAutoVars - a set of declarations with auto types for which
|
|
/// we are currently parsing the initializer.
|
|
llvm::SmallPtrSet<const Decl *, 4> ParsingInitForAutoVars;
|
|
|
|
/// Look for a locally scoped extern "C" declaration by the given name.
|
|
NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
|
|
|
|
void deduceOpenCLAddressSpace(ValueDecl *decl);
|
|
|
|
/// Adjust the \c DeclContext for a function or variable that might be a
|
|
/// function-local external declaration.
|
|
static bool adjustContextForLocalExternDecl(DeclContext *&DC);
|
|
|
|
void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
|
|
|
|
/// Checks if the variant/multiversion functions are compatible.
|
|
bool areMultiversionVariantFunctionsCompatible(
|
|
const FunctionDecl *OldFD, const FunctionDecl *NewFD,
|
|
const PartialDiagnostic &NoProtoDiagID,
|
|
const PartialDiagnosticAt &NoteCausedDiagIDAt,
|
|
const PartialDiagnosticAt &NoSupportDiagIDAt,
|
|
const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
|
|
bool ConstexprSupported, bool CLinkageMayDiffer);
|
|
|
|
/// type checking declaration initializers (C99 6.7.8)
|
|
bool CheckForConstantInitializer(
|
|
Expr *Init, unsigned DiagID = diag::err_init_element_not_constant);
|
|
|
|
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
|
|
QualType Type, TypeSourceInfo *TSI,
|
|
SourceRange Range, bool DirectInit,
|
|
Expr *Init);
|
|
|
|
bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
|
|
Expr *Init);
|
|
|
|
sema::LambdaScopeInfo *RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator);
|
|
|
|
// Heuristically tells if the function is `get_return_object` member of a
|
|
// coroutine promise_type by matching the function name.
|
|
static bool CanBeGetReturnObject(const FunctionDecl *FD);
|
|
static bool CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD);
|
|
|
|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
|
|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
|
|
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
|
|
Scope *S);
|
|
|
|
/// If this function is a C++ replaceable global allocation function
|
|
/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
|
|
/// adds any function attributes that we know a priori based on the standard.
|
|
///
|
|
/// We need to check for duplicate attributes both here and where user-written
|
|
/// attributes are applied to declarations.
|
|
void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
|
|
FunctionDecl *FD);
|
|
|
|
/// Adds any function attributes that we know a priori based on
|
|
/// the declaration of this function.
|
|
///
|
|
/// These attributes can apply both to implicitly-declared builtins
|
|
/// (like __builtin___printf_chk) or to library-declared functions
|
|
/// like NSLog or printf.
|
|
///
|
|
/// We need to check for duplicate attributes both here and where user-written
|
|
/// attributes are applied to declarations.
|
|
void AddKnownFunctionAttributes(FunctionDecl *FD);
|
|
|
|
/// VerifyBitField - verifies that a bit field expression is an ICE and has
|
|
/// the correct width, and that the field type is valid.
|
|
/// Returns false on success.
|
|
ExprResult VerifyBitField(SourceLocation FieldLoc,
|
|
const IdentifierInfo *FieldName, QualType FieldTy,
|
|
bool IsMsStruct, Expr *BitWidth);
|
|
|
|
/// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
|
|
/// enum. If AllowMask is true, then we also allow the complement of a valid
|
|
/// value, to be used as a mask.
|
|
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
|
|
bool AllowMask) const;
|
|
|
|
/// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
|
|
void ActOnPragmaWeakID(IdentifierInfo *WeakName, SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc);
|
|
|
|
/// ActOnPragmaRedefineExtname - Called on well formed
|
|
/// \#pragma redefine_extname oldname newname.
|
|
void ActOnPragmaRedefineExtname(IdentifierInfo *WeakName,
|
|
IdentifierInfo *AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc,
|
|
SourceLocation AliasNameLoc);
|
|
|
|
/// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
|
|
void ActOnPragmaWeakAlias(IdentifierInfo *WeakName, IdentifierInfo *AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc,
|
|
SourceLocation AliasNameLoc);
|
|
|
|
/// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
|
|
enum class FunctionEmissionStatus {
|
|
Emitted,
|
|
CUDADiscarded, // Discarded due to CUDA/HIP hostness
|
|
OMPDiscarded, // Discarded due to OpenMP hostness
|
|
TemplateDiscarded, // Discarded due to uninstantiated templates
|
|
Unknown,
|
|
};
|
|
FunctionEmissionStatus getEmissionStatus(const FunctionDecl *Decl,
|
|
bool Final = false);
|
|
|
|
// Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
|
|
bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
|
|
|
|
private:
|
|
/// Function or variable declarations to be checked for whether the deferred
|
|
/// diagnostics should be emitted.
|
|
llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
|
|
|
|
/// Map of current shadowing declarations to shadowed declarations. Warn if
|
|
/// it looks like the user is trying to modify the shadowing declaration.
|
|
llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
|
|
|
|
// We need this to handle
|
|
//
|
|
// typedef struct {
|
|
// void *foo() { return 0; }
|
|
// } A;
|
|
//
|
|
// When we see foo we don't know if after the typedef we will get 'A' or '*A'
|
|
// for example. If 'A', foo will have external linkage. If we have '*A',
|
|
// foo will have no linkage. Since we can't know until we get to the end
|
|
// of the typedef, this function finds out if D might have non-external
|
|
// linkage. Callers should verify at the end of the TU if it D has external
|
|
// linkage or not.
|
|
static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Declaration Attribute Handling
|
|
/// Implementations are in SemaDeclAttr.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Describes the kind of priority given to an availability attribute.
|
|
///
|
|
/// The sum of priorities deteremines the final priority of the attribute.
|
|
/// The final priority determines how the attribute will be merged.
|
|
/// An attribute with a lower priority will always remove higher priority
|
|
/// attributes for the specified platform when it is being applied. An
|
|
/// attribute with a higher priority will not be applied if the declaration
|
|
/// already has an availability attribute with a lower priority for the
|
|
/// specified platform. The final prirority values are not expected to match
|
|
/// the values in this enumeration, but instead should be treated as a plain
|
|
/// integer value. This enumeration just names the priority weights that are
|
|
/// used to calculate that final vaue.
|
|
enum AvailabilityPriority : int {
|
|
/// The availability attribute was specified explicitly next to the
|
|
/// declaration.
|
|
AP_Explicit = 0,
|
|
|
|
/// The availability attribute was applied using '#pragma clang attribute'.
|
|
AP_PragmaClangAttribute = 1,
|
|
|
|
/// The availability attribute for a specific platform was inferred from
|
|
/// an availability attribute for another platform.
|
|
AP_InferredFromOtherPlatform = 2
|
|
};
|
|
|
|
/// Describes the reason a calling convention specification was ignored, used
|
|
/// for diagnostics.
|
|
enum class CallingConventionIgnoredReason {
|
|
ForThisTarget = 0,
|
|
VariadicFunction,
|
|
ConstructorDestructor,
|
|
BuiltinFunction
|
|
};
|
|
|
|
/// A helper function to provide Attribute Location for the Attr types
|
|
/// AND the ParsedAttr.
|
|
template <typename AttrInfo>
|
|
static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation>
|
|
getAttrLoc(const AttrInfo &AL) {
|
|
return AL.getLocation();
|
|
}
|
|
SourceLocation getAttrLoc(const ParsedAttr &AL);
|
|
|
|
/// If Expr is a valid integer constant, get the value of the integer
|
|
/// expression and return success or failure. May output an error.
|
|
///
|
|
/// Negative argument is implicitly converted to unsigned, unless
|
|
/// \p StrictlyUnsigned is true.
|
|
template <typename AttrInfo>
|
|
bool checkUInt32Argument(const AttrInfo &AI, const Expr *Expr, uint32_t &Val,
|
|
unsigned Idx = UINT_MAX,
|
|
bool StrictlyUnsigned = false) {
|
|
std::optional<llvm::APSInt> I = llvm::APSInt(32);
|
|
if (Expr->isTypeDependent() ||
|
|
!(I = Expr->getIntegerConstantExpr(Context))) {
|
|
if (Idx != UINT_MAX)
|
|
Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
|
|
<< &AI << Idx << AANT_ArgumentIntegerConstant
|
|
<< Expr->getSourceRange();
|
|
else
|
|
Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
|
|
<< &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
if (!I->isIntN(32)) {
|
|
Diag(Expr->getExprLoc(), diag::err_ice_too_large)
|
|
<< toString(*I, 10, false) << 32 << /* Unsigned */ 1;
|
|
return false;
|
|
}
|
|
|
|
if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
|
|
Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
|
|
<< &AI << /*non-negative*/ 1;
|
|
return false;
|
|
}
|
|
|
|
Val = (uint32_t)I->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
|
|
/// \#pragma weak during processing of other Decls.
|
|
/// I couldn't figure out a clean way to generate these in-line, so
|
|
/// we store them here and handle separately -- which is a hack.
|
|
/// It would be best to refactor this.
|
|
SmallVector<Decl *, 2> WeakTopLevelDecl;
|
|
|
|
/// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
|
|
SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
|
|
|
|
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
|
|
ExtVectorDeclsType;
|
|
|
|
/// ExtVectorDecls - This is a list all the extended vector types. This allows
|
|
/// us to associate a raw vector type with one of the ext_vector type names.
|
|
/// This is only necessary for issuing pretty diagnostics.
|
|
ExtVectorDeclsType ExtVectorDecls;
|
|
|
|
/// Check if the argument \p E is a ASCII string literal. If not emit an error
|
|
/// and return false, otherwise set \p Str to the value of the string literal
|
|
/// and return true.
|
|
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
|
|
const Expr *E, StringRef &Str,
|
|
SourceLocation *ArgLocation = nullptr);
|
|
|
|
/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
|
|
/// If not emit an error and return false. If the argument is an identifier it
|
|
/// will emit an error with a fixit hint and treat it as if it was a string
|
|
/// literal.
|
|
bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
|
|
StringRef &Str,
|
|
SourceLocation *ArgLocation = nullptr);
|
|
|
|
/// Determine if type T is a valid subject for a nonnull and similar
|
|
/// attributes. By default, we look through references (the behavior used by
|
|
/// nonnull), but if the second parameter is true, then we treat a reference
|
|
/// type as valid.
|
|
bool isValidPointerAttrType(QualType T, bool RefOkay = false);
|
|
|
|
/// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
|
|
/// declaration.
|
|
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
|
|
Expr *OE);
|
|
|
|
/// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
|
|
/// declaration.
|
|
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *ParamExpr);
|
|
|
|
bool CheckAttrTarget(const ParsedAttr &CurrAttr);
|
|
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
|
|
|
|
AvailabilityAttr *mergeAvailabilityAttr(
|
|
NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
|
|
bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
|
|
VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
|
|
bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
|
|
int Priority, IdentifierInfo *IIEnvironment);
|
|
|
|
TypeVisibilityAttr *
|
|
mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
TypeVisibilityAttr::VisibilityType Vis);
|
|
VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
VisibilityAttr::VisibilityType Vis);
|
|
SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Name);
|
|
|
|
/// Used to implement to perform semantic checking on
|
|
/// attribute((section("foo"))) specifiers.
|
|
///
|
|
/// In this case, "foo" is passed in to be checked. If the section
|
|
/// specifier is invalid, return an Error that indicates the problem.
|
|
///
|
|
/// This is a simple quality of implementation feature to catch errors
|
|
/// and give good diagnostics in cases when the assembler or code generator
|
|
/// would otherwise reject the section specifier.
|
|
llvm::Error isValidSectionSpecifier(StringRef Str);
|
|
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
|
|
CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Name);
|
|
|
|
// Check for things we'd like to warn about. Multiversioning issues are
|
|
// handled later in the process, once we know how many exist.
|
|
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
|
|
|
|
/// Check Target Version attrs
|
|
bool checkTargetVersionAttr(SourceLocation Loc, Decl *D, StringRef Str);
|
|
bool checkTargetClonesAttrString(
|
|
SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal,
|
|
Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault,
|
|
SmallVectorImpl<SmallString<64>> &StringsBuffer);
|
|
|
|
ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef NewUserDiagnostic);
|
|
FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
IdentifierInfo *Format, int FormatIdx,
|
|
int FirstArg);
|
|
|
|
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
|
|
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
|
|
bool IsPackExpansion);
|
|
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
|
|
bool IsPackExpansion);
|
|
|
|
/// AddAlignValueAttr - Adds an align_value attribute to a particular
|
|
/// declaration.
|
|
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
|
|
|
|
/// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
|
|
void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Annot, MutableArrayRef<Expr *> Args);
|
|
|
|
bool checkMSInheritanceAttrOnDefinition(CXXRecordDecl *RD, SourceRange Range,
|
|
bool BestCase,
|
|
MSInheritanceModel SemanticSpelling);
|
|
|
|
void CheckAlignasUnderalignment(Decl *D);
|
|
|
|
/// AddModeAttr - Adds a mode attribute to a particular declaration.
|
|
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
|
|
bool InInstantiation = false);
|
|
AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
|
|
const AttributeCommonInfo &CI,
|
|
const IdentifierInfo *Ident);
|
|
MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
|
|
const AttributeCommonInfo &CI);
|
|
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
|
|
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
|
|
const InternalLinkageAttr &AL);
|
|
|
|
/// Check validaty of calling convention attribute \p attr. If \p FD
|
|
/// is not null pointer, use \p FD to determine the CUDA/HIP host/device
|
|
/// target. Otherwise, it is specified by \p CFT.
|
|
bool CheckCallingConvAttr(
|
|
const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD = nullptr,
|
|
CUDAFunctionTarget CFT = CUDAFunctionTarget::InvalidTarget);
|
|
|
|
/// Checks a regparm attribute, returning true if it is ill-formed and
|
|
/// otherwise setting numParams to the appropriate value.
|
|
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
|
|
|
|
/// Create an CUDALaunchBoundsAttr attribute.
|
|
CUDALaunchBoundsAttr *CreateLaunchBoundsAttr(const AttributeCommonInfo &CI,
|
|
Expr *MaxThreads,
|
|
Expr *MinBlocks,
|
|
Expr *MaxBlocks);
|
|
|
|
/// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
|
|
/// declaration.
|
|
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks);
|
|
|
|
enum class RetainOwnershipKind { NS, CF, OS };
|
|
|
|
UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
|
|
|
|
BTFDeclTagAttr *mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL);
|
|
|
|
DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
|
|
const AttributeCommonInfo &CI,
|
|
bool BestCase,
|
|
MSInheritanceModel Model);
|
|
|
|
EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
|
|
EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
|
|
const EnforceTCBLeafAttr &AL);
|
|
|
|
/// Helper for delayed processing TransparentUnion or
|
|
/// BPFPreserveAccessIndexAttr attribute.
|
|
void ProcessDeclAttributeDelayed(Decl *D,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
// Options for ProcessDeclAttributeList().
|
|
struct ProcessDeclAttributeOptions {
|
|
ProcessDeclAttributeOptions()
|
|
: IncludeCXX11Attributes(true), IgnoreTypeAttributes(false) {}
|
|
|
|
ProcessDeclAttributeOptions WithIncludeCXX11Attributes(bool Val) {
|
|
ProcessDeclAttributeOptions Result = *this;
|
|
Result.IncludeCXX11Attributes = Val;
|
|
return Result;
|
|
}
|
|
|
|
ProcessDeclAttributeOptions WithIgnoreTypeAttributes(bool Val) {
|
|
ProcessDeclAttributeOptions Result = *this;
|
|
Result.IgnoreTypeAttributes = Val;
|
|
return Result;
|
|
}
|
|
|
|
// Should C++11 attributes be processed?
|
|
bool IncludeCXX11Attributes;
|
|
|
|
// Should any type attributes encountered be ignored?
|
|
// If this option is false, a diagnostic will be emitted for any type
|
|
// attributes of a kind that does not "slide" from the declaration to
|
|
// the decl-specifier-seq.
|
|
bool IgnoreTypeAttributes;
|
|
};
|
|
|
|
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
|
|
/// attribute list to the specified decl, ignoring any type attributes.
|
|
void ProcessDeclAttributeList(Scope *S, Decl *D,
|
|
const ParsedAttributesView &AttrList,
|
|
const ProcessDeclAttributeOptions &Options =
|
|
ProcessDeclAttributeOptions());
|
|
|
|
/// Annotation attributes are the only attributes allowed after an access
|
|
/// specifier.
|
|
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
/// checkUnusedDeclAttributes - Given a declarator which is not being
|
|
/// used to build a declaration, complain about any decl attributes
|
|
/// which might be lying around on it.
|
|
void checkUnusedDeclAttributes(Declarator &D);
|
|
|
|
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
|
|
/// \#pragma weak needs a non-definition decl and source may not have one.
|
|
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
|
|
SourceLocation Loc);
|
|
|
|
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
|
|
/// applied to it, possibly with an alias.
|
|
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W);
|
|
|
|
void ProcessPragmaWeak(Scope *S, Decl *D);
|
|
// Decl attributes - this routine is the top level dispatcher.
|
|
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
|
|
|
|
void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
|
|
|
|
/// Given a set of delayed diagnostics, re-emit them as if they had
|
|
/// been delayed in the current context instead of in the given pool.
|
|
/// Essentially, this just moves them to the current pool.
|
|
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
|
|
|
|
/// Check if IdxExpr is a valid parameter index for a function or
|
|
/// instance method D. May output an error.
|
|
///
|
|
/// \returns true if IdxExpr is a valid index.
|
|
template <typename AttrInfo>
|
|
bool checkFunctionOrMethodParameterIndex(const Decl *D, const AttrInfo &AI,
|
|
unsigned AttrArgNum,
|
|
const Expr *IdxExpr, ParamIdx &Idx,
|
|
bool CanIndexImplicitThis = false) {
|
|
assert(isFunctionOrMethodOrBlockForAttrSubject(D));
|
|
|
|
// In C++ the implicit 'this' function parameter also counts.
|
|
// Parameters are counted from one.
|
|
bool HP = hasFunctionProto(D);
|
|
bool HasImplicitThisParam = isInstanceMethod(D);
|
|
bool IV = HP && isFunctionOrMethodVariadic(D);
|
|
unsigned NumParams =
|
|
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
|
|
|
|
std::optional<llvm::APSInt> IdxInt;
|
|
if (IdxExpr->isTypeDependent() ||
|
|
!(IdxInt = IdxExpr->getIntegerConstantExpr(Context))) {
|
|
Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
|
|
<< &AI << AttrArgNum << AANT_ArgumentIntegerConstant
|
|
<< IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
|
|
if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
|
|
Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
|
|
<< &AI << AttrArgNum << IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
if (HasImplicitThisParam && !CanIndexImplicitThis) {
|
|
if (IdxSource == 1) {
|
|
Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
|
|
<< &AI << IdxExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Idx = ParamIdx(IdxSource, D);
|
|
return true;
|
|
}
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Declarations
|
|
/// Implementations are in SemaDeclCXX.cpp
|
|
///@{
|
|
|
|
public:
|
|
void CheckDelegatingCtorCycles();
|
|
|
|
/// Called before parsing a function declarator belonging to a function
|
|
/// declaration.
|
|
void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
|
|
unsigned TemplateParameterDepth);
|
|
|
|
/// Called after parsing a function declarator belonging to a function
|
|
/// declaration.
|
|
void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
|
|
|
|
// Act on C++ namespaces
|
|
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation IdentLoc, IdentifierInfo *Ident,
|
|
SourceLocation LBrace,
|
|
const ParsedAttributesView &AttrList,
|
|
UsingDirectiveDecl *&UsingDecl, bool IsNested);
|
|
|
|
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
|
|
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
|
|
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
|
|
|
|
NamespaceDecl *getStdNamespace() const;
|
|
|
|
/// Retrieve the special "std" namespace, which may require us to
|
|
/// implicitly define the namespace.
|
|
NamespaceDecl *getOrCreateStdNamespace();
|
|
|
|
CXXRecordDecl *getStdBadAlloc() const;
|
|
EnumDecl *getStdAlignValT() const;
|
|
|
|
ValueDecl *tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl,
|
|
const IdentifierInfo *MemberOrBase);
|
|
|
|
enum class ComparisonCategoryUsage {
|
|
/// The '<=>' operator was used in an expression and a builtin operator
|
|
/// was selected.
|
|
OperatorInExpression,
|
|
/// A defaulted 'operator<=>' needed the comparison category. This
|
|
/// typically only applies to 'std::strong_ordering', due to the implicit
|
|
/// fallback return value.
|
|
DefaultedOperator,
|
|
};
|
|
|
|
/// Lookup the specified comparison category types in the standard
|
|
/// library, an check the VarDecls possibly returned by the operator<=>
|
|
/// builtins for that type.
|
|
///
|
|
/// \return The type of the comparison category type corresponding to the
|
|
/// specified Kind, or a null type if an error occurs
|
|
QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
|
|
SourceLocation Loc,
|
|
ComparisonCategoryUsage Usage);
|
|
|
|
/// Tests whether Ty is an instance of std::initializer_list and, if
|
|
/// it is and Element is not NULL, assigns the element type to Element.
|
|
bool isStdInitializerList(QualType Ty, QualType *Element);
|
|
|
|
/// Looks for the std::initializer_list template and instantiates it
|
|
/// with Element, or emits an error if it's not found.
|
|
///
|
|
/// \returns The instantiated template, or null on error.
|
|
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
|
|
|
|
/// Determine whether Ctor is an initializer-list constructor, as
|
|
/// defined in [dcl.init.list]p2.
|
|
bool isInitListConstructor(const FunctionDecl *Ctor);
|
|
|
|
Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
|
|
SourceLocation NamespcLoc, CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *NamespcName,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
|
|
|
|
Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc,
|
|
SourceLocation AliasLoc, IdentifierInfo *Alias,
|
|
CXXScopeSpec &SS, SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident);
|
|
|
|
/// Remove decls we can't actually see from a lookup being used to declare
|
|
/// shadow using decls.
|
|
///
|
|
/// \param S - The scope of the potential shadow decl
|
|
/// \param Previous - The lookup of a potential shadow decl's name.
|
|
void FilterUsingLookup(Scope *S, LookupResult &lookup);
|
|
|
|
/// Hides a using shadow declaration. This is required by the current
|
|
/// using-decl implementation when a resolvable using declaration in a
|
|
/// class is followed by a declaration which would hide or override
|
|
/// one or more of the using decl's targets; for example:
|
|
///
|
|
/// struct Base { void foo(int); };
|
|
/// struct Derived : Base {
|
|
/// using Base::foo;
|
|
/// void foo(int);
|
|
/// };
|
|
///
|
|
/// The governing language is C++03 [namespace.udecl]p12:
|
|
///
|
|
/// When a using-declaration brings names from a base class into a
|
|
/// derived class scope, member functions in the derived class
|
|
/// override and/or hide member functions with the same name and
|
|
/// parameter types in a base class (rather than conflicting).
|
|
///
|
|
/// There are two ways to implement this:
|
|
/// (1) optimistically create shadow decls when they're not hidden
|
|
/// by existing declarations, or
|
|
/// (2) don't create any shadow decls (or at least don't make them
|
|
/// visible) until we've fully parsed/instantiated the class.
|
|
/// The problem with (1) is that we might have to retroactively remove
|
|
/// a shadow decl, which requires several O(n) operations because the
|
|
/// decl structures are (very reasonably) not designed for removal.
|
|
/// (2) avoids this but is very fiddly and phase-dependent.
|
|
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
|
|
|
|
/// Determines whether to create a using shadow decl for a particular
|
|
/// decl, given the set of decls existing prior to this using lookup.
|
|
bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
|
|
const LookupResult &PreviousDecls,
|
|
UsingShadowDecl *&PrevShadow);
|
|
|
|
/// Builds a shadow declaration corresponding to a 'using' declaration.
|
|
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
|
|
NamedDecl *Target,
|
|
UsingShadowDecl *PrevDecl);
|
|
|
|
/// Checks that the given using declaration is not an invalid
|
|
/// redeclaration. Note that this is checking only for the using decl
|
|
/// itself, not for any ill-formedness among the UsingShadowDecls.
|
|
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const LookupResult &Previous);
|
|
|
|
/// Checks that the given nested-name qualifier used in a using decl
|
|
/// in the current context is appropriately related to the current
|
|
/// scope. If an error is found, diagnoses it and returns true.
|
|
/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's
|
|
/// the result of that lookup. UD is likewise nullptr, except when we have an
|
|
/// already-populated UsingDecl whose shadow decls contain the same
|
|
/// information (i.e. we're instantiating a UsingDecl with non-dependent
|
|
/// scope).
|
|
bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
|
|
const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
SourceLocation NameLoc,
|
|
const LookupResult *R = nullptr,
|
|
const UsingDecl *UD = nullptr);
|
|
|
|
/// Builds a using declaration.
|
|
///
|
|
/// \param IsInstantiation - Whether this call arises from an
|
|
/// instantiation of an unresolved using declaration. We treat
|
|
/// the lookup differently for these declarations.
|
|
NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword,
|
|
SourceLocation TypenameLoc, CXXScopeSpec &SS,
|
|
DeclarationNameInfo NameInfo,
|
|
SourceLocation EllipsisLoc,
|
|
const ParsedAttributesView &AttrList,
|
|
bool IsInstantiation, bool IsUsingIfExists);
|
|
NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation EnumLoc,
|
|
SourceLocation NameLoc,
|
|
TypeSourceInfo *EnumType, EnumDecl *ED);
|
|
NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
|
|
ArrayRef<NamedDecl *> Expansions);
|
|
|
|
/// Additional checks for a using declaration referring to a constructor name.
|
|
bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
|
|
|
|
/// Given a derived-class using shadow declaration for a constructor and the
|
|
/// correspnding base class constructor, find or create the implicit
|
|
/// synthesized derived class constructor to use for this initialization.
|
|
CXXConstructorDecl *
|
|
findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
|
|
ConstructorUsingShadowDecl *DerivedShadow);
|
|
|
|
Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name, SourceLocation EllipsisLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation EnumLoc, SourceRange TyLoc,
|
|
const IdentifierInfo &II, ParsedType Ty,
|
|
CXXScopeSpec *SS = nullptr);
|
|
Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
SourceLocation UsingLoc, UnqualifiedId &Name,
|
|
const ParsedAttributesView &AttrList,
|
|
TypeResult Type, Decl *DeclFromDeclSpec);
|
|
|
|
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
|
|
/// including handling of its default argument expressions.
|
|
///
|
|
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
|
|
ExprResult BuildCXXConstructExpr(
|
|
SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
|
|
bool HadMultipleCandidates, bool IsListInitialization,
|
|
bool IsStdInitListInitialization, bool RequiresZeroInit,
|
|
CXXConstructionKind ConstructKind, SourceRange ParenRange);
|
|
|
|
/// Build a CXXConstructExpr whose constructor has already been resolved if
|
|
/// it denotes an inherited constructor.
|
|
ExprResult BuildCXXConstructExpr(
|
|
SourceLocation ConstructLoc, QualType DeclInitType,
|
|
CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs,
|
|
bool HadMultipleCandidates, bool IsListInitialization,
|
|
bool IsStdInitListInitialization, bool RequiresZeroInit,
|
|
CXXConstructionKind ConstructKind, SourceRange ParenRange);
|
|
|
|
// FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
|
|
// the constructor can be elidable?
|
|
ExprResult BuildCXXConstructExpr(
|
|
SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs,
|
|
bool HadMultipleCandidates, bool IsListInitialization,
|
|
bool IsStdInitListInitialization, bool RequiresZeroInit,
|
|
CXXConstructionKind ConstructKind, SourceRange ParenRange);
|
|
|
|
ExprResult ConvertMemberDefaultInitExpression(FieldDecl *FD, Expr *InitExpr,
|
|
SourceLocation InitLoc);
|
|
|
|
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
|
|
/// constructed variable.
|
|
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
|
|
|
|
/// Helper class that collects exception specifications for
|
|
/// implicitly-declared special member functions.
|
|
class ImplicitExceptionSpecification {
|
|
// Pointer to allow copying
|
|
Sema *Self;
|
|
// We order exception specifications thus:
|
|
// noexcept is the most restrictive, but is only used in C++11.
|
|
// throw() comes next.
|
|
// Then a throw(collected exceptions)
|
|
// Finally no specification, which is expressed as noexcept(false).
|
|
// throw(...) is used instead if any called function uses it.
|
|
ExceptionSpecificationType ComputedEST;
|
|
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
|
|
SmallVector<QualType, 4> Exceptions;
|
|
|
|
void ClearExceptions() {
|
|
ExceptionsSeen.clear();
|
|
Exceptions.clear();
|
|
}
|
|
|
|
public:
|
|
explicit ImplicitExceptionSpecification(Sema &Self)
|
|
: Self(&Self), ComputedEST(EST_BasicNoexcept) {
|
|
if (!Self.getLangOpts().CPlusPlus11)
|
|
ComputedEST = EST_DynamicNone;
|
|
}
|
|
|
|
/// Get the computed exception specification type.
|
|
ExceptionSpecificationType getExceptionSpecType() const {
|
|
assert(!isComputedNoexcept(ComputedEST) &&
|
|
"noexcept(expr) should not be a possible result");
|
|
return ComputedEST;
|
|
}
|
|
|
|
/// The number of exceptions in the exception specification.
|
|
unsigned size() const { return Exceptions.size(); }
|
|
|
|
/// The set of exceptions in the exception specification.
|
|
const QualType *data() const { return Exceptions.data(); }
|
|
|
|
/// Integrate another called method into the collected data.
|
|
void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
|
|
|
|
/// Integrate an invoked expression into the collected data.
|
|
void CalledExpr(Expr *E) { CalledStmt(E); }
|
|
|
|
/// Integrate an invoked statement into the collected data.
|
|
void CalledStmt(Stmt *S);
|
|
|
|
/// Overwrite an EPI's exception specification with this
|
|
/// computed exception specification.
|
|
FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
|
|
FunctionProtoType::ExceptionSpecInfo ESI;
|
|
ESI.Type = getExceptionSpecType();
|
|
if (ESI.Type == EST_Dynamic) {
|
|
ESI.Exceptions = Exceptions;
|
|
} else if (ESI.Type == EST_None) {
|
|
/// C++11 [except.spec]p14:
|
|
/// The exception-specification is noexcept(false) if the set of
|
|
/// potential exceptions of the special member function contains "any"
|
|
ESI.Type = EST_NoexceptFalse;
|
|
ESI.NoexceptExpr =
|
|
Self->ActOnCXXBoolLiteral(SourceLocation(), tok::kw_false).get();
|
|
}
|
|
return ESI;
|
|
}
|
|
};
|
|
|
|
/// Evaluate the implicit exception specification for a defaulted
|
|
/// special member function.
|
|
void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
|
|
|
|
/// Check the given exception-specification and update the
|
|
/// exception specification information with the results.
|
|
void checkExceptionSpecification(bool IsTopLevel,
|
|
ExceptionSpecificationType EST,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges,
|
|
Expr *NoexceptExpr,
|
|
SmallVectorImpl<QualType> &Exceptions,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI);
|
|
|
|
/// Add an exception-specification to the given member or friend function
|
|
/// (or function template). The exception-specification was parsed
|
|
/// after the function itself was declared.
|
|
void actOnDelayedExceptionSpecification(
|
|
Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr);
|
|
|
|
class InheritedConstructorInfo;
|
|
|
|
/// Determine if a special member function should have a deleted
|
|
/// definition when it is defaulted.
|
|
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
|
|
InheritedConstructorInfo *ICI = nullptr,
|
|
bool Diagnose = false);
|
|
|
|
/// Produce notes explaining why a defaulted function was defined as deleted.
|
|
void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
|
|
|
|
/// Declare the implicit default constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// default constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared default constructor.
|
|
CXXConstructorDecl *
|
|
DeclareImplicitDefaultConstructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitDefaultConstructor - Checks for feasibility of
|
|
/// defining this constructor as the default constructor.
|
|
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit destructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// destructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared destructor.
|
|
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitDestructor - Checks for feasibility of
|
|
/// defining this destructor as the default destructor.
|
|
void DefineImplicitDestructor(SourceLocation CurrentLocation,
|
|
CXXDestructorDecl *Destructor);
|
|
|
|
/// Build an exception spec for destructors that don't have one.
|
|
///
|
|
/// C++11 says that user-defined destructors with no exception spec get one
|
|
/// that looks as if the destructor was implicitly declared.
|
|
void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
|
|
|
|
/// Define the specified inheriting constructor.
|
|
void DefineInheritingConstructor(SourceLocation UseLoc,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit copy constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// copy constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared copy constructor.
|
|
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitCopyConstructor - Checks for feasibility of
|
|
/// defining this constructor as the copy constructor.
|
|
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit move constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The Class declaration into which the implicit
|
|
/// move constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
|
|
/// declared.
|
|
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitMoveConstructor - Checks for feasibility of
|
|
/// defining this constructor as the move constructor.
|
|
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit copy assignment operator for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// copy assignment operator will be added.
|
|
///
|
|
/// \returns The implicitly-declared copy assignment operator.
|
|
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
|
|
|
|
/// Defines an implicitly-declared copy assignment operator.
|
|
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *MethodDecl);
|
|
|
|
/// Declare the implicit move assignment operator for the given class.
|
|
///
|
|
/// \param ClassDecl The Class declaration into which the implicit
|
|
/// move assignment operator will be added.
|
|
///
|
|
/// \returns The implicitly-declared move assignment operator, or NULL if it
|
|
/// wasn't declared.
|
|
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
|
|
|
|
/// Defines an implicitly-declared move assignment operator.
|
|
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *MethodDecl);
|
|
|
|
/// Check a completed declaration of an implicit special member.
|
|
void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
|
|
|
|
/// Determine whether the given function is an implicitly-deleted
|
|
/// special member function.
|
|
bool isImplicitlyDeleted(FunctionDecl *FD);
|
|
|
|
/// Check whether 'this' shows up in the type of a static member
|
|
/// function after the (naturally empty) cv-qualifier-seq would be.
|
|
///
|
|
/// \returns true if an error occurred.
|
|
bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
|
|
|
|
/// Whether this' shows up in the exception specification of a static
|
|
/// member function.
|
|
bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
|
|
|
|
/// Check whether 'this' shows up in the attributes of the given
|
|
/// static member function.
|
|
///
|
|
/// \returns true if an error occurred.
|
|
bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
|
|
|
|
bool CheckImmediateEscalatingFunctionDefinition(
|
|
FunctionDecl *FD, const sema::FunctionScopeInfo *FSI);
|
|
|
|
void DiagnoseImmediateEscalatingReason(FunctionDecl *FD);
|
|
|
|
/// Given a constructor and the set of arguments provided for the
|
|
/// constructor, convert the arguments and add any required default arguments
|
|
/// to form a proper call to this constructor.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
|
|
QualType DeclInitType, MultiExprArg ArgsPtr,
|
|
SourceLocation Loc,
|
|
SmallVectorImpl<Expr *> &ConvertedArgs,
|
|
bool AllowExplicit = false,
|
|
bool IsListInitialization = false);
|
|
|
|
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
|
|
/// initializer for the declaration 'Dcl'.
|
|
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
|
|
/// static data member of class X, names should be looked up in the scope of
|
|
/// class X.
|
|
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
|
|
|
|
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
|
|
/// initializer for the declaration 'Dcl'.
|
|
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
|
|
|
|
/// Define the "body" of the conversion from a lambda object to a
|
|
/// function pointer.
|
|
///
|
|
/// This routine doesn't actually define a sensible body; rather, it fills
|
|
/// in the initialization expression needed to copy the lambda object into
|
|
/// the block, and IR generation actually generates the real body of the
|
|
/// block pointer conversion.
|
|
void
|
|
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLoc,
|
|
CXXConversionDecl *Conv);
|
|
|
|
/// Define the "body" of the conversion from a lambda object to a
|
|
/// block pointer.
|
|
///
|
|
/// This routine doesn't actually define a sensible body; rather, it fills
|
|
/// in the initialization expression needed to copy the lambda object into
|
|
/// the block, and IR generation actually generates the real body of the
|
|
/// block pointer conversion.
|
|
void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
|
|
CXXConversionDecl *Conv);
|
|
|
|
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
|
|
/// linkage specification, including the language and (if present)
|
|
/// the '{'. ExternLoc is the location of the 'extern', Lang is the
|
|
/// language string literal. LBraceLoc, if valid, provides the location of
|
|
/// the '{' brace. Otherwise, this linkage specification does not
|
|
/// have any braces.
|
|
Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
|
|
Expr *LangStr, SourceLocation LBraceLoc);
|
|
|
|
/// ActOnFinishLinkageSpecification - Complete the definition of
|
|
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
|
|
/// valid, it's the position of the closing '}' brace in a linkage
|
|
/// specification that uses braces.
|
|
Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec,
|
|
SourceLocation RBraceLoc);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Classes
|
|
//
|
|
|
|
/// Get the class that is directly named by the current context. This is the
|
|
/// class for which an unqualified-id in this scope could name a constructor
|
|
/// or destructor.
|
|
///
|
|
/// If the scope specifier denotes a class, this will be that class.
|
|
/// If the scope specifier is empty, this will be the class whose
|
|
/// member-specification we are currently within. Otherwise, there
|
|
/// is no such class.
|
|
CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
|
|
|
|
/// isCurrentClassName - Determine whether the identifier II is the
|
|
/// name of the class type currently being defined. In the case of
|
|
/// nested classes, this will only return true if II is the name of
|
|
/// the innermost class.
|
|
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
|
|
const CXXScopeSpec *SS = nullptr);
|
|
|
|
/// Determine whether the identifier II is a typo for the name of
|
|
/// the class type currently being defined. If so, update it to the identifier
|
|
/// that should have been used.
|
|
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
|
|
|
|
/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
|
|
bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
|
|
SourceLocation ColonLoc,
|
|
const ParsedAttributesView &Attrs);
|
|
|
|
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
|
|
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
|
|
/// bitfield width if there is one, 'InitExpr' specifies the initializer if
|
|
/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
|
|
/// present (but parsing it has been deferred).
|
|
NamedDecl *
|
|
ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Expr *BitfieldWidth, const VirtSpecifiers &VS,
|
|
InClassInitStyle InitStyle);
|
|
|
|
/// Enter a new C++ default initializer scope. After calling this, the
|
|
/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
|
|
/// parsing or instantiating the initializer failed.
|
|
void ActOnStartCXXInClassMemberInitializer();
|
|
|
|
/// This is invoked after parsing an in-class initializer for a
|
|
/// non-static C++ class member, and after instantiating an in-class
|
|
/// initializer in a class template. Such actions are deferred until the class
|
|
/// is complete.
|
|
void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
|
|
SourceLocation EqualLoc,
|
|
Expr *Init);
|
|
|
|
/// Handle a C++ member initializer using parentheses syntax.
|
|
MemInitResult
|
|
ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS, SourceLocation IdLoc,
|
|
SourceLocation LParenLoc, ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc, SourceLocation EllipsisLoc);
|
|
|
|
/// Handle a C++ member initializer using braced-init-list syntax.
|
|
MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS, SourceLocation IdLoc,
|
|
Expr *InitList, SourceLocation EllipsisLoc);
|
|
|
|
/// Handle a C++ member initializer.
|
|
MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS, SourceLocation IdLoc,
|
|
Expr *Init, SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init,
|
|
SourceLocation IdLoc);
|
|
|
|
MemInitResult BuildBaseInitializer(QualType BaseType,
|
|
TypeSourceInfo *BaseTInfo, Expr *Init,
|
|
CXXRecordDecl *ClassDecl,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
|
|
CXXRecordDecl *ClassDecl);
|
|
|
|
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
|
|
CXXCtorInitializer *Initializer);
|
|
|
|
bool SetCtorInitializers(
|
|
CXXConstructorDecl *Constructor, bool AnyErrors,
|
|
ArrayRef<CXXCtorInitializer *> Initializers = std::nullopt);
|
|
|
|
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
|
|
/// mark all the non-trivial destructors of its members and bases as
|
|
/// referenced.
|
|
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
|
|
CXXRecordDecl *Record);
|
|
|
|
/// Mark destructors of virtual bases of this class referenced. In the Itanium
|
|
/// C++ ABI, this is done when emitting a destructor for any non-abstract
|
|
/// class. In the Microsoft C++ ABI, this is done any time a class's
|
|
/// destructor is referenced.
|
|
void MarkVirtualBaseDestructorsReferenced(
|
|
SourceLocation Location, CXXRecordDecl *ClassDecl,
|
|
llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
|
|
|
|
/// Do semantic checks to allow the complete destructor variant to be emitted
|
|
/// when the destructor is defined in another translation unit. In the Itanium
|
|
/// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
|
|
/// can be emitted in separate TUs. To emit the complete variant, run a subset
|
|
/// of the checks performed when emitting a regular destructor.
|
|
void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
|
|
CXXDestructorDecl *Dtor);
|
|
|
|
/// The list of classes whose vtables have been used within
|
|
/// this translation unit, and the source locations at which the
|
|
/// first use occurred.
|
|
typedef std::pair<CXXRecordDecl *, SourceLocation> VTableUse;
|
|
|
|
/// The list of vtables that are required but have not yet been
|
|
/// materialized.
|
|
SmallVector<VTableUse, 16> VTableUses;
|
|
|
|
/// The set of classes whose vtables have been used within
|
|
/// this translation unit, and a bit that will be true if the vtable is
|
|
/// required to be emitted (otherwise, it should be emitted only if needed
|
|
/// by code generation).
|
|
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
|
|
|
|
/// Load any externally-stored vtable uses.
|
|
void LoadExternalVTableUses();
|
|
|
|
/// Note that the vtable for the given class was used at the
|
|
/// given location.
|
|
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
|
|
bool DefinitionRequired = false);
|
|
|
|
/// Mark the exception specifications of all virtual member functions
|
|
/// in the given class as needed.
|
|
void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
|
|
const CXXRecordDecl *RD);
|
|
|
|
/// MarkVirtualMembersReferenced - Will mark all members of the given
|
|
/// CXXRecordDecl referenced.
|
|
void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
|
|
bool ConstexprOnly = false);
|
|
|
|
/// Define all of the vtables that have been used in this
|
|
/// translation unit and reference any virtual members used by those
|
|
/// vtables.
|
|
///
|
|
/// \returns true if any work was done, false otherwise.
|
|
bool DefineUsedVTables();
|
|
|
|
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
|
|
/// special functions, such as the default constructor, copy
|
|
/// constructor, or destructor, to the given C++ class (C++
|
|
/// [special]p1). This routine can only be executed just before the
|
|
/// definition of the class is complete.
|
|
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
|
|
|
|
/// ActOnMemInitializers - Handle the member initializers for a constructor.
|
|
void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc,
|
|
ArrayRef<CXXCtorInitializer *> MemInits,
|
|
bool AnyErrors);
|
|
|
|
/// Check class-level dllimport/dllexport attribute. The caller must
|
|
/// ensure that referenceDLLExportedClassMethods is called some point later
|
|
/// when all outer classes of Class are complete.
|
|
void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
|
|
void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
|
|
|
|
void referenceDLLExportedClassMethods();
|
|
|
|
/// Perform propagation of DLL attributes from a derived class to a
|
|
/// templated base class for MS compatibility.
|
|
void propagateDLLAttrToBaseClassTemplate(
|
|
CXXRecordDecl *Class, Attr *ClassAttr,
|
|
ClassTemplateSpecializationDecl *BaseTemplateSpec,
|
|
SourceLocation BaseLoc);
|
|
|
|
/// Perform semantic checks on a class definition that has been
|
|
/// completing, introducing implicitly-declared members, checking for
|
|
/// abstract types, etc.
|
|
///
|
|
/// \param S The scope in which the class was parsed. Null if we didn't just
|
|
/// parse a class definition.
|
|
/// \param Record The completed class.
|
|
void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
|
|
|
|
/// Check that the C++ class annoated with "trivial_abi" satisfies all the
|
|
/// conditions that are needed for the attribute to have an effect.
|
|
void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
|
|
|
|
/// Check that VTable Pointer authentication is only being set on the first
|
|
/// first instantiation of the vtable
|
|
void checkIncorrectVTablePointerAuthenticationAttribute(CXXRecordDecl &RD);
|
|
|
|
void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
|
|
Decl *TagDecl, SourceLocation LBrac,
|
|
SourceLocation RBrac,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
/// Perform any semantic analysis which needs to be delayed until all
|
|
/// pending class member declarations have been parsed.
|
|
void ActOnFinishCXXMemberDecls();
|
|
void ActOnFinishCXXNonNestedClass();
|
|
|
|
/// This is used to implement the constant expression evaluation part of the
|
|
/// attribute enable_if extension. There is nothing in standard C++ which
|
|
/// would require reentering parameters.
|
|
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
|
|
unsigned ActOnReenterTemplateScope(Decl *Template,
|
|
llvm::function_ref<Scope *()> EnterScope);
|
|
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
|
|
|
|
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
|
|
/// parsing a top-level (non-nested) C++ class, and we are now
|
|
/// parsing those parts of the given Method declaration that could
|
|
/// not be parsed earlier (C++ [class.mem]p2), such as default
|
|
/// arguments. This action should enter the scope of the given
|
|
/// Method declaration as if we had just parsed the qualified method
|
|
/// name. However, it should not bring the parameters into scope;
|
|
/// that will be performed by ActOnDelayedCXXMethodParameter.
|
|
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
|
|
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
|
|
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
|
|
|
|
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
|
|
/// processing the delayed method declaration for Method. The method
|
|
/// declaration is now considered finished. There may be a separate
|
|
/// ActOnStartOfFunctionDef action later (not necessarily
|
|
/// immediately!) for this method, if it was also defined inside the
|
|
/// class body.
|
|
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
|
|
void ActOnFinishDelayedMemberInitializers(Decl *Record);
|
|
|
|
bool EvaluateStaticAssertMessageAsString(Expr *Message, std::string &Result,
|
|
ASTContext &Ctx,
|
|
bool ErrorOnInvalidMessage);
|
|
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr, Expr *AssertMessageExpr,
|
|
SourceLocation RParenLoc);
|
|
Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr, Expr *AssertMessageExpr,
|
|
SourceLocation RParenLoc, bool Failed);
|
|
|
|
/// Try to print more useful information about a failed static_assert
|
|
/// with expression \E
|
|
void DiagnoseStaticAssertDetails(const Expr *E);
|
|
|
|
/// Handle a friend type declaration. This works in tandem with
|
|
/// ActOnTag.
|
|
///
|
|
/// Notes on friend class templates:
|
|
///
|
|
/// We generally treat friend class declarations as if they were
|
|
/// declaring a class. So, for example, the elaborated type specifier
|
|
/// in a friend declaration is required to obey the restrictions of a
|
|
/// class-head (i.e. no typedefs in the scope chain), template
|
|
/// parameters are required to match up with simple template-ids, &c.
|
|
/// However, unlike when declaring a template specialization, it's
|
|
/// okay to refer to a template specialization without an empty
|
|
/// template parameter declaration, e.g.
|
|
/// friend class A<T>::B<unsigned>;
|
|
/// We permit this as a special case; if there are any template
|
|
/// parameters present at all, require proper matching, i.e.
|
|
/// template <> template \<class T> friend class A<int>::B;
|
|
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
SourceLocation EllipsisLoc);
|
|
NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParams);
|
|
|
|
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formedness of the constructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the invalid bit to true. In any case, the type
|
|
/// will be updated to reflect a well-formed type for the constructor and
|
|
/// returned.
|
|
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass &SC);
|
|
|
|
/// CheckConstructor - Checks a fully-formed constructor for
|
|
/// well-formedness, issuing any diagnostics required. Returns true if
|
|
/// the constructor declarator is invalid.
|
|
void CheckConstructor(CXXConstructorDecl *Constructor);
|
|
|
|
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formednes of the destructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the declarator to invalid. Even if this happens,
|
|
/// will be updated to reflect a well-formed type for the destructor and
|
|
/// returned.
|
|
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass &SC);
|
|
|
|
/// CheckDestructor - Checks a fully-formed destructor definition for
|
|
/// well-formedness, issuing any diagnostics required. Returns true
|
|
/// on error.
|
|
bool CheckDestructor(CXXDestructorDecl *Destructor);
|
|
|
|
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
|
|
/// well-formednes of the conversion function declarator @p D with
|
|
/// type @p R. If there are any errors in the declarator, this routine
|
|
/// will emit diagnostics and return true. Otherwise, it will return
|
|
/// false. Either way, the type @p R will be updated to reflect a
|
|
/// well-formed type for the conversion operator.
|
|
void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass &SC);
|
|
|
|
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
|
|
/// the declaration of the given C++ conversion function. This routine
|
|
/// is responsible for recording the conversion function in the C++
|
|
/// class, if possible.
|
|
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
|
|
|
|
/// Check the validity of a declarator that we parsed for a deduction-guide.
|
|
/// These aren't actually declarators in the grammar, so we need to check that
|
|
/// the user didn't specify any pieces that are not part of the
|
|
/// deduction-guide grammar. Return true on invalid deduction-guide.
|
|
bool CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
|
|
StorageClass &SC);
|
|
|
|
void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
|
|
|
|
bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
|
|
CXXSpecialMemberKind CSM,
|
|
SourceLocation DefaultLoc);
|
|
void CheckDelayedMemberExceptionSpecs();
|
|
|
|
/// Kinds of defaulted comparison operator functions.
|
|
enum class DefaultedComparisonKind : unsigned char {
|
|
/// This is not a defaultable comparison operator.
|
|
None,
|
|
/// This is an operator== that should be implemented as a series of
|
|
/// subobject comparisons.
|
|
Equal,
|
|
/// This is an operator<=> that should be implemented as a series of
|
|
/// subobject comparisons.
|
|
ThreeWay,
|
|
/// This is an operator!= that should be implemented as a rewrite in terms
|
|
/// of a == comparison.
|
|
NotEqual,
|
|
/// This is an <, <=, >, or >= that should be implemented as a rewrite in
|
|
/// terms of a <=> comparison.
|
|
Relational,
|
|
};
|
|
|
|
bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
|
|
DefaultedComparisonKind DCK);
|
|
void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
|
|
FunctionDecl *Spaceship);
|
|
void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
|
|
DefaultedComparisonKind DCK);
|
|
|
|
void CheckExplicitObjectMemberFunction(Declarator &D, DeclarationName Name,
|
|
QualType R, bool IsLambda,
|
|
DeclContext *DC = nullptr);
|
|
void CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D,
|
|
DeclarationName Name, QualType R);
|
|
void CheckExplicitObjectLambda(Declarator &D);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Derived Classes
|
|
//
|
|
|
|
/// Check the validity of a C++ base class specifier.
|
|
///
|
|
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
|
|
/// and returns NULL otherwise.
|
|
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
|
|
SourceRange SpecifierRange, bool Virtual,
|
|
AccessSpecifier Access,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
|
|
/// one entry in the base class list of a class specifier, for
|
|
/// example:
|
|
/// class foo : public bar, virtual private baz {
|
|
/// 'public bar' and 'virtual private baz' are each base-specifiers.
|
|
BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
|
|
const ParsedAttributesView &Attrs, bool Virtual,
|
|
AccessSpecifier Access, ParsedType basetype,
|
|
SourceLocation BaseLoc,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// Performs the actual work of attaching the given base class
|
|
/// specifiers to a C++ class.
|
|
bool AttachBaseSpecifiers(CXXRecordDecl *Class,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases);
|
|
|
|
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
|
|
/// class, after checking whether there are any duplicate base
|
|
/// classes.
|
|
void ActOnBaseSpecifiers(Decl *ClassDecl,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases);
|
|
|
|
/// Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
|
|
|
|
/// Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
|
|
CXXBasePaths &Paths);
|
|
|
|
// FIXME: I don't like this name.
|
|
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
|
|
|
|
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
SourceLocation Loc, SourceRange Range,
|
|
CXXCastPath *BasePath = nullptr,
|
|
bool IgnoreAccess = false);
|
|
|
|
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
|
|
/// conversion (where Derived and Base are class types) is
|
|
/// well-formed, meaning that the conversion is unambiguous (and
|
|
/// that all of the base classes are accessible). Returns true
|
|
/// and emits a diagnostic if the code is ill-formed, returns false
|
|
/// otherwise. Loc is the location where this routine should point to
|
|
/// if there is an error, and Range is the source range to highlight
|
|
/// if there is an error.
|
|
///
|
|
/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
|
|
/// diagnostic for the respective type of error will be suppressed, but the
|
|
/// check for ill-formed code will still be performed.
|
|
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
unsigned InaccessibleBaseID,
|
|
unsigned AmbiguousBaseConvID,
|
|
SourceLocation Loc, SourceRange Range,
|
|
DeclarationName Name, CXXCastPath *BasePath,
|
|
bool IgnoreAccess = false);
|
|
|
|
/// Builds a string representing ambiguous paths from a
|
|
/// specific derived class to different subobjects of the same base
|
|
/// class.
|
|
///
|
|
/// This function builds a string that can be used in error messages
|
|
/// to show the different paths that one can take through the
|
|
/// inheritance hierarchy to go from the derived class to different
|
|
/// subobjects of a base class. The result looks something like this:
|
|
/// @code
|
|
/// struct D -> struct B -> struct A
|
|
/// struct D -> struct C -> struct A
|
|
/// @endcode
|
|
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
|
|
|
|
bool CheckOverridingFunctionAttributes(CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
/// CheckOverridingFunctionReturnType - Checks whether the return types are
|
|
/// covariant, according to C++ [class.virtual]p5.
|
|
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
// Check that the overriding method has no explicit object parameter.
|
|
bool CheckExplicitObjectOverride(CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
/// Mark the given method pure.
|
|
///
|
|
/// \param Method the method to be marked pure.
|
|
///
|
|
/// \param InitRange the source range that covers the "0" initializer.
|
|
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
|
|
|
|
/// CheckOverrideControl - Check C++11 override control semantics.
|
|
void CheckOverrideControl(NamedDecl *D);
|
|
|
|
/// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
|
|
/// not used in the declaration of an overriding method.
|
|
void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
|
|
|
|
/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
|
|
/// function overrides a virtual member function marked 'final', according to
|
|
/// C++11 [class.virtual]p4.
|
|
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
enum AbstractDiagSelID {
|
|
AbstractNone = -1,
|
|
AbstractReturnType,
|
|
AbstractParamType,
|
|
AbstractVariableType,
|
|
AbstractFieldType,
|
|
AbstractIvarType,
|
|
AbstractSynthesizedIvarType,
|
|
AbstractArrayType
|
|
};
|
|
|
|
struct TypeDiagnoser;
|
|
|
|
bool isAbstractType(SourceLocation Loc, QualType T);
|
|
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser);
|
|
template <typename... Ts>
|
|
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireNonAbstractType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
void DiagnoseAbstractType(const CXXRecordDecl *RD);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Overloaded Operators [C++ 13.5]
|
|
//
|
|
|
|
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
|
|
/// of this overloaded operator is well-formed. If so, returns false;
|
|
/// otherwise, emits appropriate diagnostics and returns true.
|
|
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
|
|
|
|
/// CheckLiteralOperatorDeclaration - Check whether the declaration
|
|
/// of this literal operator function is well-formed. If so, returns
|
|
/// false; otherwise, emits appropriate diagnostics and returns true.
|
|
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
|
|
|
|
/// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
|
|
/// found in an explicit(bool) specifier.
|
|
ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
|
|
|
|
/// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
|
|
/// Returns true if the explicit specifier is now resolved.
|
|
bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
|
|
|
|
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
|
|
/// C++ if/switch/while/for statement.
|
|
/// e.g: "if (int x = f()) {...}"
|
|
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
|
|
|
|
// Emitting members of dllexported classes is delayed until the class
|
|
// (including field initializers) is fully parsed.
|
|
SmallVector<CXXRecordDecl *, 4> DelayedDllExportClasses;
|
|
SmallVector<CXXMethodDecl *, 4> DelayedDllExportMemberFunctions;
|
|
|
|
/// Merge the exception specifications of two variable declarations.
|
|
///
|
|
/// This is called when there's a redeclaration of a VarDecl. The function
|
|
/// checks if the redeclaration might have an exception specification and
|
|
/// validates compatibility and merges the specs if necessary.
|
|
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
|
|
|
|
/// MergeCXXFunctionDecl - Merge two declarations of the same C++
|
|
/// function, once we already know that they have the same
|
|
/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
|
|
/// error, false otherwise.
|
|
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
|
|
|
|
/// Helpers for dealing with blocks and functions.
|
|
void CheckCXXDefaultArguments(FunctionDecl *FD);
|
|
|
|
/// CheckExtraCXXDefaultArguments - Check for any extra default
|
|
/// arguments in the declarator, which is not a function declaration
|
|
/// or definition and therefore is not permitted to have default
|
|
/// arguments. This routine should be invoked for every declarator
|
|
/// that is not a function declaration or definition.
|
|
void CheckExtraCXXDefaultArguments(Declarator &D);
|
|
|
|
CXXSpecialMemberKind getSpecialMember(const CXXMethodDecl *MD) {
|
|
return getDefaultedFunctionKind(MD).asSpecialMember();
|
|
}
|
|
|
|
/// Perform semantic analysis for the variable declaration that
|
|
/// occurs within a C++ catch clause, returning the newly-created
|
|
/// variable.
|
|
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc,
|
|
const IdentifierInfo *Id);
|
|
|
|
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
|
|
/// handler.
|
|
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
|
|
|
|
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
|
|
|
|
/// Handle a friend tag declaration where the scope specifier was
|
|
/// templated.
|
|
DeclResult ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
|
|
unsigned TagSpec, SourceLocation TagLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
SourceLocation EllipsisLoc,
|
|
const ParsedAttributesView &Attr,
|
|
MultiTemplateParamsArg TempParamLists);
|
|
|
|
MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
|
|
SourceLocation DeclStart, Declarator &D,
|
|
Expr *BitfieldWidth,
|
|
InClassInitStyle InitStyle,
|
|
AccessSpecifier AS,
|
|
const ParsedAttr &MSPropertyAttr);
|
|
|
|
/// Diagnose why the specified class does not have a trivial special member of
|
|
/// the given kind.
|
|
void DiagnoseNontrivial(const CXXRecordDecl *Record,
|
|
CXXSpecialMemberKind CSM);
|
|
|
|
enum TrivialABIHandling {
|
|
/// The triviality of a method unaffected by "trivial_abi".
|
|
TAH_IgnoreTrivialABI,
|
|
|
|
/// The triviality of a method affected by "trivial_abi".
|
|
TAH_ConsiderTrivialABI
|
|
};
|
|
|
|
/// Determine whether a defaulted or deleted special member function is
|
|
/// trivial, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
|
|
/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
|
|
bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
|
|
TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
|
|
bool Diagnose = false);
|
|
|
|
/// For a defaulted function, the kind of defaulted function that it is.
|
|
class DefaultedFunctionKind {
|
|
LLVM_PREFERRED_TYPE(CXXSpecialMemberKind)
|
|
unsigned SpecialMember : 8;
|
|
unsigned Comparison : 8;
|
|
|
|
public:
|
|
DefaultedFunctionKind()
|
|
: SpecialMember(llvm::to_underlying(CXXSpecialMemberKind::Invalid)),
|
|
Comparison(llvm::to_underlying(DefaultedComparisonKind::None)) {}
|
|
DefaultedFunctionKind(CXXSpecialMemberKind CSM)
|
|
: SpecialMember(llvm::to_underlying(CSM)),
|
|
Comparison(llvm::to_underlying(DefaultedComparisonKind::None)) {}
|
|
DefaultedFunctionKind(DefaultedComparisonKind Comp)
|
|
: SpecialMember(llvm::to_underlying(CXXSpecialMemberKind::Invalid)),
|
|
Comparison(llvm::to_underlying(Comp)) {}
|
|
|
|
bool isSpecialMember() const {
|
|
return static_cast<CXXSpecialMemberKind>(SpecialMember) !=
|
|
CXXSpecialMemberKind::Invalid;
|
|
}
|
|
bool isComparison() const {
|
|
return static_cast<DefaultedComparisonKind>(Comparison) !=
|
|
DefaultedComparisonKind::None;
|
|
}
|
|
|
|
explicit operator bool() const {
|
|
return isSpecialMember() || isComparison();
|
|
}
|
|
|
|
CXXSpecialMemberKind asSpecialMember() const {
|
|
return static_cast<CXXSpecialMemberKind>(SpecialMember);
|
|
}
|
|
DefaultedComparisonKind asComparison() const {
|
|
return static_cast<DefaultedComparisonKind>(Comparison);
|
|
}
|
|
|
|
/// Get the index of this function kind for use in diagnostics.
|
|
unsigned getDiagnosticIndex() const {
|
|
static_assert(llvm::to_underlying(CXXSpecialMemberKind::Invalid) >
|
|
llvm::to_underlying(CXXSpecialMemberKind::Destructor),
|
|
"invalid should have highest index");
|
|
static_assert((unsigned)DefaultedComparisonKind::None == 0,
|
|
"none should be equal to zero");
|
|
return SpecialMember + Comparison;
|
|
}
|
|
};
|
|
|
|
/// Determine the kind of defaulting that would be done for a given function.
|
|
///
|
|
/// If the function is both a default constructor and a copy / move
|
|
/// constructor (due to having a default argument for the first parameter),
|
|
/// this picks CXXSpecialMemberKind::DefaultConstructor.
|
|
///
|
|
/// FIXME: Check that case is properly handled by all callers.
|
|
DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
|
|
|
|
/// Handle a C++11 empty-declaration and attribute-declaration.
|
|
Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
|
|
SourceLocation SemiLoc);
|
|
|
|
enum class CheckConstexprKind {
|
|
/// Diagnose issues that are non-constant or that are extensions.
|
|
Diagnose,
|
|
/// Identify whether this function satisfies the formal rules for constexpr
|
|
/// functions in the current lanugage mode (with no extensions).
|
|
CheckValid
|
|
};
|
|
|
|
// Check whether a function declaration satisfies the requirements of a
|
|
// constexpr function definition or a constexpr constructor definition. If so,
|
|
// return true. If not, produce appropriate diagnostics (unless asked not to
|
|
// by Kind) and return false.
|
|
//
|
|
// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
|
|
bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
|
|
CheckConstexprKind Kind);
|
|
|
|
/// Diagnose methods which overload virtual methods in a base class
|
|
/// without overriding any.
|
|
void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
|
|
|
|
/// Check if a method overloads virtual methods in a base class without
|
|
/// overriding any.
|
|
void
|
|
FindHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl *> &OverloadedMethods);
|
|
void
|
|
NoteHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl *> &OverloadedMethods);
|
|
|
|
/// ActOnParamDefaultArgument - Check whether the default argument
|
|
/// provided for a function parameter is well-formed. If so, attach it
|
|
/// to the parameter declaration.
|
|
void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
|
|
Expr *defarg);
|
|
|
|
/// ActOnParamUnparsedDefaultArgument - We've seen a default
|
|
/// argument for a function parameter, but we can't parse it yet
|
|
/// because we're inside a class definition. Note that this default
|
|
/// argument will be parsed later.
|
|
void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
|
|
SourceLocation ArgLoc);
|
|
|
|
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
|
|
/// the default argument for the parameter param failed.
|
|
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc,
|
|
Expr *DefaultArg);
|
|
ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
|
|
SourceLocation EqualLoc);
|
|
void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
|
|
SourceLocation EqualLoc);
|
|
|
|
void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
|
|
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc,
|
|
StringLiteral *Message = nullptr);
|
|
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
|
|
|
|
void SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind,
|
|
StringLiteral *DeletedMessage = nullptr);
|
|
void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
|
|
ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
|
|
ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
|
|
|
|
NamedDecl *
|
|
ActOnDecompositionDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists);
|
|
void DiagPlaceholderVariableDefinition(SourceLocation Loc);
|
|
bool DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc,
|
|
RecordDecl *ClassDecl,
|
|
const IdentifierInfo *Name);
|
|
|
|
void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
|
|
|
|
/// Stack containing information needed when in C++2a an 'auto' is encountered
|
|
/// in a function declaration parameter type specifier in order to invent a
|
|
/// corresponding template parameter in the enclosing abbreviated function
|
|
/// template. This information is also present in LambdaScopeInfo, stored in
|
|
/// the FunctionScopes stack.
|
|
SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
|
|
|
|
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
|
|
std::unique_ptr<CXXFieldCollector> FieldCollector;
|
|
|
|
typedef llvm::SmallSetVector<const NamedDecl *, 16> NamedDeclSetType;
|
|
/// Set containing all declared private fields that are not used.
|
|
NamedDeclSetType UnusedPrivateFields;
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 8> RecordDeclSetTy;
|
|
|
|
/// PureVirtualClassDiagSet - a set of class declarations which we have
|
|
/// emitted a list of pure virtual functions. Used to prevent emitting the
|
|
/// same list more than once.
|
|
std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
|
|
|
|
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
|
|
DelegatingCtorDeclsType;
|
|
|
|
/// All the delegating constructors seen so far in the file, used for
|
|
/// cycle detection at the end of the TU.
|
|
DelegatingCtorDeclsType DelegatingCtorDecls;
|
|
|
|
/// The C++ "std" namespace, where the standard library resides.
|
|
LazyDeclPtr StdNamespace;
|
|
|
|
/// The C++ "std::initializer_list" template, which is defined in
|
|
/// \<initializer_list>.
|
|
ClassTemplateDecl *StdInitializerList;
|
|
|
|
// Contains the locations of the beginning of unparsed default
|
|
// argument locations.
|
|
llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
|
|
|
|
/// UndefinedInternals - all the used, undefined objects which require a
|
|
/// definition in this translation unit.
|
|
llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
|
|
|
|
typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMemberKind>
|
|
SpecialMemberDecl;
|
|
|
|
/// The C++ special members which we are currently in the process of
|
|
/// declaring. If this process recursively triggers the declaration of the
|
|
/// same special member, we should act as if it is not yet declared.
|
|
llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
|
|
|
|
void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
|
|
|
|
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
|
|
|
|
typedef ProcessingContextState ParsingClassState;
|
|
ParsingClassState PushParsingClass() {
|
|
ParsingClassDepth++;
|
|
return DelayedDiagnostics.pushUndelayed();
|
|
}
|
|
void PopParsingClass(ParsingClassState state) {
|
|
ParsingClassDepth--;
|
|
DelayedDiagnostics.popUndelayed(state);
|
|
}
|
|
|
|
ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
|
|
CXXScopeSpec &SS,
|
|
ParsedType TemplateTypeTy,
|
|
IdentifierInfo *MemberOrBase);
|
|
|
|
private:
|
|
void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
|
|
QualType ResultTy,
|
|
ArrayRef<QualType> Args);
|
|
|
|
// A cache representing if we've fully checked the various comparison category
|
|
// types stored in ASTContext. The bit-index corresponds to the integer value
|
|
// of a ComparisonCategoryType enumerator.
|
|
llvm::SmallBitVector FullyCheckedComparisonCategories;
|
|
|
|
/// Check if there is a field shadowing.
|
|
void CheckShadowInheritedFields(const SourceLocation &Loc,
|
|
DeclarationName FieldName,
|
|
const CXXRecordDecl *RD,
|
|
bool DeclIsField = true);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Exception Specifications
|
|
/// Implementations are in SemaExceptionSpec.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// All the overriding functions seen during a class definition
|
|
/// that had their exception spec checks delayed, plus the overridden
|
|
/// function.
|
|
SmallVector<std::pair<const CXXMethodDecl *, const CXXMethodDecl *>, 2>
|
|
DelayedOverridingExceptionSpecChecks;
|
|
|
|
/// All the function redeclarations seen during a class definition that had
|
|
/// their exception spec checks delayed, plus the prior declaration they
|
|
/// should be checked against. Except during error recovery, the new decl
|
|
/// should always be a friend declaration, as that's the only valid way to
|
|
/// redeclare a special member before its class is complete.
|
|
SmallVector<std::pair<FunctionDecl *, FunctionDecl *>, 2>
|
|
DelayedEquivalentExceptionSpecChecks;
|
|
|
|
/// Determine if we're in a case where we need to (incorrectly) eagerly
|
|
/// parse an exception specification to work around a libstdc++ bug.
|
|
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
|
|
|
|
/// Check the given noexcept-specifier, convert its expression, and compute
|
|
/// the appropriate ExceptionSpecificationType.
|
|
ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
|
|
ExceptionSpecificationType &EST);
|
|
|
|
CanThrowResult canThrow(const Stmt *E);
|
|
/// Determine whether the callee of a particular function call can throw.
|
|
/// E, D and Loc are all optional.
|
|
static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
|
|
SourceLocation Loc = SourceLocation());
|
|
const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
|
|
const FunctionProtoType *FPT);
|
|
void UpdateExceptionSpec(FunctionDecl *FD,
|
|
const FunctionProtoType::ExceptionSpecInfo &ESI);
|
|
|
|
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
|
|
/// exception specification. Incomplete types, or pointers to incomplete types
|
|
/// other than void are not allowed.
|
|
///
|
|
/// \param[in,out] T The exception type. This will be decayed to a pointer
|
|
/// type
|
|
/// when the input is an array or a function type.
|
|
bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
|
|
|
|
/// CheckDistantExceptionSpec - Check if the given type is a pointer or
|
|
/// pointer to member to a function with an exception specification. This
|
|
/// means that it is invalid to add another level of indirection.
|
|
bool CheckDistantExceptionSpec(QualType T);
|
|
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
|
|
|
|
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
|
|
/// exception specifications. Exception specifications are equivalent if
|
|
/// they allow exactly the same set of exception types. It does not matter how
|
|
/// that is achieved. See C++ [except.spec]p2.
|
|
bool CheckEquivalentExceptionSpec(const FunctionProtoType *Old,
|
|
SourceLocation OldLoc,
|
|
const FunctionProtoType *New,
|
|
SourceLocation NewLoc);
|
|
bool CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Old,
|
|
SourceLocation OldLoc,
|
|
const FunctionProtoType *New,
|
|
SourceLocation NewLoc);
|
|
bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
|
|
|
|
/// CheckExceptionSpecSubset - Check whether the second function type's
|
|
/// exception specification is a subset (or equivalent) of the first function
|
|
/// type. This is used by override and pointer assignment checks.
|
|
bool CheckExceptionSpecSubset(
|
|
const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID,
|
|
const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID,
|
|
const FunctionProtoType *Superset, bool SkipSupersetFirstParameter,
|
|
SourceLocation SuperLoc, const FunctionProtoType *Subset,
|
|
bool SkipSubsetFirstParameter, SourceLocation SubLoc);
|
|
|
|
/// CheckParamExceptionSpec - Check if the parameter and return types of the
|
|
/// two functions have equivalent exception specs. This is part of the
|
|
/// assignment and override compatibility check. We do not check the
|
|
/// parameters of parameter function pointers recursively, as no sane
|
|
/// programmer would even be able to write such a function type.
|
|
bool CheckParamExceptionSpec(
|
|
const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Target, bool SkipTargetFirstParameter,
|
|
SourceLocation TargetLoc, const FunctionProtoType *Source,
|
|
bool SkipSourceFirstParameter, SourceLocation SourceLoc);
|
|
|
|
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
|
|
|
|
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
|
|
/// spec is a subset of base spec.
|
|
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Expressions
|
|
/// Implementations are in SemaExpr.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Describes how the expressions currently being parsed are
|
|
/// evaluated at run-time, if at all.
|
|
enum class ExpressionEvaluationContext {
|
|
/// The current expression and its subexpressions occur within an
|
|
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
|
|
/// \c sizeof, where the type of the expression may be significant but
|
|
/// no code will be generated to evaluate the value of the expression at
|
|
/// run time.
|
|
Unevaluated,
|
|
|
|
/// The current expression occurs within a braced-init-list within
|
|
/// an unevaluated operand. This is mostly like a regular unevaluated
|
|
/// context, except that we still instantiate constexpr functions that are
|
|
/// referenced here so that we can perform narrowing checks correctly.
|
|
UnevaluatedList,
|
|
|
|
/// The current expression occurs within a discarded statement.
|
|
/// This behaves largely similarly to an unevaluated operand in preventing
|
|
/// definitions from being required, but not in other ways.
|
|
DiscardedStatement,
|
|
|
|
/// The current expression occurs within an unevaluated
|
|
/// operand that unconditionally permits abstract references to
|
|
/// fields, such as a SIZE operator in MS-style inline assembly.
|
|
UnevaluatedAbstract,
|
|
|
|
/// The current context is "potentially evaluated" in C++11 terms,
|
|
/// but the expression is evaluated at compile-time (like the values of
|
|
/// cases in a switch statement).
|
|
ConstantEvaluated,
|
|
|
|
/// In addition of being constant evaluated, the current expression
|
|
/// occurs in an immediate function context - either a consteval function
|
|
/// or a consteval if statement.
|
|
ImmediateFunctionContext,
|
|
|
|
/// The current expression is potentially evaluated at run time,
|
|
/// which means that code may be generated to evaluate the value of the
|
|
/// expression at run time.
|
|
PotentiallyEvaluated,
|
|
|
|
/// The current expression is potentially evaluated, but any
|
|
/// declarations referenced inside that expression are only used if
|
|
/// in fact the current expression is used.
|
|
///
|
|
/// This value is used when parsing default function arguments, for which
|
|
/// we would like to provide diagnostics (e.g., passing non-POD arguments
|
|
/// through varargs) but do not want to mark declarations as "referenced"
|
|
/// until the default argument is used.
|
|
PotentiallyEvaluatedIfUsed
|
|
};
|
|
|
|
/// Store a set of either DeclRefExprs or MemberExprs that contain a reference
|
|
/// to a variable (constant) that may or may not be odr-used in this Expr, and
|
|
/// we won't know until all lvalue-to-rvalue and discarded value conversions
|
|
/// have been applied to all subexpressions of the enclosing full expression.
|
|
/// This is cleared at the end of each full expression.
|
|
using MaybeODRUseExprSet = llvm::SmallSetVector<Expr *, 4>;
|
|
MaybeODRUseExprSet MaybeODRUseExprs;
|
|
|
|
using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
|
|
|
|
/// Data structure used to record current or nested
|
|
/// expression evaluation contexts.
|
|
struct ExpressionEvaluationContextRecord {
|
|
/// The expression evaluation context.
|
|
ExpressionEvaluationContext Context;
|
|
|
|
/// Whether the enclosing context needed a cleanup.
|
|
CleanupInfo ParentCleanup;
|
|
|
|
/// The number of active cleanup objects when we entered
|
|
/// this expression evaluation context.
|
|
unsigned NumCleanupObjects;
|
|
|
|
/// The number of typos encountered during this expression evaluation
|
|
/// context (i.e. the number of TypoExprs created).
|
|
unsigned NumTypos;
|
|
|
|
MaybeODRUseExprSet SavedMaybeODRUseExprs;
|
|
|
|
/// The lambdas that are present within this context, if it
|
|
/// is indeed an unevaluated context.
|
|
SmallVector<LambdaExpr *, 2> Lambdas;
|
|
|
|
/// The declaration that provides context for lambda expressions
|
|
/// and block literals if the normal declaration context does not
|
|
/// suffice, e.g., in a default function argument.
|
|
Decl *ManglingContextDecl;
|
|
|
|
/// If we are processing a decltype type, a set of call expressions
|
|
/// for which we have deferred checking the completeness of the return type.
|
|
SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
|
|
|
|
/// If we are processing a decltype type, a set of temporary binding
|
|
/// expressions for which we have deferred checking the destructor.
|
|
SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
|
|
|
|
llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
|
|
|
|
/// Expressions appearing as the LHS of a volatile assignment in this
|
|
/// context. We produce a warning for these when popping the context if
|
|
/// they are not discarded-value expressions nor unevaluated operands.
|
|
SmallVector<Expr *, 2> VolatileAssignmentLHSs;
|
|
|
|
/// Set of candidates for starting an immediate invocation.
|
|
llvm::SmallVector<ImmediateInvocationCandidate, 4>
|
|
ImmediateInvocationCandidates;
|
|
|
|
/// Set of DeclRefExprs referencing a consteval function when used in a
|
|
/// context not already known to be immediately invoked.
|
|
llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
|
|
|
|
/// P2718R0 - Lifetime extension in range-based for loops.
|
|
/// MaterializeTemporaryExprs in for-range-init expressions which need to
|
|
/// extend lifetime. Add MaterializeTemporaryExpr* if the value of
|
|
/// InLifetimeExtendingContext is true.
|
|
SmallVector<MaterializeTemporaryExpr *, 8> ForRangeLifetimeExtendTemps;
|
|
|
|
/// \brief Describes whether we are in an expression constext which we have
|
|
/// to handle differently.
|
|
enum ExpressionKind {
|
|
EK_Decltype,
|
|
EK_TemplateArgument,
|
|
EK_AttrArgument,
|
|
EK_Other
|
|
} ExprContext;
|
|
|
|
// A context can be nested in both a discarded statement context and
|
|
// an immediate function context, so they need to be tracked independently.
|
|
bool InDiscardedStatement;
|
|
bool InImmediateFunctionContext;
|
|
bool InImmediateEscalatingFunctionContext;
|
|
|
|
bool IsCurrentlyCheckingDefaultArgumentOrInitializer = false;
|
|
|
|
// We are in a constant context, but we also allow
|
|
// non constant expressions, for example for array bounds (which may be
|
|
// VLAs).
|
|
bool InConditionallyConstantEvaluateContext = false;
|
|
|
|
/// Whether we are currently in a context in which all temporaries must be
|
|
/// lifetime-extended, even if they're not bound to a reference (for
|
|
/// example, in a for-range initializer).
|
|
bool InLifetimeExtendingContext = false;
|
|
|
|
// When evaluating immediate functions in the initializer of a default
|
|
// argument or default member initializer, this is the declaration whose
|
|
// default initializer is being evaluated and the location of the call
|
|
// or constructor definition.
|
|
struct InitializationContext {
|
|
InitializationContext(SourceLocation Loc, ValueDecl *Decl,
|
|
DeclContext *Context)
|
|
: Loc(Loc), Decl(Decl), Context(Context) {
|
|
assert(Decl && Context && "invalid initialization context");
|
|
}
|
|
|
|
SourceLocation Loc;
|
|
ValueDecl *Decl = nullptr;
|
|
DeclContext *Context = nullptr;
|
|
};
|
|
std::optional<InitializationContext> DelayedDefaultInitializationContext;
|
|
|
|
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
|
|
unsigned NumCleanupObjects,
|
|
CleanupInfo ParentCleanup,
|
|
Decl *ManglingContextDecl,
|
|
ExpressionKind ExprContext)
|
|
: Context(Context), ParentCleanup(ParentCleanup),
|
|
NumCleanupObjects(NumCleanupObjects), NumTypos(0),
|
|
ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext),
|
|
InDiscardedStatement(false), InImmediateFunctionContext(false),
|
|
InImmediateEscalatingFunctionContext(false) {}
|
|
|
|
bool isUnevaluated() const {
|
|
return Context == ExpressionEvaluationContext::Unevaluated ||
|
|
Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
|
|
Context == ExpressionEvaluationContext::UnevaluatedList;
|
|
}
|
|
|
|
bool isPotentiallyEvaluated() const {
|
|
return Context == ExpressionEvaluationContext::PotentiallyEvaluated ||
|
|
Context ==
|
|
ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed ||
|
|
Context == ExpressionEvaluationContext::ConstantEvaluated;
|
|
}
|
|
|
|
bool isConstantEvaluated() const {
|
|
return Context == ExpressionEvaluationContext::ConstantEvaluated ||
|
|
Context == ExpressionEvaluationContext::ImmediateFunctionContext;
|
|
}
|
|
|
|
bool isImmediateFunctionContext() const {
|
|
return Context == ExpressionEvaluationContext::ImmediateFunctionContext ||
|
|
(Context == ExpressionEvaluationContext::DiscardedStatement &&
|
|
InImmediateFunctionContext) ||
|
|
// C++23 [expr.const]p14:
|
|
// An expression or conversion is in an immediate function
|
|
// context if it is potentially evaluated and either:
|
|
// * its innermost enclosing non-block scope is a function
|
|
// parameter scope of an immediate function, or
|
|
// * its enclosing statement is enclosed by the compound-
|
|
// statement of a consteval if statement.
|
|
(Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
|
|
InImmediateFunctionContext);
|
|
}
|
|
|
|
bool isDiscardedStatementContext() const {
|
|
return Context == ExpressionEvaluationContext::DiscardedStatement ||
|
|
(Context ==
|
|
ExpressionEvaluationContext::ImmediateFunctionContext &&
|
|
InDiscardedStatement);
|
|
}
|
|
};
|
|
|
|
const ExpressionEvaluationContextRecord ¤tEvaluationContext() const {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
return ExprEvalContexts.back();
|
|
};
|
|
|
|
ExpressionEvaluationContextRecord ¤tEvaluationContext() {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
return ExprEvalContexts.back();
|
|
};
|
|
|
|
ExpressionEvaluationContextRecord &parentEvaluationContext() {
|
|
assert(ExprEvalContexts.size() >= 2 &&
|
|
"Must be in an expression evaluation context");
|
|
return ExprEvalContexts[ExprEvalContexts.size() - 2];
|
|
};
|
|
|
|
const ExpressionEvaluationContextRecord &parentEvaluationContext() const {
|
|
return const_cast<Sema *>(this)->parentEvaluationContext();
|
|
};
|
|
|
|
bool isAttrContext() const {
|
|
return ExprEvalContexts.back().ExprContext ==
|
|
ExpressionEvaluationContextRecord::ExpressionKind::EK_AttrArgument;
|
|
}
|
|
|
|
/// Increment when we find a reference; decrement when we find an ignored
|
|
/// assignment. Ultimately the value is 0 if every reference is an ignored
|
|
/// assignment.
|
|
llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
|
|
|
|
/// Used to control the generation of ExprWithCleanups.
|
|
CleanupInfo Cleanup;
|
|
|
|
/// ExprCleanupObjects - This is the stack of objects requiring
|
|
/// cleanup that are created by the current full expression.
|
|
SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
|
|
|
|
// AssignmentAction - This is used by all the assignment diagnostic functions
|
|
// to represent what is actually causing the operation
|
|
enum AssignmentAction {
|
|
AA_Assigning,
|
|
AA_Passing,
|
|
AA_Returning,
|
|
AA_Converting,
|
|
AA_Initializing,
|
|
AA_Sending,
|
|
AA_Casting,
|
|
AA_Passing_CFAudited
|
|
};
|
|
|
|
/// Determine whether the use of this declaration is valid, without
|
|
/// emitting diagnostics.
|
|
bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
|
|
// A version of DiagnoseUseOfDecl that should be used if overload resolution
|
|
// has been used to find this declaration, which means we don't have to bother
|
|
// checking the trailing requires clause.
|
|
bool DiagnoseUseOfOverloadedDecl(NamedDecl *D, SourceLocation Loc) {
|
|
return DiagnoseUseOfDecl(
|
|
D, Loc, /*UnknownObjCClass=*/nullptr, /*ObjCPropertyAccess=*/false,
|
|
/*AvoidPartialAvailabilityChecks=*/false, /*ClassReceiver=*/nullptr,
|
|
/*SkipTrailingRequiresClause=*/true);
|
|
}
|
|
|
|
/// Determine whether the use of this declaration is valid, and
|
|
/// emit any corresponding diagnostics.
|
|
///
|
|
/// This routine diagnoses various problems with referencing
|
|
/// declarations that can occur when using a declaration. For example,
|
|
/// it might warn if a deprecated or unavailable declaration is being
|
|
/// used, or produce an error (and return true) if a C++0x deleted
|
|
/// function is being used.
|
|
///
|
|
/// \returns true if there was an error (this declaration cannot be
|
|
/// referenced), false otherwise.
|
|
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
|
|
bool ObjCPropertyAccess = false,
|
|
bool AvoidPartialAvailabilityChecks = false,
|
|
ObjCInterfaceDecl *ClassReciever = nullptr,
|
|
bool SkipTrailingRequiresClause = false);
|
|
|
|
/// Emit a note explaining that this function is deleted.
|
|
void NoteDeletedFunction(FunctionDecl *FD);
|
|
|
|
/// DiagnoseSentinelCalls - This routine checks whether a call or
|
|
/// message-send is to a declaration with the sentinel attribute, and
|
|
/// if so, it checks that the requirements of the sentinel are
|
|
/// satisfied.
|
|
void DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
|
|
ArrayRef<Expr *> Args);
|
|
|
|
void PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
|
|
ExpressionEvaluationContextRecord::ExpressionKind Type =
|
|
ExpressionEvaluationContextRecord::EK_Other);
|
|
enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
|
|
void PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
|
|
ExpressionEvaluationContextRecord::ExpressionKind Type =
|
|
ExpressionEvaluationContextRecord::EK_Other);
|
|
void PopExpressionEvaluationContext();
|
|
|
|
void DiscardCleanupsInEvaluationContext();
|
|
|
|
ExprResult TransformToPotentiallyEvaluated(Expr *E);
|
|
TypeSourceInfo *TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo);
|
|
ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
|
|
|
|
/// Check whether E, which is either a discarded-value expression or an
|
|
/// unevaluated operand, is a simple-assignment to a volatlie-qualified
|
|
/// lvalue, and if so, remove it from the list of volatile-qualified
|
|
/// assignments that we are going to warn are deprecated.
|
|
void CheckUnusedVolatileAssignment(Expr *E);
|
|
|
|
ExprResult ActOnConstantExpression(ExprResult Res);
|
|
|
|
// Functions for marking a declaration referenced. These functions also
|
|
// contain the relevant logic for marking if a reference to a function or
|
|
// variable is an odr-use (in the C++11 sense). There are separate variants
|
|
// for expressions referring to a decl; these exist because odr-use marking
|
|
// needs to be delayed for some constant variables when we build one of the
|
|
// named expressions.
|
|
//
|
|
// MightBeOdrUse indicates whether the use could possibly be an odr-use, and
|
|
// should usually be true. This only needs to be set to false if the lack of
|
|
// odr-use cannot be determined from the current context (for instance,
|
|
// because the name denotes a virtual function and was written without an
|
|
// explicit nested-name-specifier).
|
|
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
|
|
|
|
/// Mark a function referenced, and check whether it is odr-used
|
|
/// (C++ [basic.def.odr]p2, C99 6.9p3)
|
|
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
|
|
bool MightBeOdrUse = true);
|
|
|
|
/// Mark a variable referenced, and check whether it is odr-used
|
|
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
|
|
/// used directly for normal expressions referring to VarDecl.
|
|
void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
|
|
|
|
/// Perform reference-marking and odr-use handling for a DeclRefExpr.
|
|
///
|
|
/// Note, this may change the dependence of the DeclRefExpr, and so needs to
|
|
/// be handled with care if the DeclRefExpr is not newly-created.
|
|
void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
|
|
|
|
/// Perform reference-marking and odr-use handling for a MemberExpr.
|
|
void MarkMemberReferenced(MemberExpr *E);
|
|
|
|
/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
|
|
void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
|
|
void MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, SourceLocation Loc,
|
|
unsigned CapturingScopeIndex);
|
|
|
|
ExprResult CheckLValueToRValueConversionOperand(Expr *E);
|
|
void CleanupVarDeclMarking();
|
|
|
|
enum TryCaptureKind {
|
|
TryCapture_Implicit,
|
|
TryCapture_ExplicitByVal,
|
|
TryCapture_ExplicitByRef
|
|
};
|
|
|
|
/// Try to capture the given variable.
|
|
///
|
|
/// \param Var The variable to capture.
|
|
///
|
|
/// \param Loc The location at which the capture occurs.
|
|
///
|
|
/// \param Kind The kind of capture, which may be implicit (for either a
|
|
/// block or a lambda), or explicit by-value or by-reference (for a lambda).
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis, if one is provided in
|
|
/// an explicit lambda capture.
|
|
///
|
|
/// \param BuildAndDiagnose Whether we are actually supposed to add the
|
|
/// captures or diagnose errors. If false, this routine merely check whether
|
|
/// the capture can occur without performing the capture itself or complaining
|
|
/// if the variable cannot be captured.
|
|
///
|
|
/// \param CaptureType Will be set to the type of the field used to capture
|
|
/// this variable in the innermost block or lambda. Only valid when the
|
|
/// variable can be captured.
|
|
///
|
|
/// \param DeclRefType Will be set to the type of a reference to the capture
|
|
/// from within the current scope. Only valid when the variable can be
|
|
/// captured.
|
|
///
|
|
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
|
|
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
|
|
/// This is useful when enclosing lambdas must speculatively capture
|
|
/// variables that may or may not be used in certain specializations of
|
|
/// a nested generic lambda.
|
|
///
|
|
/// \returns true if an error occurred (i.e., the variable cannot be
|
|
/// captured) and false if the capture succeeded.
|
|
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
|
|
TryCaptureKind Kind, SourceLocation EllipsisLoc,
|
|
bool BuildAndDiagnose, QualType &CaptureType,
|
|
QualType &DeclRefType,
|
|
const unsigned *const FunctionScopeIndexToStopAt);
|
|
|
|
/// Try to capture the given variable.
|
|
bool tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
|
|
TryCaptureKind Kind = TryCapture_Implicit,
|
|
SourceLocation EllipsisLoc = SourceLocation());
|
|
|
|
/// Checks if the variable must be captured.
|
|
bool NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc);
|
|
|
|
/// Given a variable, determine the type that a reference to that
|
|
/// variable will have in the given scope.
|
|
QualType getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc);
|
|
|
|
/// Mark all of the declarations referenced within a particular AST node as
|
|
/// referenced. Used when template instantiation instantiates a non-dependent
|
|
/// type -- entities referenced by the type are now referenced.
|
|
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
|
|
|
|
/// Mark any declarations that appear within this expression or any
|
|
/// potentially-evaluated subexpressions as "referenced".
|
|
///
|
|
/// \param SkipLocalVariables If true, don't mark local variables as
|
|
/// 'referenced'.
|
|
/// \param StopAt Subexpressions that we shouldn't recurse into.
|
|
void MarkDeclarationsReferencedInExpr(
|
|
Expr *E, bool SkipLocalVariables = false,
|
|
ArrayRef<const Expr *> StopAt = std::nullopt);
|
|
|
|
/// Try to convert an expression \p E to type \p Ty. Returns the result of the
|
|
/// conversion.
|
|
ExprResult tryConvertExprToType(Expr *E, QualType Ty);
|
|
|
|
/// Conditionally issue a diagnostic based on the statements's reachability
|
|
/// analysis.
|
|
///
|
|
/// \param Stmts If Stmts is non-empty, delay reporting the diagnostic until
|
|
/// the function body is parsed, and then do a basic reachability analysis to
|
|
/// determine if the statement is reachable. If it is unreachable, the
|
|
/// diagnostic will not be emitted.
|
|
bool DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
|
|
const PartialDiagnostic &PD);
|
|
|
|
/// Conditionally issue a diagnostic based on the current
|
|
/// evaluation context.
|
|
///
|
|
/// \param Statement If Statement is non-null, delay reporting the
|
|
/// diagnostic until the function body is parsed, and then do a basic
|
|
/// reachability analysis to determine if the statement is reachable.
|
|
/// If it is unreachable, the diagnostic will not be emitted.
|
|
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
|
|
const PartialDiagnostic &PD);
|
|
/// Similar, but diagnostic is only produced if all the specified statements
|
|
/// are reachable.
|
|
bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
|
|
const PartialDiagnostic &PD);
|
|
|
|
// Primary Expressions.
|
|
SourceRange getExprRange(Expr *E) const;
|
|
|
|
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc, UnqualifiedId &Id,
|
|
bool HasTrailingLParen, bool IsAddressOfOperand,
|
|
CorrectionCandidateCallback *CCC = nullptr,
|
|
bool IsInlineAsmIdentifier = false,
|
|
Token *KeywordReplacement = nullptr);
|
|
|
|
/// Decomposes the given name into a DeclarationNameInfo, its location, and
|
|
/// possibly a list of template arguments.
|
|
///
|
|
/// If this produces template arguments, it is permitted to call
|
|
/// DecomposeTemplateName.
|
|
///
|
|
/// This actually loses a lot of source location information for
|
|
/// non-standard name kinds; we should consider preserving that in
|
|
/// some way.
|
|
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
|
|
TemplateArgumentListInfo &Buffer,
|
|
DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *&TemplateArgs);
|
|
|
|
/// Diagnose a lookup that found results in an enclosing class during error
|
|
/// recovery. This usually indicates that the results were found in a
|
|
/// dependent base class that could not be searched as part of a template
|
|
/// definition. Always issues a diagnostic (though this may be only a warning
|
|
/// in MS compatibility mode).
|
|
///
|
|
/// Return \c true if the error is unrecoverable, or \c false if the caller
|
|
/// should attempt to recover using these lookup results.
|
|
bool DiagnoseDependentMemberLookup(const LookupResult &R);
|
|
|
|
/// Diagnose an empty lookup.
|
|
///
|
|
/// \return false if new lookup candidates were found
|
|
bool
|
|
DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
|
|
CorrectionCandidateCallback &CCC,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
|
|
ArrayRef<Expr *> Args = std::nullopt,
|
|
DeclContext *LookupCtx = nullptr,
|
|
TypoExpr **Out = nullptr);
|
|
|
|
/// If \p D cannot be odr-used in the current expression evaluation context,
|
|
/// return a reason explaining why. Otherwise, return NOUR_None.
|
|
NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
|
|
|
|
DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
SourceLocation Loc,
|
|
const CXXScopeSpec *SS = nullptr);
|
|
DeclRefExpr *
|
|
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const CXXScopeSpec *SS = nullptr,
|
|
NamedDecl *FoundD = nullptr,
|
|
SourceLocation TemplateKWLoc = SourceLocation(),
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
|
|
/// BuildDeclRefExpr - Build an expression that references a
|
|
/// declaration that does not require a closure capture.
|
|
DeclRefExpr *
|
|
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
NestedNameSpecifierLoc NNS, NamedDecl *FoundD = nullptr,
|
|
SourceLocation TemplateKWLoc = SourceLocation(),
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
|
|
bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R,
|
|
bool HasTrailingLParen);
|
|
|
|
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
|
|
/// declaration name, generally during template instantiation.
|
|
/// There's a large number of things which don't need to be done along
|
|
/// this path.
|
|
ExprResult BuildQualifiedDeclarationNameExpr(
|
|
CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
|
|
bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI = nullptr);
|
|
|
|
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R,
|
|
bool NeedsADL,
|
|
bool AcceptInvalidDecl = false);
|
|
|
|
/// Complete semantic analysis for a reference to the given declaration.
|
|
ExprResult BuildDeclarationNameExpr(
|
|
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
|
|
NamedDecl *FoundD = nullptr,
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr,
|
|
bool AcceptInvalidDecl = false);
|
|
|
|
// ExpandFunctionLocalPredefinedMacros - Returns a new vector of Tokens,
|
|
// where Tokens representing function local predefined macros (such as
|
|
// __FUNCTION__) are replaced (expanded) with string-literal Tokens.
|
|
std::vector<Token> ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks);
|
|
|
|
ExprResult BuildPredefinedExpr(SourceLocation Loc, PredefinedIdentKind IK);
|
|
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
|
|
ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
|
|
|
|
bool CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero);
|
|
|
|
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
|
|
ExprResult ActOnCharacterConstant(const Token &Tok,
|
|
Scope *UDLScope = nullptr);
|
|
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
|
|
ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R,
|
|
MultiExprArg Val);
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle
|
|
/// string concatenation ([C99 5.1.1.2, translation phase #6]), so it may come
|
|
/// from multiple tokens. However, the common case is that StringToks points
|
|
/// to one string.
|
|
ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
|
|
Scope *UDLScope = nullptr);
|
|
|
|
ExprResult ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks);
|
|
|
|
/// ControllingExprOrType is either an opaque pointer coming out of a
|
|
/// ParsedType or an Expr *. FIXME: it'd be better to split this interface
|
|
/// into two so we don't take a void *, but that's awkward because one of
|
|
/// the operands is either a ParsedType or an Expr *, which doesn't lend
|
|
/// itself to generic code very well.
|
|
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool PredicateIsExpr,
|
|
void *ControllingExprOrType,
|
|
ArrayRef<ParsedType> ArgTypes,
|
|
ArrayRef<Expr *> ArgExprs);
|
|
/// ControllingExprOrType is either a TypeSourceInfo * or an Expr *. FIXME:
|
|
/// it'd be better to split this interface into two so we don't take a
|
|
/// void *, but see the FIXME on ActOnGenericSelectionExpr as to why that
|
|
/// isn't a trivial change.
|
|
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool PredicateIsExpr,
|
|
void *ControllingExprOrType,
|
|
ArrayRef<TypeSourceInfo *> Types,
|
|
ArrayRef<Expr *> Exprs);
|
|
|
|
// Binary/Unary Operators. 'Tok' is the token for the operator.
|
|
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
|
|
Expr *InputExpr, bool IsAfterAmp = false);
|
|
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc,
|
|
Expr *Input, bool IsAfterAmp = false);
|
|
|
|
/// Unary Operators. 'Tok' is the token for the operator.
|
|
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
|
|
Expr *Input, bool IsAfterAmp = false);
|
|
|
|
/// Determine whether the given expression is a qualified member
|
|
/// access expression, of a form that could be turned into a pointer to member
|
|
/// with the address-of operator.
|
|
bool isQualifiedMemberAccess(Expr *E);
|
|
bool CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
|
|
const Expr *Op,
|
|
const CXXMethodDecl *MD);
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
|
|
|
|
/// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
|
|
/// _Alignas(type-name) .
|
|
/// [dcl.align] An alignment-specifier of the form
|
|
/// alignas(type-id) has the same effect as alignas(alignof(type-id)).
|
|
///
|
|
/// [N1570 6.7.5] _Alignas(type-name) is equivalent to
|
|
/// _Alignas(_Alignof(type-name)).
|
|
bool ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
|
|
SourceLocation OpLoc, SourceRange R);
|
|
bool CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc, SourceRange R);
|
|
|
|
/// Build a sizeof or alignof expression given a type operand.
|
|
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R);
|
|
|
|
/// Build a sizeof or alignof expression given an expression
|
|
/// operand.
|
|
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind);
|
|
|
|
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
|
|
/// expr and the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
bool IsType, void *TyOrEx,
|
|
SourceRange ArgRange);
|
|
|
|
/// Check for operands with placeholder types and complain if found.
|
|
/// Returns ExprError() if there was an error and no recovery was possible.
|
|
ExprResult CheckPlaceholderExpr(Expr *E);
|
|
bool CheckVecStepExpr(Expr *E);
|
|
|
|
/// Check the constraints on expression operands to unary type expression
|
|
/// and type traits.
|
|
///
|
|
/// Completes any types necessary and validates the constraints on the operand
|
|
/// expression. The logic mostly mirrors the type-based overload, but may
|
|
/// modify the expression as it completes the type for that expression through
|
|
/// template instantiation, etc.
|
|
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
|
|
|
|
/// Check the constraints on operands to unary expression and type
|
|
/// traits.
|
|
///
|
|
/// This will complete any types necessary, and validate the various
|
|
/// constraints on those operands.
|
|
///
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// C99 6.3.2.1p[2-4] all state:
|
|
/// Except when it is the operand of the sizeof operator ...
|
|
///
|
|
/// C++ [expr.sizeof]p4
|
|
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
|
|
/// standard conversions are not applied to the operand of sizeof.
|
|
///
|
|
/// This policy is followed for all of the unary trait expressions.
|
|
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
|
|
SourceRange ExprRange,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
StringRef KWName);
|
|
|
|
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, Expr *Input);
|
|
|
|
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
|
|
MultiExprArg ArgExprs,
|
|
SourceLocation RLoc);
|
|
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc);
|
|
|
|
ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
|
|
Expr *ColumnIdx,
|
|
SourceLocation RBLoc);
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
ArrayRef<Expr *> Args, SourceLocation RParenLoc,
|
|
bool ExecConfig = false);
|
|
|
|
/// CheckStaticArrayArgument - If the given argument corresponds to a static
|
|
/// array parameter, check that it is non-null, and that if it is formed by
|
|
/// array-to-pointer decay, the underlying array is sufficiently large.
|
|
///
|
|
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of
|
|
/// the array type derivation, then for each call to the function, the value
|
|
/// of the corresponding actual argument shall provide access to the first
|
|
/// element of an array with at least as many elements as specified by the
|
|
/// size expression.
|
|
void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param,
|
|
const Expr *ArgExpr);
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig = nullptr);
|
|
|
|
/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig = nullptr,
|
|
bool IsExecConfig = false,
|
|
bool AllowRecovery = false);
|
|
|
|
/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
|
|
// with the specified CallArgs
|
|
Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
|
|
MultiExprArg CallArgs);
|
|
|
|
using ADLCallKind = CallExpr::ADLCallKind;
|
|
|
|
/// BuildResolvedCallExpr - Build a call to a resolved expression,
|
|
/// i.e. an expression not of \p OverloadTy. The expression should
|
|
/// unary-convert to an expression of function-pointer or
|
|
/// block-pointer type.
|
|
///
|
|
/// \param NDecl the declaration being called, if available
|
|
ExprResult
|
|
BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
|
|
ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
|
|
Expr *Config = nullptr, bool IsExecConfig = false,
|
|
ADLCallKind UsesADL = ADLCallKind::NotADL);
|
|
|
|
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D,
|
|
ParsedType &Ty, SourceLocation RParenLoc,
|
|
Expr *CastExpr);
|
|
|
|
/// Prepares for a scalar cast, performing all the necessary stages
|
|
/// except the final cast and returning the kind required.
|
|
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
|
|
|
|
/// Build an altivec or OpenCL literal.
|
|
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc, Expr *E,
|
|
TypeSourceInfo *TInfo);
|
|
|
|
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
|
|
/// the ParenListExpr into a sequence of comma binary operators.
|
|
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
|
|
|
|
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
|
|
SourceLocation RParenLoc, Expr *InitExpr);
|
|
|
|
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
Expr *LiteralExpr);
|
|
|
|
ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
|
|
SourceLocation RBraceLoc);
|
|
|
|
ExprResult BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
|
|
SourceLocation RBraceLoc);
|
|
|
|
/// Binary Operators. 'Tok' is the token for the operator.
|
|
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind,
|
|
Expr *LHSExpr, Expr *RHSExpr);
|
|
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
|
|
Expr *LHSExpr, Expr *RHSExpr);
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
|
|
Expr *LHSExpr, Expr *RHSExpr);
|
|
void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
|
|
UnresolvedSetImpl &Functions);
|
|
|
|
/// Look for instances where it is likely the comma operator is confused with
|
|
/// another operator. There is an explicit list of acceptable expressions for
|
|
/// the left hand side of the comma operator, otherwise emit a warning.
|
|
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc, Expr *CondExpr,
|
|
Expr *LHSExpr, Expr *RHSExpr);
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
|
|
LabelDecl *TheDecl);
|
|
|
|
void ActOnStartStmtExpr();
|
|
ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
|
|
SourceLocation RPLoc);
|
|
ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
|
|
SourceLocation RPLoc, unsigned TemplateDepth);
|
|
// Handle the final expression in a statement expression.
|
|
ExprResult ActOnStmtExprResult(ExprResult E);
|
|
void ActOnStmtExprError();
|
|
|
|
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
|
|
struct OffsetOfComponent {
|
|
SourceLocation LocStart, LocEnd;
|
|
bool isBrackets; // true if [expr], false if .ident
|
|
union {
|
|
IdentifierInfo *IdentInfo;
|
|
Expr *E;
|
|
} U;
|
|
};
|
|
|
|
/// __builtin_offsetof(type, a.b[123][456].c)
|
|
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
TypeSourceInfo *TInfo,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc);
|
|
ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
ParsedType ParsedArgTy,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc);
|
|
|
|
// __builtin_choose_expr(constExpr, expr1, expr2)
|
|
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr,
|
|
Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation RPLoc);
|
|
|
|
// __builtin_va_arg(expr, type)
|
|
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
|
|
SourceLocation RPLoc);
|
|
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
|
|
TypeSourceInfo *TInfo, SourceLocation RPLoc);
|
|
|
|
// __builtin_LINE(), __builtin_FUNCTION(), __builtin_FUNCSIG(),
|
|
// __builtin_FILE(), __builtin_COLUMN(), __builtin_source_location()
|
|
ExprResult ActOnSourceLocExpr(SourceLocIdentKind Kind,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RPLoc);
|
|
|
|
// #embed
|
|
ExprResult ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
|
|
StringLiteral *BinaryData);
|
|
|
|
// Build a potentially resolved SourceLocExpr.
|
|
ExprResult BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
|
|
SourceLocation BuiltinLoc, SourceLocation RPLoc,
|
|
DeclContext *ParentContext);
|
|
|
|
// __null
|
|
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
|
|
|
|
bool CheckCaseExpression(Expr *E);
|
|
|
|
//===------------------------- "Block" Extension ------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is
|
|
/// started.
|
|
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
|
|
|
|
/// ActOnBlockArguments - This callback allows processing of block arguments.
|
|
/// If there are no arguments, this is still invoked.
|
|
void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
|
|
Scope *CurScope);
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
|
|
Scope *CurScope);
|
|
|
|
//===---------------------------- Clang Extensions ----------------------===//
|
|
|
|
/// ActOnConvertVectorExpr - create a new convert-vector expression from the
|
|
/// provided arguments.
|
|
///
|
|
/// __builtin_convertvector( value, dst type )
|
|
///
|
|
ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
//===---------------------------- OpenCL Features -----------------------===//
|
|
|
|
/// Parse a __builtin_astype expression.
|
|
///
|
|
/// __builtin_astype( value, dst type )
|
|
///
|
|
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// Create a new AsTypeExpr node (bitcast) from the arguments.
|
|
ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// Attempts to produce a RecoveryExpr after some AST node cannot be created.
|
|
ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
|
|
ArrayRef<Expr *> SubExprs,
|
|
QualType T = QualType());
|
|
|
|
/// Cast a base object to a member's actual type.
|
|
///
|
|
/// There are two relevant checks:
|
|
///
|
|
/// C++ [class.access.base]p7:
|
|
///
|
|
/// If a class member access operator [...] is used to access a non-static
|
|
/// data member or non-static member function, the reference is ill-formed
|
|
/// if the left operand [...] cannot be implicitly converted to a pointer to
|
|
/// the naming class of the right operand.
|
|
///
|
|
/// C++ [expr.ref]p7:
|
|
///
|
|
/// If E2 is a non-static data member or a non-static member function, the
|
|
/// program is ill-formed if the class of which E2 is directly a member is
|
|
/// an ambiguous base (11.8) of the naming class (11.9.3) of E2.
|
|
///
|
|
/// Note that the latter check does not consider access; the access of the
|
|
/// "real" base class is checked as appropriate when checking the access of
|
|
/// the member name.
|
|
ExprResult PerformObjectMemberConversion(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
NamedDecl *Member);
|
|
|
|
/// CheckCallReturnType - Checks that a call expression's return type is
|
|
/// complete. Returns true on failure. The location passed in is the location
|
|
/// that best represents the call.
|
|
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
|
CallExpr *CE, FunctionDecl *FD);
|
|
|
|
/// Emit a warning for all pending noderef expressions that we recorded.
|
|
void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
|
|
|
|
ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
|
|
|
|
/// Instantiate or parse a C++ default argument expression as necessary.
|
|
/// Return true on error.
|
|
bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param, Expr *Init = nullptr,
|
|
bool SkipImmediateInvocations = true);
|
|
|
|
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
|
|
/// the default expr if needed.
|
|
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param, Expr *Init = nullptr);
|
|
|
|
/// Wrap the expression in a ConstantExpr if it is a potential immediate
|
|
/// invocation.
|
|
ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
|
|
|
|
void MarkExpressionAsImmediateEscalating(Expr *E);
|
|
|
|
// Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
|
|
bool IsInvalidSMECallConversion(QualType FromType, QualType ToType);
|
|
|
|
/// Abstract base class used for diagnosing integer constant
|
|
/// expression violations.
|
|
class VerifyICEDiagnoser {
|
|
public:
|
|
bool Suppress;
|
|
|
|
VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) {}
|
|
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
|
|
virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
|
|
SourceLocation Loc) = 0;
|
|
virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
|
|
virtual ~VerifyICEDiagnoser() {}
|
|
};
|
|
|
|
enum AllowFoldKind {
|
|
NoFold,
|
|
AllowFold,
|
|
};
|
|
|
|
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
|
|
/// and reports the appropriate diagnostics. Returns false on success.
|
|
/// Can optionally return the value of the expression.
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
|
VerifyICEDiagnoser &Diagnoser,
|
|
AllowFoldKind CanFold = NoFold);
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
|
unsigned DiagID,
|
|
AllowFoldKind CanFold = NoFold);
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E,
|
|
llvm::APSInt *Result = nullptr,
|
|
AllowFoldKind CanFold = NoFold);
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E,
|
|
AllowFoldKind CanFold = NoFold) {
|
|
return VerifyIntegerConstantExpression(E, nullptr, CanFold);
|
|
}
|
|
|
|
/// DiagnoseAssignmentAsCondition - Given that an expression is
|
|
/// being used as a boolean condition, warn if it's an assignment.
|
|
void DiagnoseAssignmentAsCondition(Expr *E);
|
|
|
|
/// Redundant parentheses over an equality comparison can indicate
|
|
/// that the user intended an assignment used as condition.
|
|
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
|
|
|
|
class FullExprArg {
|
|
public:
|
|
FullExprArg() : E(nullptr) {}
|
|
FullExprArg(Sema &actions) : E(nullptr) {}
|
|
|
|
ExprResult release() { return E; }
|
|
|
|
Expr *get() const { return E; }
|
|
|
|
Expr *operator->() { return E; }
|
|
|
|
private:
|
|
// FIXME: No need to make the entire Sema class a friend when it's just
|
|
// Sema::MakeFullExpr that needs access to the constructor below.
|
|
friend class Sema;
|
|
|
|
explicit FullExprArg(Expr *expr) : E(expr) {}
|
|
|
|
Expr *E;
|
|
};
|
|
|
|
FullExprArg MakeFullExpr(Expr *Arg) {
|
|
return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
|
|
}
|
|
FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
|
|
return FullExprArg(
|
|
ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
|
|
}
|
|
FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
|
|
ExprResult FE =
|
|
ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
|
|
/*DiscardedValue*/ true);
|
|
return FullExprArg(FE.get());
|
|
}
|
|
|
|
class ConditionResult {
|
|
Decl *ConditionVar;
|
|
FullExprArg Condition;
|
|
bool Invalid;
|
|
std::optional<bool> KnownValue;
|
|
|
|
friend class Sema;
|
|
ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
|
|
bool IsConstexpr)
|
|
: ConditionVar(ConditionVar), Condition(Condition), Invalid(false) {
|
|
if (IsConstexpr && Condition.get()) {
|
|
if (std::optional<llvm::APSInt> Val =
|
|
Condition.get()->getIntegerConstantExpr(S.Context)) {
|
|
KnownValue = !!(*Val);
|
|
}
|
|
}
|
|
}
|
|
explicit ConditionResult(bool Invalid)
|
|
: ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
|
|
KnownValue(std::nullopt) {}
|
|
|
|
public:
|
|
ConditionResult() : ConditionResult(false) {}
|
|
bool isInvalid() const { return Invalid; }
|
|
std::pair<VarDecl *, Expr *> get() const {
|
|
return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
|
|
Condition.get());
|
|
}
|
|
std::optional<bool> getKnownValue() const { return KnownValue; }
|
|
};
|
|
static ConditionResult ConditionError() { return ConditionResult(true); }
|
|
|
|
/// CheckBooleanCondition - Diagnose problems involving the use of
|
|
/// the given expression as a boolean condition (e.g. in an if
|
|
/// statement). Also performs the standard function and array
|
|
/// decays, possibly changing the input variable.
|
|
///
|
|
/// \param Loc - A location associated with the condition, e.g. the
|
|
/// 'if' keyword.
|
|
/// \return true iff there were any errors
|
|
ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
|
|
bool IsConstexpr = false);
|
|
|
|
enum class ConditionKind {
|
|
Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
|
|
ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
|
|
Switch ///< An integral condition for a 'switch' statement.
|
|
};
|
|
|
|
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr,
|
|
ConditionKind CK, bool MissingOK = false);
|
|
|
|
QualType CheckConditionalOperands( // C99 6.5.15
|
|
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
|
|
ExprObjectKind &OK, SourceLocation QuestionLoc);
|
|
|
|
/// Emit a specialized diagnostic when one expression is a null pointer
|
|
/// constant and the other is not a pointer. Returns true if a diagnostic is
|
|
/// emitted.
|
|
bool DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
|
|
SourceLocation QuestionLoc);
|
|
|
|
/// type checking for vector binary operators.
|
|
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign,
|
|
bool AllowBothBool, bool AllowBoolConversion,
|
|
bool AllowBoolOperation, bool ReportInvalid);
|
|
|
|
/// Return a signed ext_vector_type that is of identical size and number of
|
|
/// elements. For floating point vectors, return an integer type of identical
|
|
/// size and number of elements. In the non ext_vector_type case, search from
|
|
/// the largest type to the smallest type to avoid cases where long long ==
|
|
/// long, where long gets picked over long long.
|
|
QualType GetSignedVectorType(QualType V);
|
|
QualType GetSignedSizelessVectorType(QualType V);
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckSizelessVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc);
|
|
|
|
/// Context in which we're performing a usual arithmetic conversion.
|
|
enum ArithConvKind {
|
|
/// An arithmetic operation.
|
|
ACK_Arithmetic,
|
|
/// A bitwise operation.
|
|
ACK_BitwiseOp,
|
|
/// A comparison.
|
|
ACK_Comparison,
|
|
/// A conditional (?:) operator.
|
|
ACK_Conditional,
|
|
/// A compound assignment expression.
|
|
ACK_CompAssign,
|
|
};
|
|
|
|
// type checking for sizeless vector binary operators.
|
|
QualType CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign,
|
|
ArithConvKind OperationKind);
|
|
|
|
/// Type checking for matrix binary operators.
|
|
QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
bool IsCompAssign);
|
|
QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign);
|
|
|
|
/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from
|
|
/// the first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE
|
|
/// VLST) allowed?
|
|
///
|
|
/// This will also return false if the two given types do not make sense from
|
|
/// the perspective of SVE bitcasts.
|
|
bool isValidSveBitcast(QualType srcType, QualType destType);
|
|
|
|
/// Are the two types matrix types and do they have the same dimensions i.e.
|
|
/// do they have the same number of rows and the same number of columns?
|
|
bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
|
|
|
|
bool areVectorTypesSameSize(QualType srcType, QualType destType);
|
|
|
|
/// Are the two types lax-compatible vector types? That is, given
|
|
/// that one of them is a vector, do they have equal storage sizes,
|
|
/// where the storage size is the number of elements times the element
|
|
/// size?
|
|
///
|
|
/// This will also return false if either of the types is neither a
|
|
/// vector nor a real type.
|
|
bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
|
|
|
|
/// Is this a legal conversion between two types, one of which is
|
|
/// known to be a vector type?
|
|
bool isLaxVectorConversion(QualType srcType, QualType destType);
|
|
|
|
// This returns true if at least one of the types is an altivec vector.
|
|
bool anyAltivecTypes(QualType srcType, QualType destType);
|
|
|
|
// type checking C++ declaration initializers (C++ [dcl.init]).
|
|
|
|
/// Check a cast of an unknown-any type. We intentionally only
|
|
/// trigger this for C-style casts.
|
|
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
|
|
Expr *CastExpr, CastKind &CastKind,
|
|
ExprValueKind &VK, CXXCastPath &Path);
|
|
|
|
/// Force an expression with unknown-type to an expression of the
|
|
/// given type.
|
|
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
|
|
|
|
/// Type-check an expression that's being passed to an
|
|
/// __unknown_anytype parameter.
|
|
ExprResult checkUnknownAnyArg(SourceLocation callLoc, Expr *result,
|
|
QualType ¶mType);
|
|
|
|
// CheckMatrixCast - Check type constraints for matrix casts.
|
|
// We allow casting between matrixes of the same dimensions i.e. when they
|
|
// have the same number of rows and column. Returns true if the cast is
|
|
// invalid.
|
|
bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
|
|
CastKind &Kind);
|
|
|
|
// CheckVectorCast - check type constraints for vectors.
|
|
// Since vectors are an extension, there are no C standard reference for this.
|
|
// We allow casting between vectors and integer datatypes of the same size.
|
|
// returns true if the cast is invalid
|
|
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
|
CastKind &Kind);
|
|
|
|
/// Prepare `SplattedExpr` for a vector splat operation, adding
|
|
/// implicit casts if necessary.
|
|
ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
|
|
|
|
// CheckExtVectorCast - check type constraints for extended vectors.
|
|
// Since vectors are an extension, there are no C standard reference for this.
|
|
// We allow casting between vectors and integer datatypes of the same size,
|
|
// or vectors and the element type of that vector.
|
|
// returns the cast expr
|
|
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
|
|
CastKind &Kind);
|
|
|
|
QualType PreferredConditionType(ConditionKind K) const {
|
|
return K == ConditionKind::Switch ? Context.IntTy : Context.BoolTy;
|
|
}
|
|
|
|
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
|
|
// functions and arrays to their respective pointers (C99 6.3.2.1).
|
|
ExprResult UsualUnaryConversions(Expr *E);
|
|
|
|
/// CallExprUnaryConversions - a special case of an unary conversion
|
|
/// performed on a function designator of a call expression.
|
|
ExprResult CallExprUnaryConversions(Expr *E);
|
|
|
|
// DefaultFunctionArrayConversion - converts functions and arrays
|
|
// to their respective pointers (C99 6.3.2.1).
|
|
ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
|
|
|
|
// DefaultFunctionArrayLvalueConversion - converts functions and
|
|
// arrays to their respective pointers and performs the
|
|
// lvalue-to-rvalue conversion.
|
|
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
|
|
bool Diagnose = true);
|
|
|
|
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
|
|
// the operand. This function is a no-op if the operand has a function type
|
|
// or an array type.
|
|
ExprResult DefaultLvalueConversion(Expr *E);
|
|
|
|
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
// do not have a prototype. Integer promotions are performed on each
|
|
// argument, and arguments that have type float are promoted to double.
|
|
ExprResult DefaultArgumentPromotion(Expr *E);
|
|
|
|
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
Expr *Fn);
|
|
|
|
// Used for determining in which context a type is allowed to be passed to a
|
|
// vararg function.
|
|
enum VarArgKind {
|
|
VAK_Valid,
|
|
VAK_ValidInCXX11,
|
|
VAK_Undefined,
|
|
VAK_MSVCUndefined,
|
|
VAK_Invalid
|
|
};
|
|
|
|
/// Determine the degree of POD-ness for an expression.
|
|
/// Incomplete types are considered POD, since this check can be performed
|
|
/// when we're in an unevaluated context.
|
|
VarArgKind isValidVarArgType(const QualType &Ty);
|
|
|
|
/// Check to see if the given expression is a valid argument to a variadic
|
|
/// function, issuing a diagnostic if not.
|
|
void checkVariadicArgument(const Expr *E, VariadicCallType CT);
|
|
|
|
/// GatherArgumentsForCall - Collector argument expressions for various
|
|
/// form of call prototypes.
|
|
bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
unsigned FirstParam, ArrayRef<Expr *> Args,
|
|
SmallVectorImpl<Expr *> &AllArgs,
|
|
VariadicCallType CallType = VariadicDoesNotApply,
|
|
bool AllowExplicit = false,
|
|
bool IsListInitialization = false);
|
|
|
|
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
// will create a runtime trap if the resulting type is not a POD type.
|
|
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
|
|
FunctionDecl *FDecl);
|
|
|
|
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
|
|
// operands and then handles various conversions that are common to binary
|
|
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
// routine returns the first non-arithmetic type found. The client is
|
|
// responsible for emitting appropriate error diagnostics.
|
|
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, ArithConvKind ACK);
|
|
|
|
/// AssignConvertType - All of the 'assignment' semantic checks return this
|
|
/// enum to indicate whether the assignment was allowed. These checks are
|
|
/// done for simple assignments, as well as initialization, return from
|
|
/// function, argument passing, etc. The query is phrased in terms of a
|
|
/// source and destination type.
|
|
enum AssignConvertType {
|
|
/// Compatible - the types are compatible according to the standard.
|
|
Compatible,
|
|
|
|
/// PointerToInt - The assignment converts a pointer to an int, which we
|
|
/// accept as an extension.
|
|
PointerToInt,
|
|
|
|
/// IntToPointer - The assignment converts an int to a pointer, which we
|
|
/// accept as an extension.
|
|
IntToPointer,
|
|
|
|
/// FunctionVoidPointer - The assignment is between a function pointer and
|
|
/// void*, which the standard doesn't allow, but we accept as an extension.
|
|
FunctionVoidPointer,
|
|
|
|
/// IncompatiblePointer - The assignment is between two pointers types that
|
|
/// are not compatible, but we accept them as an extension.
|
|
IncompatiblePointer,
|
|
|
|
/// IncompatibleFunctionPointer - The assignment is between two function
|
|
/// pointers types that are not compatible, but we accept them as an
|
|
/// extension.
|
|
IncompatibleFunctionPointer,
|
|
|
|
/// IncompatibleFunctionPointerStrict - The assignment is between two
|
|
/// function pointer types that are not identical, but are compatible,
|
|
/// unless compiled with -fsanitize=cfi, in which case the type mismatch
|
|
/// may trip an indirect call runtime check.
|
|
IncompatibleFunctionPointerStrict,
|
|
|
|
/// IncompatiblePointerSign - The assignment is between two pointers types
|
|
/// which point to integers which have a different sign, but are otherwise
|
|
/// identical. This is a subset of the above, but broken out because it's by
|
|
/// far the most common case of incompatible pointers.
|
|
IncompatiblePointerSign,
|
|
|
|
/// CompatiblePointerDiscardsQualifiers - The assignment discards
|
|
/// c/v/r qualifiers, which we accept as an extension.
|
|
CompatiblePointerDiscardsQualifiers,
|
|
|
|
/// IncompatiblePointerDiscardsQualifiers - The assignment
|
|
/// discards qualifiers that we don't permit to be discarded,
|
|
/// like address spaces.
|
|
IncompatiblePointerDiscardsQualifiers,
|
|
|
|
/// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
|
|
/// changes address spaces in nested pointer types which is not allowed.
|
|
/// For instance, converting __private int ** to __generic int ** is
|
|
/// illegal even though __private could be converted to __generic.
|
|
IncompatibleNestedPointerAddressSpaceMismatch,
|
|
|
|
/// IncompatibleNestedPointerQualifiers - The assignment is between two
|
|
/// nested pointer types, and the qualifiers other than the first two
|
|
/// levels differ e.g. char ** -> const char **, but we accept them as an
|
|
/// extension.
|
|
IncompatibleNestedPointerQualifiers,
|
|
|
|
/// IncompatibleVectors - The assignment is between two vector types that
|
|
/// have the same size, which we accept as an extension.
|
|
IncompatibleVectors,
|
|
|
|
/// IntToBlockPointer - The assignment converts an int to a block
|
|
/// pointer. We disallow this.
|
|
IntToBlockPointer,
|
|
|
|
/// IncompatibleBlockPointer - The assignment is between two block
|
|
/// pointers types that are not compatible.
|
|
IncompatibleBlockPointer,
|
|
|
|
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
|
|
/// id type and something else (that is incompatible with it). For example,
|
|
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
|
|
IncompatibleObjCQualifiedId,
|
|
|
|
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
|
|
/// object with __weak qualifier.
|
|
IncompatibleObjCWeakRef,
|
|
|
|
/// Incompatible - We reject this conversion outright, it is invalid to
|
|
/// represent it in the AST.
|
|
Incompatible
|
|
};
|
|
|
|
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
|
|
/// assignment conversion type specified by ConvTy. This returns true if the
|
|
/// conversion was invalid or false if the conversion was accepted.
|
|
bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, AssignmentAction Action,
|
|
bool *Complained = nullptr);
|
|
|
|
/// CheckAssignmentConstraints - Perform type checking for assignment,
|
|
/// argument passing, variable initialization, and function return values.
|
|
/// C99 6.5.16.
|
|
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
|
|
QualType LHSType,
|
|
QualType RHSType);
|
|
|
|
/// Check assignment constraints and optionally prepare for a conversion of
|
|
/// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
|
|
/// is true.
|
|
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
|
|
ExprResult &RHS, CastKind &Kind,
|
|
bool ConvertRHS = true);
|
|
|
|
/// Check assignment constraints for an assignment of RHS to LHSType.
|
|
///
|
|
/// \param LHSType The destination type for the assignment.
|
|
/// \param RHS The source expression for the assignment.
|
|
/// \param Diagnose If \c true, diagnostics may be produced when checking
|
|
/// for assignability. If a diagnostic is produced, \p RHS will be
|
|
/// set to ExprError(). Note that this function may still return
|
|
/// without producing a diagnostic, even for an invalid assignment.
|
|
/// \param DiagnoseCFAudited If \c true, the target is a function parameter
|
|
/// in an audited Core Foundation API and does not need to be checked
|
|
/// for ARC retain issues.
|
|
/// \param ConvertRHS If \c true, \p RHS will be updated to model the
|
|
/// conversions necessary to perform the assignment. If \c false,
|
|
/// \p Diagnose must also be \c false.
|
|
AssignConvertType CheckSingleAssignmentConstraints(
|
|
QualType LHSType, ExprResult &RHS, bool Diagnose = true,
|
|
bool DiagnoseCFAudited = false, bool ConvertRHS = true);
|
|
|
|
// If the lhs type is a transparent union, check whether we
|
|
// can initialize the transparent union with the given expression.
|
|
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
|
|
ExprResult &RHS);
|
|
|
|
/// the following "Check" methods will return a valid/converted QualType
|
|
/// or a null QualType (indicating an error diagnostic was issued).
|
|
|
|
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
|
|
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS);
|
|
|
|
/// Diagnose cases where a scalar was implicitly converted to a vector and
|
|
/// diagnose the underlying types. Otherwise, diagnose the error
|
|
/// as invalid vector logical operands for non-C++ cases.
|
|
QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS);
|
|
|
|
QualType CheckMultiplyDivideOperands( // C99 6.5.5
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
|
|
bool IsDivide);
|
|
QualType CheckRemainderOperands( // C99 6.5.5
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
bool IsCompAssign = false);
|
|
QualType CheckAdditionOperands( // C99 6.5.6
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc, QualType *CompLHSTy = nullptr);
|
|
QualType CheckSubtractionOperands( // C99 6.5.6
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
QualType *CompLHSTy = nullptr);
|
|
QualType CheckShiftOperands( // C99 6.5.7
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc, bool IsCompAssign = false);
|
|
void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
|
|
QualType CheckCompareOperands( // C99 6.5.8/9
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckLogicalOperands( // C99 6.5.[13,14]
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
// CheckAssignmentOperands is used for both simple and compound assignment.
|
|
// For simple assignment, pass both expressions and a null converted type.
|
|
// For compound assignment, pass both expressions and the converted type.
|
|
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
|
|
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType,
|
|
BinaryOperatorKind Opc);
|
|
|
|
/// To be used for checking whether the arguments being passed to
|
|
/// function exceeds the number of parameters expected for it.
|
|
static bool TooManyArguments(size_t NumParams, size_t NumArgs,
|
|
bool PartialOverloading = false) {
|
|
// We check whether we're just after a comma in code-completion.
|
|
if (NumArgs > 0 && PartialOverloading)
|
|
return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
|
|
return NumArgs > NumParams;
|
|
}
|
|
|
|
/// Whether the AST is currently being rebuilt to correct immediate
|
|
/// invocations. Immediate invocation candidates and references to consteval
|
|
/// functions aren't tracked when this is set.
|
|
bool RebuildingImmediateInvocation = false;
|
|
|
|
bool isAlwaysConstantEvaluatedContext() const {
|
|
const ExpressionEvaluationContextRecord &Ctx = currentEvaluationContext();
|
|
return (Ctx.isConstantEvaluated() || isConstantEvaluatedOverride) &&
|
|
!Ctx.InConditionallyConstantEvaluateContext;
|
|
}
|
|
|
|
/// Determines whether we are currently in a context that
|
|
/// is not evaluated as per C++ [expr] p5.
|
|
bool isUnevaluatedContext() const {
|
|
return currentEvaluationContext().isUnevaluated();
|
|
}
|
|
|
|
bool isImmediateFunctionContext() const {
|
|
return currentEvaluationContext().isImmediateFunctionContext();
|
|
}
|
|
|
|
bool isInLifetimeExtendingContext() const {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
return ExprEvalContexts.back().InLifetimeExtendingContext;
|
|
}
|
|
|
|
bool isCheckingDefaultArgumentOrInitializer() const {
|
|
const ExpressionEvaluationContextRecord &Ctx = currentEvaluationContext();
|
|
return (Ctx.Context ==
|
|
ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed) ||
|
|
Ctx.IsCurrentlyCheckingDefaultArgumentOrInitializer;
|
|
}
|
|
|
|
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
|
|
InnermostDeclarationWithDelayedImmediateInvocations() const {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
for (const auto &Ctx : llvm::reverse(ExprEvalContexts)) {
|
|
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
|
|
Ctx.DelayedDefaultInitializationContext)
|
|
return Ctx.DelayedDefaultInitializationContext;
|
|
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
|
|
Ctx.isUnevaluated())
|
|
break;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<ExpressionEvaluationContextRecord::InitializationContext>
|
|
OutermostDeclarationWithDelayedImmediateInvocations() const {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
std::optional<ExpressionEvaluationContextRecord::InitializationContext> Res;
|
|
for (auto &Ctx : llvm::reverse(ExprEvalContexts)) {
|
|
if (Ctx.Context == ExpressionEvaluationContext::PotentiallyEvaluated &&
|
|
!Ctx.DelayedDefaultInitializationContext && Res)
|
|
break;
|
|
if (Ctx.isConstantEvaluated() || Ctx.isImmediateFunctionContext() ||
|
|
Ctx.isUnevaluated())
|
|
break;
|
|
Res = Ctx.DelayedDefaultInitializationContext;
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
/// keepInLifetimeExtendingContext - Pull down InLifetimeExtendingContext
|
|
/// flag from previous context.
|
|
void keepInLifetimeExtendingContext() {
|
|
if (ExprEvalContexts.size() > 2 &&
|
|
parentEvaluationContext().InLifetimeExtendingContext) {
|
|
auto &LastRecord = ExprEvalContexts.back();
|
|
auto &PrevRecord = parentEvaluationContext();
|
|
LastRecord.InLifetimeExtendingContext =
|
|
PrevRecord.InLifetimeExtendingContext;
|
|
}
|
|
}
|
|
|
|
DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
|
|
return getDefaultedFunctionKind(FD).asComparison();
|
|
}
|
|
|
|
/// Returns a field in a CXXRecordDecl that has the same name as the decl \p
|
|
/// SelfAssigned when inside a CXXMethodDecl.
|
|
const FieldDecl *
|
|
getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned);
|
|
|
|
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
|
|
}
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
|
|
}
|
|
|
|
/// Abstract class used to diagnose incomplete types.
|
|
struct TypeDiagnoser {
|
|
TypeDiagnoser() {}
|
|
|
|
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
virtual ~TypeDiagnoser() {}
|
|
};
|
|
|
|
template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
|
|
protected:
|
|
unsigned DiagID;
|
|
std::tuple<const Ts &...> Args;
|
|
|
|
template <std::size_t... Is>
|
|
void emit(const SemaDiagnosticBuilder &DB,
|
|
std::index_sequence<Is...>) const {
|
|
// Apply all tuple elements to the builder in order.
|
|
bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
|
|
(void)Dummy;
|
|
}
|
|
|
|
public:
|
|
BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
|
|
: TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
|
|
assert(DiagID != 0 && "no diagnostic for type diagnoser");
|
|
}
|
|
|
|
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
|
|
const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
|
|
emit(DB, std::index_sequence_for<Ts...>());
|
|
DB << T;
|
|
}
|
|
};
|
|
|
|
/// A derivative of BoundTypeDiagnoser for which the diagnostic's type
|
|
/// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
|
|
/// For example, a diagnostic with no other parameters would generally have
|
|
/// the form "...%select{incomplete|sizeless}0 type %1...".
|
|
template <typename... Ts>
|
|
class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
|
|
public:
|
|
SizelessTypeDiagnoser(unsigned DiagID, const Ts &...Args)
|
|
: BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
|
|
|
|
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
|
|
const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
|
|
this->emit(DB, std::index_sequence_for<Ts...>());
|
|
DB << T->isSizelessType() << T;
|
|
}
|
|
};
|
|
|
|
/// Check an argument list for placeholders that we won't try to
|
|
/// handle later.
|
|
bool CheckArgsForPlaceholders(MultiExprArg args);
|
|
|
|
/// The C++ "std::source_location::__impl" struct, defined in
|
|
/// \<source_location>.
|
|
RecordDecl *StdSourceLocationImplDecl;
|
|
|
|
/// A stack of expression evaluation contexts.
|
|
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
|
|
|
|
// Set of failed immediate invocations to avoid double diagnosing.
|
|
llvm::SmallPtrSet<ConstantExpr *, 4> FailedImmediateInvocations;
|
|
|
|
/// List of SourceLocations where 'self' is implicitly retained inside a
|
|
/// block.
|
|
llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
|
|
ImplicitlyRetainedSelfLocs;
|
|
|
|
/// Do an explicit extend of the given block pointer if we're in ARC.
|
|
void maybeExtendBlockObject(ExprResult &E);
|
|
|
|
private:
|
|
static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
|
|
|
|
/// Methods for marking which expressions involve dereferencing a pointer
|
|
/// marked with the 'noderef' attribute. Expressions are checked bottom up as
|
|
/// they are parsed, meaning that a noderef pointer may not be accessed. For
|
|
/// example, in `&*p` where `p` is a noderef pointer, we will first parse the
|
|
/// `*p`, but need to check that `address of` is called on it. This requires
|
|
/// keeping a container of all pending expressions and checking if the address
|
|
/// of them are eventually taken.
|
|
void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
|
|
void CheckAddressOfNoDeref(const Expr *E);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Expressions
|
|
/// Implementations are in SemaExprCXX.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// The C++ "std::bad_alloc" class, which is defined by the C++
|
|
/// standard library.
|
|
LazyDeclPtr StdBadAlloc;
|
|
|
|
/// The C++ "std::align_val_t" enum class, which is defined by the C++
|
|
/// standard library.
|
|
LazyDeclPtr StdAlignValT;
|
|
|
|
/// The C++ "type_info" declaration, which is defined in \<typeinfo>.
|
|
RecordDecl *CXXTypeInfoDecl;
|
|
|
|
/// A flag to remember whether the implicit forms of operator new and delete
|
|
/// have been declared.
|
|
bool GlobalNewDeleteDeclared;
|
|
|
|
/// Delete-expressions to be analyzed at the end of translation unit
|
|
///
|
|
/// This list contains class members, and locations of delete-expressions
|
|
/// that could not be proven as to whether they mismatch with new-expression
|
|
/// used in initializer of the field.
|
|
llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
|
|
|
|
/// Handle the result of the special case name lookup for inheriting
|
|
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
|
|
/// constructor names in member using declarations, even if 'X' is not the
|
|
/// name of the corresponding type.
|
|
ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const IdentifierInfo &Name);
|
|
|
|
ParsedType getConstructorName(const IdentifierInfo &II,
|
|
SourceLocation NameLoc, Scope *S,
|
|
CXXScopeSpec &SS, bool EnteringContext);
|
|
ParsedType getDestructorName(const IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
ParsedType ObjectType, bool EnteringContext);
|
|
|
|
ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
|
|
ParsedType ObjectType);
|
|
|
|
/// Build a C++ typeid expression with a type operand.
|
|
ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand, SourceLocation RParenLoc);
|
|
|
|
/// Build a C++ typeid expression with an expression operand.
|
|
ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc,
|
|
Expr *Operand, SourceLocation RParenLoc);
|
|
|
|
/// ActOnCXXTypeid - Parse typeid( something ).
|
|
ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
bool isType, void *TyOrExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// Build a Microsoft __uuidof expression with a type operand.
|
|
ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand, SourceLocation RParenLoc);
|
|
|
|
/// Build a Microsoft __uuidof expression with an expression operand.
|
|
ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc,
|
|
Expr *Operand, SourceLocation RParenLoc);
|
|
|
|
/// ActOnCXXUuidof - Parse __uuidof( something ).
|
|
ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
bool isType, void *TyOrExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
//// ActOnCXXThis - Parse 'this' pointer.
|
|
ExprResult ActOnCXXThis(SourceLocation Loc);
|
|
|
|
/// Check whether the type of 'this' is valid in the current context.
|
|
bool CheckCXXThisType(SourceLocation Loc, QualType Type);
|
|
|
|
/// Build a CXXThisExpr and mark it referenced in the current context.
|
|
Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
|
|
void MarkThisReferenced(CXXThisExpr *This);
|
|
|
|
/// Try to retrieve the type of the 'this' pointer.
|
|
///
|
|
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
|
|
QualType getCurrentThisType();
|
|
|
|
/// When non-NULL, the C++ 'this' expression is allowed despite the
|
|
/// current context not being a non-static member function. In such cases,
|
|
/// this provides the type used for 'this'.
|
|
QualType CXXThisTypeOverride;
|
|
|
|
/// RAII object used to temporarily allow the C++ 'this' expression
|
|
/// to be used, with the given qualifiers on the current class type.
|
|
class CXXThisScopeRAII {
|
|
Sema &S;
|
|
QualType OldCXXThisTypeOverride;
|
|
bool Enabled;
|
|
|
|
public:
|
|
/// Introduce a new scope where 'this' may be allowed (when enabled),
|
|
/// using the given declaration (which is either a class template or a
|
|
/// class) along with the given qualifiers.
|
|
/// along with the qualifiers placed on '*this'.
|
|
CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
|
|
bool Enabled = true);
|
|
|
|
~CXXThisScopeRAII();
|
|
};
|
|
|
|
/// Make sure the value of 'this' is actually available in the current
|
|
/// context, if it is a potentially evaluated context.
|
|
///
|
|
/// \param Loc The location at which the capture of 'this' occurs.
|
|
///
|
|
/// \param Explicit Whether 'this' is explicitly captured in a lambda
|
|
/// capture list.
|
|
///
|
|
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
|
|
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
|
|
/// This is useful when enclosing lambdas must speculatively capture
|
|
/// 'this' that may or may not be used in certain specializations of
|
|
/// a nested generic lambda (depending on whether the name resolves to
|
|
/// a non-static member function or a static function).
|
|
/// \return returns 'true' if failed, 'false' if success.
|
|
bool CheckCXXThisCapture(
|
|
SourceLocation Loc, bool Explicit = false, bool BuildAndDiagnose = true,
|
|
const unsigned *const FunctionScopeIndexToStopAt = nullptr,
|
|
bool ByCopy = false);
|
|
|
|
/// Determine whether the given type is the type of *this that is used
|
|
/// outside of the body of a member function for a type that is currently
|
|
/// being defined.
|
|
bool isThisOutsideMemberFunctionBody(QualType BaseType);
|
|
|
|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
|
|
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
|
|
|
|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
|
|
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
|
|
|
|
//// ActOnCXXThrow - Parse throw expressions.
|
|
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
|
|
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
|
|
bool IsThrownVarInScope);
|
|
|
|
/// CheckCXXThrowOperand - Validate the operand of a throw.
|
|
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
|
|
|
|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
/// or creation of a value-initialized type ("int()").
|
|
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
|
|
SourceLocation LParenOrBraceLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenOrBraceLoc,
|
|
bool ListInitialization);
|
|
|
|
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenLoc,
|
|
bool ListInitialization);
|
|
|
|
/// Parsed a C++ 'new' expression (C++ 5.3.4).
|
|
///
|
|
/// E.g.:
|
|
/// @code new (memory) int[size][4] @endcode
|
|
/// or
|
|
/// @code ::new Foo(23, "hello") @endcode
|
|
///
|
|
/// \param StartLoc The first location of the expression.
|
|
/// \param UseGlobal True if 'new' was prefixed with '::'.
|
|
/// \param PlacementLParen Opening paren of the placement arguments.
|
|
/// \param PlacementArgs Placement new arguments.
|
|
/// \param PlacementRParen Closing paren of the placement arguments.
|
|
/// \param TypeIdParens If the type is in parens, the source range.
|
|
/// \param D The type to be allocated, as well as array dimensions.
|
|
/// \param Initializer The initializing expression or initializer-list, or
|
|
/// null if there is none.
|
|
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens, Declarator &D,
|
|
Expr *Initializer);
|
|
ExprResult
|
|
BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs, SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens, QualType AllocType,
|
|
TypeSourceInfo *AllocTypeInfo, std::optional<Expr *> ArraySize,
|
|
SourceRange DirectInitRange, Expr *Initializer);
|
|
|
|
/// Determine whether \p FD is an aligned allocation or deallocation
|
|
/// function that is unavailable.
|
|
bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
|
|
|
|
/// Produce diagnostics if \p FD is an aligned allocation or deallocation
|
|
/// function that is unavailable.
|
|
void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
|
|
SourceLocation Loc);
|
|
|
|
/// Checks that a type is suitable as the allocated type
|
|
/// in a new-expression.
|
|
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
|
|
SourceRange R);
|
|
|
|
/// The scope in which to find allocation functions.
|
|
enum AllocationFunctionScope {
|
|
/// Only look for allocation functions in the global scope.
|
|
AFS_Global,
|
|
/// Only look for allocation functions in the scope of the
|
|
/// allocated class.
|
|
AFS_Class,
|
|
/// Look for allocation functions in both the global scope
|
|
/// and in the scope of the allocated class.
|
|
AFS_Both
|
|
};
|
|
|
|
/// Finds the overloads of operator new and delete that are appropriate
|
|
/// for the allocation.
|
|
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
|
|
AllocationFunctionScope NewScope,
|
|
AllocationFunctionScope DeleteScope,
|
|
QualType AllocType, bool IsArray,
|
|
bool &PassAlignment, MultiExprArg PlaceArgs,
|
|
FunctionDecl *&OperatorNew,
|
|
FunctionDecl *&OperatorDelete,
|
|
bool Diagnose = true);
|
|
|
|
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
|
|
/// delete. These are:
|
|
/// @code
|
|
/// // C++03:
|
|
/// void* operator new(std::size_t) throw(std::bad_alloc);
|
|
/// void* operator new[](std::size_t) throw(std::bad_alloc);
|
|
/// void operator delete(void *) throw();
|
|
/// void operator delete[](void *) throw();
|
|
/// // C++11:
|
|
/// void* operator new(std::size_t);
|
|
/// void* operator new[](std::size_t);
|
|
/// void operator delete(void *) noexcept;
|
|
/// void operator delete[](void *) noexcept;
|
|
/// // C++1y:
|
|
/// void* operator new(std::size_t);
|
|
/// void* operator new[](std::size_t);
|
|
/// void operator delete(void *) noexcept;
|
|
/// void operator delete[](void *) noexcept;
|
|
/// void operator delete(void *, std::size_t) noexcept;
|
|
/// void operator delete[](void *, std::size_t) noexcept;
|
|
/// @endcode
|
|
/// Note that the placement and nothrow forms of new are *not* implicitly
|
|
/// declared. Their use requires including \<new\>.
|
|
void DeclareGlobalNewDelete();
|
|
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
|
|
ArrayRef<QualType> Params);
|
|
|
|
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
|
|
DeclarationName Name, FunctionDecl *&Operator,
|
|
bool Diagnose = true, bool WantSize = false,
|
|
bool WantAligned = false);
|
|
FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
|
|
bool CanProvideSize,
|
|
bool Overaligned,
|
|
DeclarationName Name);
|
|
FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
|
|
CXXRecordDecl *RD);
|
|
|
|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
|
|
/// @code ::delete ptr; @endcode
|
|
/// or
|
|
/// @code delete [] ptr; @endcode
|
|
ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
|
|
bool ArrayForm, Expr *Operand);
|
|
void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
|
|
bool IsDelete, bool CallCanBeVirtual,
|
|
bool WarnOnNonAbstractTypes,
|
|
SourceLocation DtorLoc);
|
|
|
|
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
|
|
Expr *Operand, SourceLocation RParen);
|
|
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
|
|
SourceLocation RParen);
|
|
|
|
ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
ParsedType &ObjectType,
|
|
bool &MayBePseudoDestructor);
|
|
|
|
ExprResult BuildPseudoDestructorExpr(
|
|
Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind,
|
|
const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc,
|
|
SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType);
|
|
|
|
ExprResult ActOnPseudoDestructorExpr(
|
|
Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc,
|
|
SourceLocation TildeLoc, UnqualifiedId &SecondTypeName);
|
|
|
|
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
SourceLocation TildeLoc,
|
|
const DeclSpec &DS);
|
|
|
|
/// MaybeCreateExprWithCleanups - If the current full-expression
|
|
/// requires any cleanups, surround it with a ExprWithCleanups node.
|
|
/// Otherwise, just returns the passed-in expression.
|
|
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
|
|
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
|
|
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
|
|
|
|
ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
|
|
return ActOnFinishFullExpr(
|
|
Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
|
|
}
|
|
ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
|
|
bool DiscardedValue, bool IsConstexpr = false,
|
|
bool IsTemplateArgument = false);
|
|
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
|
|
|
|
/// Process the expression contained within a decltype. For such expressions,
|
|
/// certain semantic checks on temporaries are delayed until this point, and
|
|
/// are omitted for the 'topmost' call in the decltype expression. If the
|
|
/// topmost call bound a temporary, strip that temporary off the expression.
|
|
ExprResult ActOnDecltypeExpression(Expr *E);
|
|
|
|
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
|
|
bool IsUDSuffix);
|
|
|
|
bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
|
|
|
|
ConditionResult ActOnConditionVariable(Decl *ConditionVar,
|
|
SourceLocation StmtLoc,
|
|
ConditionKind CK);
|
|
|
|
/// Check the use of the given variable as a C++ condition in an if,
|
|
/// while, do-while, or switch statement.
|
|
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
|
|
SourceLocation StmtLoc, ConditionKind CK);
|
|
|
|
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
|
|
ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
|
|
|
|
/// Helper function to determine whether this is the (deprecated) C++
|
|
/// conversion from a string literal to a pointer to non-const char or
|
|
/// non-const wchar_t (for narrow and wide string literals,
|
|
/// respectively).
|
|
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType using the pre-computed implicit
|
|
/// conversion sequence ICS. Returns the converted
|
|
/// expression. Action is the kind of conversion we're performing,
|
|
/// used in the error message.
|
|
ExprResult PerformImplicitConversion(
|
|
Expr *From, QualType ToType, const ImplicitConversionSequence &ICS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType by following the standard
|
|
/// conversion sequence SCS. Returns the converted
|
|
/// expression. Flavor is the context in which we're performing this
|
|
/// conversion, for use in error messages.
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
const StandardConversionSequence &SCS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK);
|
|
|
|
bool CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N);
|
|
|
|
/// Parsed one of the type trait support pseudo-functions.
|
|
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<ParsedType> Args,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// ActOnArrayTypeTrait - Parsed one of the binary type trait support
|
|
/// pseudo-functions.
|
|
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc,
|
|
ParsedType LhsTy, Expr *DimExpr,
|
|
SourceLocation RParen);
|
|
|
|
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc,
|
|
TypeSourceInfo *TSInfo, Expr *DimExpr,
|
|
SourceLocation RParen);
|
|
|
|
/// ActOnExpressionTrait - Parsed one of the unary type trait support
|
|
/// pseudo-functions.
|
|
ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc,
|
|
Expr *Queried, SourceLocation RParen);
|
|
|
|
ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc,
|
|
Expr *Queried, SourceLocation RParen);
|
|
|
|
QualType CheckPointerToMemberOperands( // C++ 5.5
|
|
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc,
|
|
bool isIndirect);
|
|
QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation QuestionLoc);
|
|
|
|
QualType CheckSizelessVectorConditionalTypes(ExprResult &Cond,
|
|
ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation QuestionLoc);
|
|
|
|
/// Check the operands of ?: under C++ semantics.
|
|
///
|
|
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
|
|
/// extension. In this case, LHS == Cond. (But they're not aliases.)
|
|
///
|
|
/// This function also implements GCC's vector extension and the
|
|
/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
|
|
/// permit the use of a?b:c where the type of a is that of a integer vector
|
|
/// with the same number of elements and size as the vectors of b and c. If
|
|
/// one of either b or c is a scalar it is implicitly converted to match the
|
|
/// type of the vector. Otherwise the expression is ill-formed. If both b and
|
|
/// c are scalars, then b and c are checked and converted to the type of a if
|
|
/// possible.
|
|
///
|
|
/// The expressions are evaluated differently for GCC's and OpenCL's
|
|
/// extensions. For the GCC extension, the ?: operator is evaluated as
|
|
/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
|
|
/// For the OpenCL extensions, the ?: operator is evaluated as
|
|
/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
|
|
/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
|
|
QualType CXXCheckConditionalOperands( // C++ 5.16
|
|
ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK,
|
|
ExprObjectKind &OK, SourceLocation questionLoc);
|
|
|
|
/// Find a merged pointer type and convert the two expressions to it.
|
|
///
|
|
/// This finds the composite pointer type for \p E1 and \p E2 according to
|
|
/// C++2a [expr.type]p3. It converts both expressions to this type and returns
|
|
/// it. It does not emit diagnostics (FIXME: that's not true if \p
|
|
/// ConvertArgs is \c true).
|
|
///
|
|
/// \param Loc The location of the operator requiring these two expressions to
|
|
/// be converted to the composite pointer type.
|
|
///
|
|
/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target
|
|
/// type.
|
|
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
|
|
bool ConvertArgs = true);
|
|
QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1,
|
|
ExprResult &E2, bool ConvertArgs = true) {
|
|
Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
|
|
QualType Composite =
|
|
FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
|
|
E1 = E1Tmp;
|
|
E2 = E2Tmp;
|
|
return Composite;
|
|
}
|
|
|
|
/// MaybeBindToTemporary - If the passed in expression has a record type with
|
|
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
|
|
/// it simply returns the passed in expression.
|
|
ExprResult MaybeBindToTemporary(Expr *E);
|
|
|
|
/// IgnoredValueConversions - Given that an expression's result is
|
|
/// syntactically ignored, perform any conversions that are
|
|
/// required.
|
|
ExprResult IgnoredValueConversions(Expr *E);
|
|
|
|
ExprResult CheckUnevaluatedOperand(Expr *E);
|
|
|
|
/// Process any TypoExprs in the given Expr and its children,
|
|
/// generating diagnostics as appropriate and returning a new Expr if there
|
|
/// were typos that were all successfully corrected and ExprError if one or
|
|
/// more typos could not be corrected.
|
|
///
|
|
/// \param E The Expr to check for TypoExprs.
|
|
///
|
|
/// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
|
|
/// initializer.
|
|
///
|
|
/// \param RecoverUncorrectedTypos If true, when typo correction fails, it
|
|
/// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
|
|
///
|
|
/// \param Filter A function applied to a newly rebuilt Expr to determine if
|
|
/// it is an acceptable/usable result from a single combination of typo
|
|
/// corrections. As long as the filter returns ExprError, different
|
|
/// combinations of corrections will be tried until all are exhausted.
|
|
ExprResult CorrectDelayedTyposInExpr(
|
|
Expr *E, VarDecl *InitDecl = nullptr,
|
|
bool RecoverUncorrectedTypos = false,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter =
|
|
[](Expr *E) -> ExprResult { return E; });
|
|
|
|
ExprResult CorrectDelayedTyposInExpr(
|
|
ExprResult ER, VarDecl *InitDecl = nullptr,
|
|
bool RecoverUncorrectedTypos = false,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter =
|
|
[](Expr *E) -> ExprResult { return E; }) {
|
|
return ER.isInvalid()
|
|
? ER
|
|
: CorrectDelayedTyposInExpr(ER.get(), InitDecl,
|
|
RecoverUncorrectedTypos, Filter);
|
|
}
|
|
|
|
/// Describes the result of an "if-exists" condition check.
|
|
enum IfExistsResult {
|
|
/// The symbol exists.
|
|
IER_Exists,
|
|
|
|
/// The symbol does not exist.
|
|
IER_DoesNotExist,
|
|
|
|
/// The name is a dependent name, so the results will differ
|
|
/// from one instantiation to the next.
|
|
IER_Dependent,
|
|
|
|
/// An error occurred.
|
|
IER_Error
|
|
};
|
|
|
|
IfExistsResult
|
|
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &TargetNameInfo);
|
|
|
|
IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S,
|
|
SourceLocation KeywordLoc,
|
|
bool IsIfExists, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name);
|
|
|
|
RequiresExprBodyDecl *
|
|
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
|
|
ArrayRef<ParmVarDecl *> LocalParameters,
|
|
Scope *BodyScope);
|
|
void ActOnFinishRequiresExpr();
|
|
concepts::Requirement *ActOnSimpleRequirement(Expr *E);
|
|
concepts::Requirement *ActOnTypeRequirement(SourceLocation TypenameKWLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const IdentifierInfo *TypeName,
|
|
TemplateIdAnnotation *TemplateId);
|
|
concepts::Requirement *ActOnCompoundRequirement(Expr *E,
|
|
SourceLocation NoexceptLoc);
|
|
concepts::Requirement *ActOnCompoundRequirement(
|
|
Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TypeConstraint, unsigned Depth);
|
|
concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
|
|
concepts::ExprRequirement *BuildExprRequirement(
|
|
Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
|
|
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
|
|
concepts::ExprRequirement *BuildExprRequirement(
|
|
concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
|
|
bool IsSatisfied, SourceLocation NoexceptLoc,
|
|
concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
|
|
concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
|
|
concepts::TypeRequirement *BuildTypeRequirement(
|
|
concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
|
|
concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
|
|
concepts::NestedRequirement *
|
|
BuildNestedRequirement(StringRef InvalidConstraintEntity,
|
|
const ASTConstraintSatisfaction &Satisfaction);
|
|
ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
|
|
RequiresExprBodyDecl *Body,
|
|
SourceLocation LParenLoc,
|
|
ArrayRef<ParmVarDecl *> LocalParameters,
|
|
SourceLocation RParenLoc,
|
|
ArrayRef<concepts::Requirement *> Requirements,
|
|
SourceLocation ClosingBraceLoc);
|
|
|
|
private:
|
|
ExprResult BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
|
|
bool IsDelete);
|
|
|
|
void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
|
|
void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
|
|
bool DeleteWasArrayForm);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Member Access Expressions
|
|
/// Implementations are in SemaExprMember.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Check whether an expression might be an implicit class member access.
|
|
bool isPotentialImplicitMemberAccess(const CXXScopeSpec &SS, LookupResult &R,
|
|
bool IsAddressOfOperand);
|
|
|
|
/// Builds an expression which might be an implicit member expression.
|
|
ExprResult BuildPossibleImplicitMemberExpr(
|
|
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs, const Scope *S);
|
|
|
|
/// Builds an implicit member access expression. The current context
|
|
/// is known to be an instance method, and the given unqualified lookup
|
|
/// set is known to contain only instance members, at least one of which
|
|
/// is from an appropriate type.
|
|
ExprResult
|
|
BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsDefiniteInstance, const Scope *S);
|
|
|
|
ExprResult ActOnDependentMemberExpr(
|
|
Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
/// The main callback when the parser finds something like
|
|
/// expression . [nested-name-specifier] identifier
|
|
/// expression -> [nested-name-specifier] identifier
|
|
/// where 'identifier' encompasses a fairly broad spectrum of
|
|
/// possibilities, including destructor and operator references.
|
|
///
|
|
/// \param OpKind either tok::arrow or tok::period
|
|
/// \param ObjCImpDecl the current Objective-C \@implementation
|
|
/// decl; this is an ugly hack around the fact that Objective-C
|
|
/// \@implementations aren't properly put in the context chain
|
|
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind, CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Member, Decl *ObjCImpDecl);
|
|
|
|
MemberExpr *
|
|
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
|
|
NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
|
|
ValueDecl *Member, DeclAccessPair FoundDecl,
|
|
bool HadMultipleCandidates,
|
|
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
|
|
// Check whether the declarations we found through a nested-name
|
|
// specifier in a member expression are actually members of the base
|
|
// type. The restriction here is:
|
|
//
|
|
// C++ [expr.ref]p2:
|
|
// ... In these cases, the id-expression shall name a
|
|
// member of the class or of one of its base classes.
|
|
//
|
|
// So it's perfectly legitimate for the nested-name specifier to name
|
|
// an unrelated class, and for us to find an overload set including
|
|
// decls from classes which are not superclasses, as long as the decl
|
|
// we actually pick through overload resolution is from a superclass.
|
|
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R);
|
|
|
|
// This struct is for use by ActOnMemberAccess to allow
|
|
// BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
|
|
// changing the access operator from a '.' to a '->' (to see if that is the
|
|
// change needed to fix an error about an unknown member, e.g. when the class
|
|
// defines a custom operator->).
|
|
struct ActOnMemberAccessExtraArgs {
|
|
Scope *S;
|
|
UnqualifiedId &Id;
|
|
Decl *ObjCImpDecl;
|
|
};
|
|
|
|
ExprResult BuildMemberReferenceExpr(
|
|
Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
|
|
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
|
|
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
|
|
|
|
ExprResult
|
|
BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
|
|
bool IsArrow, const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope, LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
const Scope *S, bool SuppressQualifierCheck = false,
|
|
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
|
|
|
|
ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
|
|
SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo);
|
|
|
|
/// Perform conversions on the LHS of a member access expression.
|
|
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
|
|
|
|
ExprResult BuildAnonymousStructUnionMemberReference(
|
|
const CXXScopeSpec &SS, SourceLocation nameLoc,
|
|
IndirectFieldDecl *indirectField,
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
|
|
Expr *baseObjectExpr = nullptr, SourceLocation opLoc = SourceLocation());
|
|
|
|
private:
|
|
void CheckMemberAccessOfNoDeref(const MemberExpr *E);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Initializers
|
|
/// Implementations are in SemaInit.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Stack of types that correspond to the parameter entities that are
|
|
/// currently being copy-initialized. Can be empty.
|
|
llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
|
|
|
|
llvm::DenseMap<unsigned, CXXDeductionGuideDecl *>
|
|
AggregateDeductionCandidates;
|
|
|
|
bool IsStringInit(Expr *Init, const ArrayType *AT);
|
|
|
|
/// Determine whether we can perform aggregate initialization for the purposes
|
|
/// of overload resolution.
|
|
bool CanPerformAggregateInitializationForOverloadResolution(
|
|
const InitializedEntity &Entity, InitListExpr *From);
|
|
|
|
ExprResult ActOnDesignatedInitializer(Designation &Desig,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax, ExprResult Init);
|
|
|
|
/// Check that the lifetime of the initializer (and its subobjects) is
|
|
/// sufficient for initializing the entity, and perform lifetime extension
|
|
/// (when permitted) if not.
|
|
void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
|
|
|
|
MaterializeTemporaryExpr *
|
|
CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
|
|
bool BoundToLvalueReference);
|
|
|
|
/// If \p E is a prvalue denoting an unmaterialized temporary, materialize
|
|
/// it as an xvalue. In C++98, the result will still be a prvalue, because
|
|
/// we don't have xvalues there.
|
|
ExprResult TemporaryMaterializationConversion(Expr *E);
|
|
|
|
ExprResult PerformQualificationConversion(
|
|
Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
|
|
CheckedConversionKind CCK = CheckedConversionKind::Implicit);
|
|
|
|
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
|
|
ExprResult Init);
|
|
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
|
|
SourceLocation EqualLoc, ExprResult Init,
|
|
bool TopLevelOfInitList = false,
|
|
bool AllowExplicit = false);
|
|
|
|
QualType DeduceTemplateSpecializationFromInitializer(
|
|
TypeSourceInfo *TInfo, const InitializedEntity &Entity,
|
|
const InitializationKind &Kind, MultiExprArg Init);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Lambda Expressions
|
|
/// Implementations are in SemaLambda.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Create a new lambda closure type.
|
|
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
|
|
TypeSourceInfo *Info,
|
|
unsigned LambdaDependencyKind,
|
|
LambdaCaptureDefault CaptureDefault);
|
|
|
|
/// Number lambda for linkage purposes if necessary.
|
|
void handleLambdaNumbering(CXXRecordDecl *Class, CXXMethodDecl *Method,
|
|
std::optional<CXXRecordDecl::LambdaNumbering>
|
|
NumberingOverride = std::nullopt);
|
|
|
|
/// Endow the lambda scope info with the relevant properties.
|
|
void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator,
|
|
SourceRange IntroducerRange,
|
|
LambdaCaptureDefault CaptureDefault,
|
|
SourceLocation CaptureDefaultLoc, bool ExplicitParams,
|
|
bool Mutable);
|
|
|
|
CXXMethodDecl *CreateLambdaCallOperator(SourceRange IntroducerRange,
|
|
CXXRecordDecl *Class);
|
|
|
|
void AddTemplateParametersToLambdaCallOperator(
|
|
CXXMethodDecl *CallOperator, CXXRecordDecl *Class,
|
|
TemplateParameterList *TemplateParams);
|
|
|
|
void CompleteLambdaCallOperator(
|
|
CXXMethodDecl *Method, SourceLocation LambdaLoc,
|
|
SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause,
|
|
TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind,
|
|
StorageClass SC, ArrayRef<ParmVarDecl *> Params,
|
|
bool HasExplicitResultType);
|
|
|
|
/// Returns true if the explicit object parameter was invalid.
|
|
bool DiagnoseInvalidExplicitObjectParameterInLambda(CXXMethodDecl *Method,
|
|
SourceLocation CallLoc);
|
|
|
|
/// Perform initialization analysis of the init-capture and perform
|
|
/// any implicit conversions such as an lvalue-to-rvalue conversion if
|
|
/// not being used to initialize a reference.
|
|
ParsedType actOnLambdaInitCaptureInitialization(
|
|
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
|
|
IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
|
|
return ParsedType::make(buildLambdaInitCaptureInitialization(
|
|
Loc, ByRef, EllipsisLoc, std::nullopt, Id,
|
|
InitKind != LambdaCaptureInitKind::CopyInit, Init));
|
|
}
|
|
QualType buildLambdaInitCaptureInitialization(
|
|
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
|
|
std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
|
|
bool DirectInit, Expr *&Init);
|
|
|
|
/// Create a dummy variable within the declcontext of the lambda's
|
|
/// call operator, for name lookup purposes for a lambda init capture.
|
|
///
|
|
/// CodeGen handles emission of lambda captures, ignoring these dummy
|
|
/// variables appropriately.
|
|
VarDecl *createLambdaInitCaptureVarDecl(
|
|
SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc,
|
|
IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx);
|
|
|
|
/// Add an init-capture to a lambda scope.
|
|
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef);
|
|
|
|
/// Note that we have finished the explicit captures for the
|
|
/// given lambda.
|
|
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
|
|
|
|
/// Deduce a block or lambda's return type based on the return
|
|
/// statements present in the body.
|
|
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
|
|
|
|
/// Once the Lambdas capture are known, we can start to create the closure,
|
|
/// call operator method, and keep track of the captures.
|
|
/// We do the capture lookup here, but they are not actually captured until
|
|
/// after we know what the qualifiers of the call operator are.
|
|
void ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro,
|
|
Scope *CurContext);
|
|
|
|
/// This is called after parsing the explicit template parameter list
|
|
/// on a lambda (if it exists) in C++2a.
|
|
void ActOnLambdaExplicitTemplateParameterList(LambdaIntroducer &Intro,
|
|
SourceLocation LAngleLoc,
|
|
ArrayRef<NamedDecl *> TParams,
|
|
SourceLocation RAngleLoc,
|
|
ExprResult RequiresClause);
|
|
|
|
void ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro,
|
|
SourceLocation MutableLoc);
|
|
|
|
void ActOnLambdaClosureParameters(
|
|
Scope *LambdaScope,
|
|
MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo);
|
|
|
|
/// ActOnStartOfLambdaDefinition - This is called just before we start
|
|
/// parsing the body of a lambda; it analyzes the explicit captures and
|
|
/// arguments, and sets up various data-structures for the body of the
|
|
/// lambda.
|
|
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
|
|
Declarator &ParamInfo, const DeclSpec &DS);
|
|
|
|
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
|
|
/// is invoked to pop the information about the lambda.
|
|
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
|
|
bool IsInstantiation = false);
|
|
|
|
/// ActOnLambdaExpr - This is called when the body of a lambda expression
|
|
/// was successfully completed.
|
|
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body);
|
|
|
|
/// Does copying/destroying the captured variable have side effects?
|
|
bool CaptureHasSideEffects(const sema::Capture &From);
|
|
|
|
/// Diagnose if an explicit lambda capture is unused. Returns true if a
|
|
/// diagnostic is emitted.
|
|
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
|
|
const sema::Capture &From);
|
|
|
|
/// Build a FieldDecl suitable to hold the given capture.
|
|
FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
|
|
|
|
/// Initialize the given capture with a suitable expression.
|
|
ExprResult BuildCaptureInit(const sema::Capture &Capture,
|
|
SourceLocation ImplicitCaptureLoc,
|
|
bool IsOpenMPMapping = false);
|
|
|
|
/// Complete a lambda-expression having processed and attached the
|
|
/// lambda body.
|
|
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
sema::LambdaScopeInfo *LSI);
|
|
|
|
/// Get the return type to use for a lambda's conversion function(s) to
|
|
/// function pointer type, given the type of the call operator.
|
|
QualType
|
|
getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
|
|
CallingConv CC);
|
|
|
|
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
|
|
SourceLocation ConvLocation,
|
|
CXXConversionDecl *Conv, Expr *Src);
|
|
|
|
class LambdaScopeForCallOperatorInstantiationRAII
|
|
: private FunctionScopeRAII {
|
|
public:
|
|
LambdaScopeForCallOperatorInstantiationRAII(
|
|
Sema &SemasRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL,
|
|
LocalInstantiationScope &Scope,
|
|
bool ShouldAddDeclsFromParentScope = true);
|
|
};
|
|
|
|
/// Compute the mangling number context for a lambda expression or
|
|
/// block literal. Also return the extra mangling decl if any.
|
|
///
|
|
/// \param DC - The DeclContext containing the lambda expression or
|
|
/// block literal.
|
|
std::tuple<MangleNumberingContext *, Decl *>
|
|
getCurrentMangleNumberContext(const DeclContext *DC);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Name Lookup
|
|
///
|
|
/// These routines provide name lookup that is used during semantic
|
|
/// analysis to resolve the various kinds of names (identifiers,
|
|
/// overloaded operator names, constructor names, etc.) into zero or
|
|
/// more declarations within a particular scope. The major entry
|
|
/// points are LookupName, which performs unqualified name lookup,
|
|
/// and LookupQualifiedName, which performs qualified name lookup.
|
|
///
|
|
/// All name lookup is performed based on some specific criteria,
|
|
/// which specify what names will be visible to name lookup and how
|
|
/// far name lookup should work. These criteria are important both
|
|
/// for capturing language semantics (certain lookups will ignore
|
|
/// certain names, for example) and for performance, since name
|
|
/// lookup is often a bottleneck in the compilation of C++. Name
|
|
/// lookup criteria is specified via the LookupCriteria enumeration.
|
|
///
|
|
/// The results of name lookup can vary based on the kind of name
|
|
/// lookup performed, the current language, and the translation
|
|
/// unit. In C, for example, name lookup will either return nothing
|
|
/// (no entity found) or a single declaration. In C++, name lookup
|
|
/// can additionally refer to a set of overloaded functions or
|
|
/// result in an ambiguity. All of the possible results of name
|
|
/// lookup are captured by the LookupResult class, which provides
|
|
/// the ability to distinguish among them.
|
|
///
|
|
/// Implementations are in SemaLookup.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Tracks whether we are in a context where typo correction is
|
|
/// disabled.
|
|
bool DisableTypoCorrection;
|
|
|
|
/// The number of typos corrected by CorrectTypo.
|
|
unsigned TyposCorrected;
|
|
|
|
typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
|
|
typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
|
|
|
|
/// A cache containing identifiers for which typo correction failed and
|
|
/// their locations, so that repeated attempts to correct an identifier in a
|
|
/// given location are ignored if typo correction already failed for it.
|
|
IdentifierSourceLocations TypoCorrectionFailures;
|
|
|
|
/// SpecialMemberOverloadResult - The overloading result for a special member
|
|
/// function.
|
|
///
|
|
/// This is basically a wrapper around PointerIntPair. The lowest bits of the
|
|
/// integer are used to determine whether overload resolution succeeded.
|
|
class SpecialMemberOverloadResult {
|
|
public:
|
|
enum Kind { NoMemberOrDeleted, Ambiguous, Success };
|
|
|
|
private:
|
|
llvm::PointerIntPair<CXXMethodDecl *, 2> Pair;
|
|
|
|
public:
|
|
SpecialMemberOverloadResult() {}
|
|
SpecialMemberOverloadResult(CXXMethodDecl *MD)
|
|
: Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
|
|
|
|
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
|
|
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
|
|
|
|
Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
|
|
void setKind(Kind K) { Pair.setInt(K); }
|
|
};
|
|
|
|
class SpecialMemberOverloadResultEntry : public llvm::FastFoldingSetNode,
|
|
public SpecialMemberOverloadResult {
|
|
public:
|
|
SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
|
|
: FastFoldingSetNode(ID) {}
|
|
};
|
|
|
|
/// A cache of special member function overload resolution results
|
|
/// for C++ records.
|
|
llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
|
|
|
|
/// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
|
|
/// `TransformTypos` in order to keep track of any TypoExprs that are created
|
|
/// recursively during typo correction and wipe them away if the correction
|
|
/// fails.
|
|
llvm::SmallVector<TypoExpr *, 2> TypoExprs;
|
|
|
|
enum class AcceptableKind { Visible, Reachable };
|
|
|
|
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
|
|
// TODO: make this is a typesafe union.
|
|
typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
|
|
typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
|
|
|
|
/// Describes the kind of name lookup to perform.
|
|
enum LookupNameKind {
|
|
/// Ordinary name lookup, which finds ordinary names (functions,
|
|
/// variables, typedefs, etc.) in C and most kinds of names
|
|
/// (functions, variables, members, types, etc.) in C++.
|
|
LookupOrdinaryName = 0,
|
|
/// Tag name lookup, which finds the names of enums, classes,
|
|
/// structs, and unions.
|
|
LookupTagName,
|
|
/// Label name lookup.
|
|
LookupLabel,
|
|
/// Member name lookup, which finds the names of
|
|
/// class/struct/union members.
|
|
LookupMemberName,
|
|
/// Look up of an operator name (e.g., operator+) for use with
|
|
/// operator overloading. This lookup is similar to ordinary name
|
|
/// lookup, but will ignore any declarations that are class members.
|
|
LookupOperatorName,
|
|
/// Look up a name following ~ in a destructor name. This is an ordinary
|
|
/// lookup, but prefers tags to typedefs.
|
|
LookupDestructorName,
|
|
/// Look up of a name that precedes the '::' scope resolution
|
|
/// operator in C++. This lookup completely ignores operator, object,
|
|
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
|
|
LookupNestedNameSpecifierName,
|
|
/// Look up a namespace name within a C++ using directive or
|
|
/// namespace alias definition, ignoring non-namespace names (C++
|
|
/// [basic.lookup.udir]p1).
|
|
LookupNamespaceName,
|
|
/// Look up all declarations in a scope with the given name,
|
|
/// including resolved using declarations. This is appropriate
|
|
/// for checking redeclarations for a using declaration.
|
|
LookupUsingDeclName,
|
|
/// Look up an ordinary name that is going to be redeclared as a
|
|
/// name with linkage. This lookup ignores any declarations that
|
|
/// are outside of the current scope unless they have linkage. See
|
|
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
|
|
LookupRedeclarationWithLinkage,
|
|
/// Look up a friend of a local class. This lookup does not look
|
|
/// outside the innermost non-class scope. See C++11 [class.friend]p11.
|
|
LookupLocalFriendName,
|
|
/// Look up the name of an Objective-C protocol.
|
|
LookupObjCProtocolName,
|
|
/// Look up implicit 'self' parameter of an objective-c method.
|
|
LookupObjCImplicitSelfParam,
|
|
/// Look up the name of an OpenMP user-defined reduction operation.
|
|
LookupOMPReductionName,
|
|
/// Look up the name of an OpenMP user-defined mapper.
|
|
LookupOMPMapperName,
|
|
/// Look up any declaration with any name.
|
|
LookupAnyName
|
|
};
|
|
|
|
/// The possible outcomes of name lookup for a literal operator.
|
|
enum LiteralOperatorLookupResult {
|
|
/// The lookup resulted in an error.
|
|
LOLR_Error,
|
|
/// The lookup found no match but no diagnostic was issued.
|
|
LOLR_ErrorNoDiagnostic,
|
|
/// The lookup found a single 'cooked' literal operator, which
|
|
/// expects a normal literal to be built and passed to it.
|
|
LOLR_Cooked,
|
|
/// The lookup found a single 'raw' literal operator, which expects
|
|
/// a string literal containing the spelling of the literal token.
|
|
LOLR_Raw,
|
|
/// The lookup found an overload set of literal operator templates,
|
|
/// which expect the characters of the spelling of the literal token to be
|
|
/// passed as a non-type template argument pack.
|
|
LOLR_Template,
|
|
/// The lookup found an overload set of literal operator templates,
|
|
/// which expect the character type and characters of the spelling of the
|
|
/// string literal token to be passed as template arguments.
|
|
LOLR_StringTemplatePack,
|
|
};
|
|
|
|
SpecialMemberOverloadResult
|
|
LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMemberKind SM, bool ConstArg,
|
|
bool VolatileArg, bool RValueThis, bool ConstThis,
|
|
bool VolatileThis);
|
|
|
|
typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
|
|
typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
|
|
TypoRecoveryCallback;
|
|
|
|
RedeclarationKind forRedeclarationInCurContext() const;
|
|
|
|
/// Look up a name, looking for a single declaration. Return
|
|
/// null if the results were absent, ambiguous, or overloaded.
|
|
///
|
|
/// It is preferable to use the elaborated form and explicitly handle
|
|
/// ambiguity and overloaded.
|
|
NamedDecl *LookupSingleName(
|
|
Scope *S, DeclarationName Name, SourceLocation Loc,
|
|
LookupNameKind NameKind,
|
|
RedeclarationKind Redecl = RedeclarationKind::NotForRedeclaration);
|
|
|
|
/// Lookup a builtin function, when name lookup would otherwise
|
|
/// fail.
|
|
bool LookupBuiltin(LookupResult &R);
|
|
void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
|
|
|
|
/// Perform unqualified name lookup starting from a given
|
|
/// scope.
|
|
///
|
|
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
|
|
/// used to find names within the current scope. For example, 'x' in
|
|
/// @code
|
|
/// int x;
|
|
/// int f() {
|
|
/// return x; // unqualified name look finds 'x' in the global scope
|
|
/// }
|
|
/// @endcode
|
|
///
|
|
/// Different lookup criteria can find different names. For example, a
|
|
/// particular scope can have both a struct and a function of the same
|
|
/// name, and each can be found by certain lookup criteria. For more
|
|
/// information about lookup criteria, see the documentation for the
|
|
/// class LookupCriteria.
|
|
///
|
|
/// @param S The scope from which unqualified name lookup will
|
|
/// begin. If the lookup criteria permits, name lookup may also search
|
|
/// in the parent scopes.
|
|
///
|
|
/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
|
|
/// look up and the lookup kind), and is updated with the results of lookup
|
|
/// including zero or more declarations and possibly additional information
|
|
/// used to diagnose ambiguities.
|
|
///
|
|
/// @returns \c true if lookup succeeded and false otherwise.
|
|
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false,
|
|
bool ForceNoCPlusPlus = false);
|
|
|
|
/// Perform qualified name lookup into a given context.
|
|
///
|
|
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
|
|
/// names when the context of those names is explicit specified, e.g.,
|
|
/// "std::vector" or "x->member", or as part of unqualified name lookup.
|
|
///
|
|
/// Different lookup criteria can find different names. For example, a
|
|
/// particular scope can have both a struct and a function of the same
|
|
/// name, and each can be found by certain lookup criteria. For more
|
|
/// information about lookup criteria, see the documentation for the
|
|
/// class LookupCriteria.
|
|
///
|
|
/// \param R captures both the lookup criteria and any lookup results found.
|
|
///
|
|
/// \param LookupCtx The context in which qualified name lookup will
|
|
/// search. If the lookup criteria permits, name lookup may also search
|
|
/// in the parent contexts or (for C++ classes) base classes.
|
|
///
|
|
/// \param InUnqualifiedLookup true if this is qualified name lookup that
|
|
/// occurs as part of unqualified name lookup.
|
|
///
|
|
/// \returns true if lookup succeeded, false if it failed.
|
|
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
|
bool InUnqualifiedLookup = false);
|
|
|
|
/// Performs qualified name lookup or special type of lookup for
|
|
/// "__super::" scope specifier.
|
|
///
|
|
/// This routine is a convenience overload meant to be called from contexts
|
|
/// that need to perform a qualified name lookup with an optional C++ scope
|
|
/// specifier that might require special kind of lookup.
|
|
///
|
|
/// \param R captures both the lookup criteria and any lookup results found.
|
|
///
|
|
/// \param LookupCtx The context in which qualified name lookup will
|
|
/// search.
|
|
///
|
|
/// \param SS An optional C++ scope-specifier.
|
|
///
|
|
/// \returns true if lookup succeeded, false if it failed.
|
|
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
|
CXXScopeSpec &SS);
|
|
|
|
/// Performs name lookup for a name that was parsed in the
|
|
/// source code, and may contain a C++ scope specifier.
|
|
///
|
|
/// This routine is a convenience routine meant to be called from
|
|
/// contexts that receive a name and an optional C++ scope specifier
|
|
/// (e.g., "N::M::x"). It will then perform either qualified or
|
|
/// unqualified name lookup (with LookupQualifiedName or LookupName,
|
|
/// respectively) on the given name and return those results. It will
|
|
/// perform a special type of lookup for "__super::" scope specifier.
|
|
///
|
|
/// @param S The scope from which unqualified name lookup will
|
|
/// begin.
|
|
///
|
|
/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
|
|
///
|
|
/// @param EnteringContext Indicates whether we are going to enter the
|
|
/// context of the scope-specifier SS (if present).
|
|
///
|
|
/// @returns True if any decls were found (but possibly ambiguous)
|
|
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
|
|
QualType ObjectType, bool AllowBuiltinCreation = false,
|
|
bool EnteringContext = false);
|
|
|
|
/// Perform qualified name lookup into all base classes of the given
|
|
/// class.
|
|
///
|
|
/// \param R captures both the lookup criteria and any lookup results found.
|
|
///
|
|
/// \param Class The context in which qualified name lookup will
|
|
/// search. Name lookup will search in all base classes merging the results.
|
|
///
|
|
/// @returns True if any decls were found (but possibly ambiguous)
|
|
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
|
|
|
|
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
|
|
UnresolvedSetImpl &Functions);
|
|
|
|
/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
|
|
/// If GnuLabelLoc is a valid source location, then this is a definition
|
|
/// of an __label__ label name, otherwise it is a normal label definition
|
|
/// or use.
|
|
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
|
|
SourceLocation GnuLabelLoc = SourceLocation());
|
|
|
|
/// Look up the constructors for the given class.
|
|
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
|
|
|
|
/// Look up the default constructor for the given class.
|
|
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
|
|
|
|
/// Look up the copying constructor for the given class.
|
|
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
|
|
unsigned Quals);
|
|
|
|
/// Look up the copying assignment operator for the given class.
|
|
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
|
|
bool RValueThis, unsigned ThisQuals);
|
|
|
|
/// Look up the moving constructor for the given class.
|
|
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
|
|
unsigned Quals);
|
|
|
|
/// Look up the moving assignment operator for the given class.
|
|
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
|
|
bool RValueThis, unsigned ThisQuals);
|
|
|
|
/// Look for the destructor of the given class.
|
|
///
|
|
/// During semantic analysis, this routine should be used in lieu of
|
|
/// CXXRecordDecl::getDestructor().
|
|
///
|
|
/// \returns The destructor for this class.
|
|
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
|
|
|
|
/// Force the declaration of any implicitly-declared members of this
|
|
/// class.
|
|
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
|
|
|
|
/// Make a merged definition of an existing hidden definition \p ND
|
|
/// visible at the specified location.
|
|
void makeMergedDefinitionVisible(NamedDecl *ND);
|
|
|
|
/// Check ODR hashes for C/ObjC when merging types from modules.
|
|
/// Differently from C++, actually parse the body and reject in case
|
|
/// of a mismatch.
|
|
template <typename T,
|
|
typename = std::enable_if_t<std::is_base_of<NamedDecl, T>::value>>
|
|
bool ActOnDuplicateODRHashDefinition(T *Duplicate, T *Previous) {
|
|
if (Duplicate->getODRHash() != Previous->getODRHash())
|
|
return false;
|
|
|
|
// Make the previous decl visible.
|
|
makeMergedDefinitionVisible(Previous);
|
|
return true;
|
|
}
|
|
|
|
/// Get the set of additional modules that should be checked during
|
|
/// name lookup. A module and its imports become visible when instanting a
|
|
/// template defined within it.
|
|
llvm::DenseSet<Module *> &getLookupModules();
|
|
|
|
bool hasVisibleMergedDefinition(const NamedDecl *Def);
|
|
bool hasMergedDefinitionInCurrentModule(const NamedDecl *Def);
|
|
|
|
/// Determine if the template parameter \p D has a visible default argument.
|
|
bool
|
|
hasVisibleDefaultArgument(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
/// Determine if the template parameter \p D has a reachable default argument.
|
|
bool hasReachableDefaultArgument(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
/// Determine if the template parameter \p D has a reachable default argument.
|
|
bool hasAcceptableDefaultArgument(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules,
|
|
Sema::AcceptableKind Kind);
|
|
|
|
/// Determine if there is a visible declaration of \p D that is an explicit
|
|
/// specialization declaration for a specialization of a template. (For a
|
|
/// member specialization, use hasVisibleMemberSpecialization.)
|
|
bool hasVisibleExplicitSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
/// Determine if there is a reachable declaration of \p D that is an explicit
|
|
/// specialization declaration for a specialization of a template. (For a
|
|
/// member specialization, use hasReachableMemberSpecialization.)
|
|
bool hasReachableExplicitSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
/// Determine if there is a visible declaration of \p D that is a member
|
|
/// specialization declaration (as opposed to an instantiated declaration).
|
|
bool hasVisibleMemberSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
/// Determine if there is a reachable declaration of \p D that is a member
|
|
/// specialization declaration (as opposed to an instantiated declaration).
|
|
bool hasReachableMemberSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
bool isModuleVisible(const Module *M, bool ModulePrivate = false);
|
|
|
|
/// Determine whether any declaration of an entity is visible.
|
|
bool
|
|
hasVisibleDeclaration(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
|
|
return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
|
|
}
|
|
|
|
bool hasVisibleDeclarationSlow(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules);
|
|
/// Determine whether any declaration of an entity is reachable.
|
|
bool
|
|
hasReachableDeclaration(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
|
|
return isReachable(D) || hasReachableDeclarationSlow(D, Modules);
|
|
}
|
|
bool hasReachableDeclarationSlow(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
void diagnoseTypo(const TypoCorrection &Correction,
|
|
const PartialDiagnostic &TypoDiag,
|
|
bool ErrorRecovery = true);
|
|
|
|
/// Diagnose a successfully-corrected typo. Separated from the correction
|
|
/// itself to allow external validation of the result, etc.
|
|
///
|
|
/// \param Correction The result of performing typo correction.
|
|
/// \param TypoDiag The diagnostic to produce. This will have the corrected
|
|
/// string added to it (and usually also a fixit).
|
|
/// \param PrevNote A note to use when indicating the location of the entity
|
|
/// to which we are correcting. Will have the correction string added
|
|
/// to it.
|
|
/// \param ErrorRecovery If \c true (the default), the caller is going to
|
|
/// recover from the typo as if the corrected string had been typed.
|
|
/// In this case, \c PDiag must be an error, and we will attach a fixit
|
|
/// to it.
|
|
void diagnoseTypo(const TypoCorrection &Correction,
|
|
const PartialDiagnostic &TypoDiag,
|
|
const PartialDiagnostic &PrevNote,
|
|
bool ErrorRecovery = true);
|
|
|
|
/// Find the associated classes and namespaces for
|
|
/// argument-dependent lookup for a call with the given set of
|
|
/// arguments.
|
|
///
|
|
/// This routine computes the sets of associated classes and associated
|
|
/// namespaces searched by argument-dependent lookup
|
|
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
|
|
void FindAssociatedClassesAndNamespaces(
|
|
SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
|
|
AssociatedNamespaceSet &AssociatedNamespaces,
|
|
AssociatedClassSet &AssociatedClasses);
|
|
|
|
/// Produce a diagnostic describing the ambiguity that resulted
|
|
/// from name lookup.
|
|
///
|
|
/// \param Result The result of the ambiguous lookup to be diagnosed.
|
|
void DiagnoseAmbiguousLookup(LookupResult &Result);
|
|
|
|
/// LookupLiteralOperator - Determine which literal operator should be used
|
|
/// for a user-defined literal, per C++11 [lex.ext].
|
|
///
|
|
/// Normal overload resolution is not used to select which literal operator to
|
|
/// call for a user-defined literal. Look up the provided literal operator
|
|
/// name, and filter the results to the appropriate set for the given argument
|
|
/// types.
|
|
LiteralOperatorLookupResult
|
|
LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
|
|
bool AllowRaw, bool AllowTemplate,
|
|
bool AllowStringTemplate, bool DiagnoseMissing,
|
|
StringLiteral *StringLit = nullptr);
|
|
|
|
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
|
|
ArrayRef<Expr *> Args, ADLResult &Functions);
|
|
|
|
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
|
|
VisibleDeclConsumer &Consumer,
|
|
bool IncludeGlobalScope = true,
|
|
bool LoadExternal = true);
|
|
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
|
|
VisibleDeclConsumer &Consumer,
|
|
bool IncludeGlobalScope = true,
|
|
bool IncludeDependentBases = false,
|
|
bool LoadExternal = true);
|
|
|
|
enum CorrectTypoKind {
|
|
CTK_NonError, // CorrectTypo used in a non error recovery situation.
|
|
CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
|
|
};
|
|
|
|
/// Try to "correct" a typo in the source code by finding
|
|
/// visible declarations whose names are similar to the name that was
|
|
/// present in the source code.
|
|
///
|
|
/// \param TypoName the \c DeclarationNameInfo structure that contains
|
|
/// the name that was present in the source code along with its location.
|
|
///
|
|
/// \param LookupKind the name-lookup criteria used to search for the name.
|
|
///
|
|
/// \param S the scope in which name lookup occurs.
|
|
///
|
|
/// \param SS the nested-name-specifier that precedes the name we're
|
|
/// looking for, if present.
|
|
///
|
|
/// \param CCC A CorrectionCandidateCallback object that provides further
|
|
/// validation of typo correction candidates. It also provides flags for
|
|
/// determining the set of keywords permitted.
|
|
///
|
|
/// \param MemberContext if non-NULL, the context in which to look for
|
|
/// a member access expression.
|
|
///
|
|
/// \param EnteringContext whether we're entering the context described by
|
|
/// the nested-name-specifier SS.
|
|
///
|
|
/// \param OPT when non-NULL, the search for visible declarations will
|
|
/// also walk the protocols in the qualified interfaces of \p OPT.
|
|
///
|
|
/// \returns a \c TypoCorrection containing the corrected name if the typo
|
|
/// along with information such as the \c NamedDecl where the corrected name
|
|
/// was declared, and any additional \c NestedNameSpecifier needed to access
|
|
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
|
|
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
|
|
Sema::LookupNameKind LookupKind, Scope *S,
|
|
CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
|
|
CorrectTypoKind Mode,
|
|
DeclContext *MemberContext = nullptr,
|
|
bool EnteringContext = false,
|
|
const ObjCObjectPointerType *OPT = nullptr,
|
|
bool RecordFailure = true);
|
|
|
|
/// Try to "correct" a typo in the source code by finding
|
|
/// visible declarations whose names are similar to the name that was
|
|
/// present in the source code.
|
|
///
|
|
/// \param TypoName the \c DeclarationNameInfo structure that contains
|
|
/// the name that was present in the source code along with its location.
|
|
///
|
|
/// \param LookupKind the name-lookup criteria used to search for the name.
|
|
///
|
|
/// \param S the scope in which name lookup occurs.
|
|
///
|
|
/// \param SS the nested-name-specifier that precedes the name we're
|
|
/// looking for, if present.
|
|
///
|
|
/// \param CCC A CorrectionCandidateCallback object that provides further
|
|
/// validation of typo correction candidates. It also provides flags for
|
|
/// determining the set of keywords permitted.
|
|
///
|
|
/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
|
|
/// diagnostics when the actual typo correction is attempted.
|
|
///
|
|
/// \param TRC A TypoRecoveryCallback functor that will be used to build an
|
|
/// Expr from a typo correction candidate.
|
|
///
|
|
/// \param MemberContext if non-NULL, the context in which to look for
|
|
/// a member access expression.
|
|
///
|
|
/// \param EnteringContext whether we're entering the context described by
|
|
/// the nested-name-specifier SS.
|
|
///
|
|
/// \param OPT when non-NULL, the search for visible declarations will
|
|
/// also walk the protocols in the qualified interfaces of \p OPT.
|
|
///
|
|
/// \returns a new \c TypoExpr that will later be replaced in the AST with an
|
|
/// Expr representing the result of performing typo correction, or nullptr if
|
|
/// typo correction is not possible. If nullptr is returned, no diagnostics
|
|
/// will be emitted and it is the responsibility of the caller to emit any
|
|
/// that are needed.
|
|
TypoExpr *CorrectTypoDelayed(
|
|
const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind,
|
|
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
|
|
TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC,
|
|
CorrectTypoKind Mode, DeclContext *MemberContext = nullptr,
|
|
bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr);
|
|
|
|
/// Kinds of missing import. Note, the values of these enumerators correspond
|
|
/// to %select values in diagnostics.
|
|
enum class MissingImportKind {
|
|
Declaration,
|
|
Definition,
|
|
DefaultArgument,
|
|
ExplicitSpecialization,
|
|
PartialSpecialization
|
|
};
|
|
|
|
/// Diagnose that the specified declaration needs to be visible but
|
|
/// isn't, and suggest a module import that would resolve the problem.
|
|
void diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
|
|
MissingImportKind MIK, bool Recover = true);
|
|
void diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
|
|
SourceLocation DeclLoc, ArrayRef<Module *> Modules,
|
|
MissingImportKind MIK, bool Recover);
|
|
|
|
struct TypoExprState {
|
|
std::unique_ptr<TypoCorrectionConsumer> Consumer;
|
|
TypoDiagnosticGenerator DiagHandler;
|
|
TypoRecoveryCallback RecoveryHandler;
|
|
TypoExprState();
|
|
TypoExprState(TypoExprState &&other) noexcept;
|
|
TypoExprState &operator=(TypoExprState &&other) noexcept;
|
|
};
|
|
|
|
const TypoExprState &getTypoExprState(TypoExpr *TE) const;
|
|
|
|
/// Clears the state of the given TypoExpr.
|
|
void clearDelayedTypo(TypoExpr *TE);
|
|
|
|
/// Called on #pragma clang __debug dump II
|
|
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
|
|
|
|
/// Called on #pragma clang __debug dump E
|
|
void ActOnPragmaDump(Expr *E);
|
|
|
|
private:
|
|
// The set of known/encountered (unique, canonicalized) NamespaceDecls.
|
|
//
|
|
// The boolean value will be true to indicate that the namespace was loaded
|
|
// from an AST/PCH file, or false otherwise.
|
|
llvm::MapVector<NamespaceDecl *, bool> KnownNamespaces;
|
|
|
|
/// Whether we have already loaded known namespaces from an extenal
|
|
/// source.
|
|
bool LoadedExternalKnownNamespaces;
|
|
|
|
bool CppLookupName(LookupResult &R, Scope *S);
|
|
|
|
/// Determine if we could use all the declarations in the module.
|
|
bool isUsableModule(const Module *M);
|
|
|
|
/// Helper for CorrectTypo and CorrectTypoDelayed used to create and
|
|
/// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
|
|
/// should be skipped entirely.
|
|
std::unique_ptr<TypoCorrectionConsumer> makeTypoCorrectionConsumer(
|
|
const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind,
|
|
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
|
|
DeclContext *MemberContext, bool EnteringContext,
|
|
const ObjCObjectPointerType *OPT, bool ErrorRecovery);
|
|
|
|
/// The set of unhandled TypoExprs and their associated state.
|
|
llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
|
|
|
|
/// Creates a new TypoExpr AST node.
|
|
TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
|
|
TypoDiagnosticGenerator TDG,
|
|
TypoRecoveryCallback TRC, SourceLocation TypoLoc);
|
|
|
|
/// Cache for module units which is usable for current module.
|
|
llvm::DenseSet<const Module *> UsableModuleUnitsCache;
|
|
|
|
/// Record the typo correction failure and return an empty correction.
|
|
TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
|
|
bool RecordFailure = true) {
|
|
if (RecordFailure)
|
|
TypoCorrectionFailures[Typo].insert(TypoLoc);
|
|
return TypoCorrection();
|
|
}
|
|
|
|
bool isAcceptableSlow(const NamedDecl *D, AcceptableKind Kind);
|
|
|
|
/// Determine whether two declarations should be linked together, given that
|
|
/// the old declaration might not be visible and the new declaration might
|
|
/// not have external linkage.
|
|
bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
|
|
const NamedDecl *New) {
|
|
if (isVisible(Old))
|
|
return true;
|
|
// See comment in below overload for why it's safe to compute the linkage
|
|
// of the new declaration here.
|
|
if (New->isExternallyDeclarable()) {
|
|
assert(Old->isExternallyDeclarable() &&
|
|
"should not have found a non-externally-declarable previous decl");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Modules
|
|
/// Implementations are in SemaModule.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Get the module unit whose scope we are currently within.
|
|
Module *getCurrentModule() const {
|
|
return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
|
|
}
|
|
|
|
/// Is the module scope we are an implementation unit?
|
|
bool currentModuleIsImplementation() const {
|
|
return ModuleScopes.empty()
|
|
? false
|
|
: ModuleScopes.back().Module->isModuleImplementation();
|
|
}
|
|
|
|
// When loading a non-modular PCH files, this is used to restore module
|
|
// visibility.
|
|
void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
|
|
VisibleModules.setVisible(Mod, ImportLoc);
|
|
}
|
|
|
|
enum class ModuleDeclKind {
|
|
Interface, ///< 'export module X;'
|
|
Implementation, ///< 'module X;'
|
|
PartitionInterface, ///< 'export module X:Y;'
|
|
PartitionImplementation, ///< 'module X:Y;'
|
|
};
|
|
|
|
/// An enumeration to represent the transition of states in parsing module
|
|
/// fragments and imports. If we are not parsing a C++20 TU, or we find
|
|
/// an error in state transition, the state is set to NotACXX20Module.
|
|
enum class ModuleImportState {
|
|
FirstDecl, ///< Parsing the first decl in a TU.
|
|
GlobalFragment, ///< after 'module;' but before 'module X;'
|
|
ImportAllowed, ///< after 'module X;' but before any non-import decl.
|
|
ImportFinished, ///< after any non-import decl.
|
|
PrivateFragmentImportAllowed, ///< after 'module :private;' but before any
|
|
///< non-import decl.
|
|
PrivateFragmentImportFinished, ///< after 'module :private;' but a
|
|
///< non-import decl has already been seen.
|
|
NotACXX20Module ///< Not a C++20 TU, or an invalid state was found.
|
|
};
|
|
|
|
/// The parser has processed a module-declaration that begins the definition
|
|
/// of a module interface or implementation.
|
|
DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
|
|
SourceLocation ModuleLoc, ModuleDeclKind MDK,
|
|
ModuleIdPath Path, ModuleIdPath Partition,
|
|
ModuleImportState &ImportState);
|
|
|
|
/// The parser has processed a global-module-fragment declaration that begins
|
|
/// the definition of the global module fragment of the current module unit.
|
|
/// \param ModuleLoc The location of the 'module' keyword.
|
|
DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
|
|
|
|
/// The parser has processed a private-module-fragment declaration that begins
|
|
/// the definition of the private module fragment of the current module unit.
|
|
/// \param ModuleLoc The location of the 'module' keyword.
|
|
/// \param PrivateLoc The location of the 'private' keyword.
|
|
DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
|
|
SourceLocation PrivateLoc);
|
|
|
|
/// The parser has processed a module import declaration.
|
|
///
|
|
/// \param StartLoc The location of the first token in the declaration. This
|
|
/// could be the location of an '@', 'export', or 'import'.
|
|
/// \param ExportLoc The location of the 'export' keyword, if any.
|
|
/// \param ImportLoc The location of the 'import' keyword.
|
|
/// \param Path The module toplevel name as an access path.
|
|
/// \param IsPartition If the name is for a partition.
|
|
DeclResult ActOnModuleImport(SourceLocation StartLoc,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation ImportLoc, ModuleIdPath Path,
|
|
bool IsPartition = false);
|
|
DeclResult ActOnModuleImport(SourceLocation StartLoc,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation ImportLoc, Module *M,
|
|
ModuleIdPath Path = {});
|
|
|
|
/// The parser has processed a module import translated from a
|
|
/// #include or similar preprocessing directive.
|
|
void ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
|
|
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
|
|
|
|
/// The parsed has entered a submodule.
|
|
void ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
|
|
/// The parser has left a submodule.
|
|
void ActOnAnnotModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
|
|
|
|
/// Create an implicit import of the given module at the given
|
|
/// source location, for error recovery, if possible.
|
|
///
|
|
/// This routine is typically used when an entity found by name lookup
|
|
/// is actually hidden within a module that we know about but the user
|
|
/// has forgotten to import.
|
|
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
|
|
Module *Mod);
|
|
|
|
/// We have parsed the start of an export declaration, including the '{'
|
|
/// (if present).
|
|
Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
|
|
SourceLocation LBraceLoc);
|
|
|
|
/// Complete the definition of an export declaration.
|
|
Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
|
|
SourceLocation RBraceLoc);
|
|
|
|
private:
|
|
/// The parser has begun a translation unit to be compiled as a C++20
|
|
/// Header Unit, helper for ActOnStartOfTranslationUnit() only.
|
|
void HandleStartOfHeaderUnit();
|
|
|
|
struct ModuleScope {
|
|
SourceLocation BeginLoc;
|
|
clang::Module *Module = nullptr;
|
|
VisibleModuleSet OuterVisibleModules;
|
|
};
|
|
/// The modules we're currently parsing.
|
|
llvm::SmallVector<ModuleScope, 16> ModuleScopes;
|
|
|
|
/// For an interface unit, this is the implicitly imported interface unit.
|
|
clang::Module *ThePrimaryInterface = nullptr;
|
|
|
|
/// The explicit global module fragment of the current translation unit.
|
|
/// The explicit Global Module Fragment, as specified in C++
|
|
/// [module.global.frag].
|
|
clang::Module *TheGlobalModuleFragment = nullptr;
|
|
|
|
/// The implicit global module fragments of the current translation unit.
|
|
///
|
|
/// The contents in the implicit global module fragment can't be discarded.
|
|
clang::Module *TheImplicitGlobalModuleFragment = nullptr;
|
|
|
|
/// Namespace definitions that we will export when they finish.
|
|
llvm::SmallPtrSet<const NamespaceDecl *, 8> DeferredExportedNamespaces;
|
|
|
|
/// In a C++ standard module, inline declarations require a definition to be
|
|
/// present at the end of a definition domain. This set holds the decls to
|
|
/// be checked at the end of the TU.
|
|
llvm::SmallPtrSet<const FunctionDecl *, 8> PendingInlineFuncDecls;
|
|
|
|
/// Helper function to judge if we are in module purview.
|
|
/// Return false if we are not in a module.
|
|
bool isCurrentModulePurview() const;
|
|
|
|
/// Enter the scope of the explicit global module fragment.
|
|
Module *PushGlobalModuleFragment(SourceLocation BeginLoc);
|
|
/// Leave the scope of the explicit global module fragment.
|
|
void PopGlobalModuleFragment();
|
|
|
|
/// Enter the scope of an implicit global module fragment.
|
|
Module *PushImplicitGlobalModuleFragment(SourceLocation BeginLoc);
|
|
/// Leave the scope of an implicit global module fragment.
|
|
void PopImplicitGlobalModuleFragment();
|
|
|
|
VisibleModuleSet VisibleModules;
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Overloading
|
|
/// Implementations are in SemaOverload.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Whether deferrable diagnostics should be deferred.
|
|
bool DeferDiags = false;
|
|
|
|
/// RAII class to control scope of DeferDiags.
|
|
class DeferDiagsRAII {
|
|
Sema &S;
|
|
bool SavedDeferDiags = false;
|
|
|
|
public:
|
|
DeferDiagsRAII(Sema &S, bool DeferDiags)
|
|
: S(S), SavedDeferDiags(S.DeferDiags) {
|
|
S.DeferDiags = DeferDiags;
|
|
}
|
|
~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
|
|
};
|
|
|
|
/// Flag indicating if Sema is building a recovery call expression.
|
|
///
|
|
/// This flag is used to avoid building recovery call expressions
|
|
/// if Sema is already doing so, which would cause infinite recursions.
|
|
bool IsBuildingRecoveryCallExpr;
|
|
|
|
enum OverloadKind {
|
|
/// This is a legitimate overload: the existing declarations are
|
|
/// functions or function templates with different signatures.
|
|
Ovl_Overload,
|
|
|
|
/// This is not an overload because the signature exactly matches
|
|
/// an existing declaration.
|
|
Ovl_Match,
|
|
|
|
/// This is not an overload because the lookup results contain a
|
|
/// non-function.
|
|
Ovl_NonFunction
|
|
};
|
|
|
|
/// Determine whether the given New declaration is an overload of the
|
|
/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
|
|
/// New and Old cannot be overloaded, e.g., if New has the same signature as
|
|
/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
|
|
/// functions (or function templates) at all. When it does return Ovl_Match or
|
|
/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
|
|
/// overloaded with. This decl may be a UsingShadowDecl on top of the
|
|
/// underlying declaration.
|
|
///
|
|
/// Example: Given the following input:
|
|
///
|
|
/// void f(int, float); // #1
|
|
/// void f(int, int); // #2
|
|
/// int f(int, int); // #3
|
|
///
|
|
/// When we process #1, there is no previous declaration of "f", so IsOverload
|
|
/// will not be used.
|
|
///
|
|
/// When we process #2, Old contains only the FunctionDecl for #1. By
|
|
/// comparing the parameter types, we see that #1 and #2 are overloaded (since
|
|
/// they have different signatures), so this routine returns Ovl_Overload;
|
|
/// MatchedDecl is unchanged.
|
|
///
|
|
/// When we process #3, Old is an overload set containing #1 and #2. We
|
|
/// compare the signatures of #3 to #1 (they're overloaded, so we do nothing)
|
|
/// and then #3 to #2. Since the signatures of #3 and #2 are identical (return
|
|
/// types of functions are not part of the signature), IsOverload returns
|
|
/// Ovl_Match and MatchedDecl will be set to point to the FunctionDecl for #2.
|
|
///
|
|
/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a
|
|
/// class by a using declaration. The rules for whether to hide shadow
|
|
/// declarations ignore some properties which otherwise figure into a function
|
|
/// template's signature.
|
|
OverloadKind CheckOverload(Scope *S, FunctionDecl *New,
|
|
const LookupResult &OldDecls, NamedDecl *&OldDecl,
|
|
bool UseMemberUsingDeclRules);
|
|
bool IsOverload(FunctionDecl *New, FunctionDecl *Old,
|
|
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs = true);
|
|
|
|
// Checks whether MD constitutes an override the base class method BaseMD.
|
|
// When checking for overrides, the object object members are ignored.
|
|
bool IsOverride(FunctionDecl *MD, FunctionDecl *BaseMD,
|
|
bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs = true);
|
|
|
|
enum class AllowedExplicit {
|
|
/// Allow no explicit functions to be used.
|
|
None,
|
|
/// Allow explicit conversion functions but not explicit constructors.
|
|
Conversions,
|
|
/// Allow both explicit conversion functions and explicit constructors.
|
|
All
|
|
};
|
|
|
|
ImplicitConversionSequence TryImplicitConversion(
|
|
Expr *From, QualType ToType, bool SuppressUserConversions,
|
|
AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle,
|
|
bool AllowObjCWritebackConversion);
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType. Returns the
|
|
/// converted expression. Flavor is the kind of conversion we're
|
|
/// performing, used in the error message. If @p AllowExplicit,
|
|
/// explicit user-defined conversions are permitted.
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action,
|
|
bool AllowExplicit = false);
|
|
|
|
/// IsIntegralPromotion - Determines whether the conversion from the
|
|
/// expression From (whose potentially-adjusted type is FromType) to
|
|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
|
|
/// sets PromotedType to the promoted type.
|
|
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
|
|
|
|
/// IsFloatingPointPromotion - Determines whether the conversion from
|
|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
|
|
/// returns true and sets PromotedType to the promoted type.
|
|
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
|
|
|
|
/// Determine if a conversion is a complex promotion.
|
|
///
|
|
/// A complex promotion is defined as a complex -> complex conversion
|
|
/// where the conversion between the underlying real types is a
|
|
/// floating-point or integral promotion.
|
|
bool IsComplexPromotion(QualType FromType, QualType ToType);
|
|
|
|
/// IsPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType,
|
|
/// can be converted to the type ToType via a pointer conversion (C++
|
|
/// 4.10). If so, returns true and places the converted type (that
|
|
/// might differ from ToType in its cv-qualifiers at some level) into
|
|
/// ConvertedType.
|
|
///
|
|
/// This routine also supports conversions to and from block pointers
|
|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
|
|
/// pointers to interfaces. FIXME: Once we've determined the
|
|
/// appropriate overloading rules for Objective-C, we may want to
|
|
/// split the Objective-C checks into a different routine; however,
|
|
/// GCC seems to consider all of these conversions to be pointer
|
|
/// conversions, so for now they live here. IncompatibleObjC will be
|
|
/// set if the conversion is an allowed Objective-C conversion that
|
|
/// should result in a warning.
|
|
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution, QualType &ConvertedType,
|
|
bool &IncompatibleObjC);
|
|
|
|
/// isObjCPointerConversion - Determines whether this is an
|
|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
|
|
/// with the same arguments and return values.
|
|
bool isObjCPointerConversion(QualType FromType, QualType ToType,
|
|
QualType &ConvertedType, bool &IncompatibleObjC);
|
|
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
|
|
QualType &ConvertedType);
|
|
|
|
/// FunctionParamTypesAreEqual - This routine checks two function proto types
|
|
/// for equality of their parameter types. Caller has already checked that
|
|
/// they have same number of parameters. If the parameters are different,
|
|
/// ArgPos will have the parameter index of the first different parameter.
|
|
/// If `Reversed` is true, the parameters of `NewType` will be compared in
|
|
/// reverse order. That's useful if one of the functions is being used as a
|
|
/// C++20 synthesized operator overload with a reversed parameter order.
|
|
bool FunctionParamTypesAreEqual(ArrayRef<QualType> Old,
|
|
ArrayRef<QualType> New,
|
|
unsigned *ArgPos = nullptr,
|
|
bool Reversed = false);
|
|
|
|
bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
|
|
const FunctionProtoType *NewType,
|
|
unsigned *ArgPos = nullptr,
|
|
bool Reversed = false);
|
|
|
|
bool FunctionNonObjectParamTypesAreEqual(const FunctionDecl *OldFunction,
|
|
const FunctionDecl *NewFunction,
|
|
unsigned *ArgPos = nullptr,
|
|
bool Reversed = false);
|
|
|
|
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
|
|
/// function types. Catches different number of parameter, mismatch in
|
|
/// parameter types, and different return types.
|
|
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType,
|
|
QualType ToType);
|
|
|
|
/// CheckPointerConversion - Check the pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for
|
|
/// ambiguous or inaccessible derived-to-base pointer
|
|
/// conversions for which IsPointerConversion has already returned
|
|
/// true. It returns true and produces a diagnostic if there was an
|
|
/// error, or returns false otherwise.
|
|
bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind,
|
|
CXXCastPath &BasePath, bool IgnoreBaseAccess,
|
|
bool Diagnose = true);
|
|
|
|
/// IsMemberPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType, can be
|
|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
|
|
/// If so, returns true and places the converted type (that might differ from
|
|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
|
|
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType &ConvertedType);
|
|
|
|
/// CheckMemberPointerConversion - Check the member pointer conversion from
|
|
/// the expression From to the type ToType. This routine checks for ambiguous
|
|
/// or virtual or inaccessible base-to-derived member pointer conversions for
|
|
/// which IsMemberPointerConversion has already returned true. It returns true
|
|
/// and produces a diagnostic if there was an error, or returns false
|
|
/// otherwise.
|
|
bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind,
|
|
CXXCastPath &BasePath,
|
|
bool IgnoreBaseAccess);
|
|
|
|
/// IsQualificationConversion - Determines whether the conversion from
|
|
/// an rvalue of type FromType to ToType is a qualification conversion
|
|
/// (C++ 4.4).
|
|
///
|
|
/// \param ObjCLifetimeConversion Output parameter that will be set to
|
|
/// indicate when the qualification conversion involves a change in the
|
|
/// Objective-C object lifetime.
|
|
bool IsQualificationConversion(QualType FromType, QualType ToType,
|
|
bool CStyle, bool &ObjCLifetimeConversion);
|
|
|
|
/// Determine whether the conversion from FromType to ToType is a valid
|
|
/// conversion that strips "noexcept" or "noreturn" off the nested function
|
|
/// type.
|
|
bool IsFunctionConversion(QualType FromType, QualType ToType,
|
|
QualType &ResultTy);
|
|
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
|
|
void DiagnoseUseOfDeletedFunction(SourceLocation Loc, SourceRange Range,
|
|
DeclarationName Name,
|
|
OverloadCandidateSet &CandidateSet,
|
|
FunctionDecl *Fn, MultiExprArg Args,
|
|
bool IsMember = false);
|
|
|
|
ExprResult InitializeExplicitObjectArgument(Sema &S, Expr *Obj,
|
|
FunctionDecl *Fun);
|
|
ExprResult PerformImplicitObjectArgumentInitialization(
|
|
Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl,
|
|
CXXMethodDecl *Method);
|
|
|
|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
|
|
/// of the expression From to bool (C++0x [conv]p3).
|
|
ExprResult PerformContextuallyConvertToBool(Expr *From);
|
|
|
|
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
|
|
/// conversion of the expression From to an Objective-C pointer type.
|
|
/// Returns a valid but null ExprResult if no conversion sequence exists.
|
|
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
|
|
|
|
/// Contexts in which a converted constant expression is required.
|
|
enum CCEKind {
|
|
CCEK_CaseValue, ///< Expression in a case label.
|
|
CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
|
|
CCEK_TemplateArg, ///< Value of a non-type template parameter.
|
|
CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
|
|
CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
|
|
CCEK_Noexcept, ///< Condition in a noexcept(bool) specifier.
|
|
CCEK_StaticAssertMessageSize, ///< Call to size() in a static assert
|
|
///< message.
|
|
CCEK_StaticAssertMessageData, ///< Call to data() in a static assert
|
|
///< message.
|
|
};
|
|
|
|
ExprResult BuildConvertedConstantExpression(Expr *From, QualType T,
|
|
CCEKind CCE,
|
|
NamedDecl *Dest = nullptr);
|
|
|
|
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
llvm::APSInt &Value, CCEKind CCE);
|
|
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
APValue &Value, CCEKind CCE,
|
|
NamedDecl *Dest = nullptr);
|
|
|
|
/// EvaluateConvertedConstantExpression - Evaluate an Expression
|
|
/// That is a converted constant expression
|
|
/// (which was built with BuildConvertedConstantExpression)
|
|
ExprResult
|
|
EvaluateConvertedConstantExpression(Expr *E, QualType T, APValue &Value,
|
|
CCEKind CCE, bool RequireInt,
|
|
const APValue &PreNarrowingValue);
|
|
|
|
/// Abstract base class used to perform a contextual implicit
|
|
/// conversion from an expression to any type passing a filter.
|
|
class ContextualImplicitConverter {
|
|
public:
|
|
bool Suppress;
|
|
bool SuppressConversion;
|
|
|
|
ContextualImplicitConverter(bool Suppress = false,
|
|
bool SuppressConversion = false)
|
|
: Suppress(Suppress), SuppressConversion(SuppressConversion) {}
|
|
|
|
/// Determine whether the specified type is a valid destination type
|
|
/// for this conversion.
|
|
virtual bool match(QualType T) = 0;
|
|
|
|
/// Emits a diagnostic complaining that the expression does not have
|
|
/// integral or enumeration type.
|
|
virtual SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
|
|
QualType T) = 0;
|
|
|
|
/// Emits a diagnostic when the expression has incomplete class type.
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
|
|
/// Emits a diagnostic when the only matching conversion function
|
|
/// is explicit.
|
|
virtual SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S,
|
|
SourceLocation Loc,
|
|
QualType T,
|
|
QualType ConvTy) = 0;
|
|
|
|
/// Emits a note for the explicit conversion function.
|
|
virtual SemaDiagnosticBuilder
|
|
noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
|
|
|
|
/// Emits a diagnostic when there are multiple possible conversion
|
|
/// functions.
|
|
virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
|
|
QualType T) = 0;
|
|
|
|
/// Emits a note for one of the candidate conversions.
|
|
virtual SemaDiagnosticBuilder
|
|
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
|
|
|
|
/// Emits a diagnostic when we picked a conversion function
|
|
/// (for cases when we are not allowed to pick a conversion function).
|
|
virtual SemaDiagnosticBuilder diagnoseConversion(Sema &S,
|
|
SourceLocation Loc,
|
|
QualType T,
|
|
QualType ConvTy) = 0;
|
|
|
|
virtual ~ContextualImplicitConverter() {}
|
|
};
|
|
|
|
class ICEConvertDiagnoser : public ContextualImplicitConverter {
|
|
bool AllowScopedEnumerations;
|
|
|
|
public:
|
|
ICEConvertDiagnoser(bool AllowScopedEnumerations, bool Suppress,
|
|
bool SuppressConversion)
|
|
: ContextualImplicitConverter(Suppress, SuppressConversion),
|
|
AllowScopedEnumerations(AllowScopedEnumerations) {}
|
|
|
|
/// Match an integral or (possibly scoped) enumeration type.
|
|
bool match(QualType T) override;
|
|
|
|
SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return diagnoseNotInt(S, Loc, T);
|
|
}
|
|
|
|
/// Emits a diagnostic complaining that the expression does not have
|
|
/// integral or enumeration type.
|
|
virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
|
|
QualType T) = 0;
|
|
};
|
|
|
|
/// Perform a contextual implicit conversion.
|
|
ExprResult
|
|
PerformContextualImplicitConversion(SourceLocation Loc, Expr *FromE,
|
|
ContextualImplicitConverter &Converter);
|
|
|
|
/// ReferenceCompareResult - Expresses the result of comparing two
|
|
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
|
|
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
|
|
enum ReferenceCompareResult {
|
|
/// Ref_Incompatible - The two types are incompatible, so direct
|
|
/// reference binding is not possible.
|
|
Ref_Incompatible = 0,
|
|
/// Ref_Related - The two types are reference-related, which means
|
|
/// that their unqualified forms (T1 and T2) are either the same
|
|
/// or T1 is a base class of T2.
|
|
Ref_Related,
|
|
/// Ref_Compatible - The two types are reference-compatible.
|
|
Ref_Compatible
|
|
};
|
|
|
|
// Fake up a scoped enumeration that still contextually converts to bool.
|
|
struct ReferenceConversionsScope {
|
|
/// The conversions that would be performed on an lvalue of type T2 when
|
|
/// binding a reference of type T1 to it, as determined when evaluating
|
|
/// whether T1 is reference-compatible with T2.
|
|
enum ReferenceConversions {
|
|
Qualification = 0x1,
|
|
NestedQualification = 0x2,
|
|
Function = 0x4,
|
|
DerivedToBase = 0x8,
|
|
ObjC = 0x10,
|
|
ObjCLifetime = 0x20,
|
|
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)
|
|
};
|
|
};
|
|
using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
|
|
|
|
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
|
|
/// determine whether they are reference-compatible,
|
|
/// reference-related, or incompatible, for use in C++ initialization by
|
|
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
|
|
/// type, and the first type (T1) is the pointee type of the reference
|
|
/// type being initialized.
|
|
ReferenceCompareResult
|
|
CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
|
|
ReferenceConversions *Conv = nullptr);
|
|
|
|
/// AddOverloadCandidate - Adds the given function to the set of
|
|
/// candidate functions, using the given function call arguments. If
|
|
/// @p SuppressUserConversions, then don't allow user-defined
|
|
/// conversions via constructors or conversion operators.
|
|
///
|
|
/// \param PartialOverloading true if we are performing "partial" overloading
|
|
/// based on an incomplete set of function arguments. This feature is used by
|
|
/// code completion.
|
|
void AddOverloadCandidate(
|
|
FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false, bool AllowExplicit = true,
|
|
bool AllowExplicitConversion = false,
|
|
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
|
|
ConversionSequenceList EarlyConversions = std::nullopt,
|
|
OverloadCandidateParamOrder PO = {},
|
|
bool AggregateCandidateDeduction = false);
|
|
|
|
/// Add all of the function declarations in the given function set to
|
|
/// the overload candidate set.
|
|
void AddFunctionCandidates(
|
|
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
|
|
bool SuppressUserConversions = false, bool PartialOverloading = false,
|
|
bool FirstArgumentIsBase = false);
|
|
|
|
/// AddMethodCandidate - Adds a named decl (which is some kind of
|
|
/// method) as a method candidate to the given overload set.
|
|
void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool SuppressUserConversion = false,
|
|
OverloadCandidateParamOrder PO = {});
|
|
|
|
/// AddMethodCandidate - Adds the given C++ member function to the set
|
|
/// of candidate functions, using the given function call arguments
|
|
/// and the object argument (@c Object). For example, in a call
|
|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
|
|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
|
|
/// allow user-defined conversions via constructors or conversion
|
|
/// operators.
|
|
void
|
|
AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
|
|
bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false,
|
|
ConversionSequenceList EarlyConversions = std::nullopt,
|
|
OverloadCandidateParamOrder PO = {});
|
|
|
|
/// Add a C++ member function template as a candidate to the candidate
|
|
/// set, using template argument deduction to produce an appropriate member
|
|
/// function template specialization.
|
|
void AddMethodTemplateCandidate(
|
|
FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false, OverloadCandidateParamOrder PO = {});
|
|
|
|
/// Add a C++ function template specialization as a candidate
|
|
/// in the candidate set, using template argument deduction to produce
|
|
/// an appropriate function template specialization.
|
|
void AddTemplateOverloadCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false, bool AllowExplicit = true,
|
|
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
|
|
OverloadCandidateParamOrder PO = {},
|
|
bool AggregateCandidateDeduction = false);
|
|
|
|
/// Check that implicit conversion sequences can be formed for each argument
|
|
/// whose corresponding parameter has a non-dependent type, per DR1391's
|
|
/// [temp.deduct.call]p10.
|
|
bool CheckNonDependentConversions(
|
|
FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
|
|
ConversionSequenceList &Conversions, bool SuppressUserConversions,
|
|
CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
|
|
Expr::Classification ObjectClassification = {},
|
|
OverloadCandidateParamOrder PO = {});
|
|
|
|
/// AddConversionCandidate - Add a C++ conversion function as a
|
|
/// candidate in the candidate set (C++ [over.match.conv],
|
|
/// C++ [over.match.copy]). From is the expression we're converting from,
|
|
/// and ToType is the type that we're eventually trying to convert to
|
|
/// (which may or may not be the same type as the type that the
|
|
/// conversion function produces).
|
|
void AddConversionCandidate(
|
|
CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion = true);
|
|
|
|
/// Adds a conversion function template specialization
|
|
/// candidate to the overload set, using template argument deduction
|
|
/// to deduce the template arguments of the conversion function
|
|
/// template from the type that we are converting to (C++
|
|
/// [temp.deduct.conv]).
|
|
void AddTemplateConversionCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion = true);
|
|
|
|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
|
|
/// converts the given @c Object to a function pointer via the
|
|
/// conversion function @c Conversion, and then attempts to call it
|
|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
|
|
/// the type of function that we'll eventually be calling.
|
|
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const FunctionProtoType *Proto, Expr *Object,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet);
|
|
|
|
/// Add all of the non-member operator function declarations in the given
|
|
/// function set to the overload candidate set.
|
|
void AddNonMemberOperatorCandidates(
|
|
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
|
|
|
|
/// Add overload candidates for overloaded operators that are
|
|
/// member functions.
|
|
///
|
|
/// Add the overloaded operator candidates that are member functions
|
|
/// for the operator Op that was used in an operator expression such
|
|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
|
|
/// CandidateSet will store the added overload candidates. (C++
|
|
/// [over.match.oper]).
|
|
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
OverloadCandidateParamOrder PO = {});
|
|
|
|
/// AddBuiltinCandidate - Add a candidate for a built-in
|
|
/// operator. ResultTy and ParamTys are the result and parameter types
|
|
/// of the built-in candidate, respectively. Args and NumArgs are the
|
|
/// arguments being passed to the candidate. IsAssignmentOperator
|
|
/// should be true when this built-in candidate is an assignment
|
|
/// operator. NumContextualBoolArguments is the number of arguments
|
|
/// (at the beginning of the argument list) that will be contextually
|
|
/// converted to bool.
|
|
void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool IsAssignmentOperator = false,
|
|
unsigned NumContextualBoolArguments = 0);
|
|
|
|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
|
|
/// operator overloads to the candidate set (C++ [over.built]), based
|
|
/// on the operator @p Op and the arguments given. For example, if the
|
|
/// operator is a binary '+', this routine might add "int
|
|
/// operator+(int, int)" to cover integer addition.
|
|
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet);
|
|
|
|
/// Add function candidates found via argument-dependent lookup
|
|
/// to the set of overloading candidates.
|
|
///
|
|
/// This routine performs argument-dependent name lookup based on the
|
|
/// given function name (which may also be an operator name) and adds
|
|
/// all of the overload candidates found by ADL to the overload
|
|
/// candidate set (C++ [basic.lookup.argdep]).
|
|
void AddArgumentDependentLookupCandidates(
|
|
DeclarationName Name, SourceLocation Loc, ArrayRef<Expr *> Args,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
OverloadCandidateSet &CandidateSet, bool PartialOverloading = false);
|
|
|
|
/// Check the enable_if expressions on the given function. Returns the first
|
|
/// failing attribute, or NULL if they were all successful.
|
|
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
|
|
ArrayRef<Expr *> Args,
|
|
bool MissingImplicitThis = false);
|
|
|
|
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
|
|
/// non-ArgDependent DiagnoseIfAttrs.
|
|
///
|
|
/// Argument-dependent diagnose_if attributes should be checked each time a
|
|
/// function is used as a direct callee of a function call.
|
|
///
|
|
/// Returns true if any errors were emitted.
|
|
bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
|
|
const Expr *ThisArg,
|
|
ArrayRef<const Expr *> Args,
|
|
SourceLocation Loc);
|
|
|
|
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
|
|
/// ArgDependent DiagnoseIfAttrs.
|
|
///
|
|
/// Argument-independent diagnose_if attributes should be checked on every use
|
|
/// of a function.
|
|
///
|
|
/// Returns true if any errors were emitted.
|
|
bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
|
|
SourceLocation Loc);
|
|
|
|
/// Determine if \p A and \p B are equivalent internal linkage declarations
|
|
/// from different modules, and thus an ambiguity error can be downgraded to
|
|
/// an extension warning.
|
|
bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
|
|
const NamedDecl *B);
|
|
void diagnoseEquivalentInternalLinkageDeclarations(
|
|
SourceLocation Loc, const NamedDecl *D,
|
|
ArrayRef<const NamedDecl *> Equiv);
|
|
|
|
// Emit as a 'note' the specific overload candidate
|
|
void NoteOverloadCandidate(
|
|
const NamedDecl *Found, const FunctionDecl *Fn,
|
|
OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
|
|
QualType DestType = QualType(), bool TakingAddress = false);
|
|
|
|
// Emit as a series of 'note's all template and non-templates identified by
|
|
// the expression Expr
|
|
void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
|
|
bool TakingAddress = false);
|
|
|
|
/// Returns whether the given function's address can be taken or not,
|
|
/// optionally emitting a diagnostic if the address can't be taken.
|
|
///
|
|
/// Returns false if taking the address of the function is illegal.
|
|
bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
|
|
bool Complain = false,
|
|
SourceLocation Loc = SourceLocation());
|
|
|
|
// [PossiblyAFunctionType] --> [Return]
|
|
// NonFunctionType --> NonFunctionType
|
|
// R (A) --> R(A)
|
|
// R (*)(A) --> R (A)
|
|
// R (&)(A) --> R (A)
|
|
// R (S::*)(A) --> R (A)
|
|
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
|
|
|
|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
|
|
/// an overloaded function (C++ [over.over]), where @p From is an
|
|
/// expression with overloaded function type and @p ToType is the type
|
|
/// we're trying to resolve to. For example:
|
|
///
|
|
/// @code
|
|
/// int f(double);
|
|
/// int f(int);
|
|
///
|
|
/// int (*pfd)(double) = f; // selects f(double)
|
|
/// @endcode
|
|
///
|
|
/// This routine returns the resulting FunctionDecl if it could be
|
|
/// resolved, and NULL otherwise. When @p Complain is true, this
|
|
/// routine will emit diagnostics if there is an error.
|
|
FunctionDecl *
|
|
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
|
|
bool Complain, DeclAccessPair &Found,
|
|
bool *pHadMultipleCandidates = nullptr);
|
|
|
|
/// Given an expression that refers to an overloaded function, try to
|
|
/// resolve that function to a single function that can have its address
|
|
/// taken. This will modify `Pair` iff it returns non-null.
|
|
///
|
|
/// This routine can only succeed if from all of the candidates in the
|
|
/// overload set for SrcExpr that can have their addresses taken, there is one
|
|
/// candidate that is more constrained than the rest.
|
|
FunctionDecl *
|
|
resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
|
|
|
|
/// Given an overloaded function, tries to turn it into a non-overloaded
|
|
/// function reference using resolveAddressOfSingleOverloadCandidate. This
|
|
/// will perform access checks, diagnose the use of the resultant decl, and,
|
|
/// if requested, potentially perform a function-to-pointer decay.
|
|
///
|
|
/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
|
|
/// Otherwise, returns true. This may emit diagnostics and return true.
|
|
bool resolveAndFixAddressOfSingleOverloadCandidate(
|
|
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
|
|
|
|
/// Given an expression that refers to an overloaded function, try to
|
|
/// resolve that overloaded function expression down to a single function.
|
|
///
|
|
/// This routine can only resolve template-ids that refer to a single function
|
|
/// template, where that template-id refers to a single template whose
|
|
/// template arguments are either provided by the template-id or have
|
|
/// defaults, as described in C++0x [temp.arg.explicit]p3.
|
|
///
|
|
/// If no template-ids are found, no diagnostics are emitted and NULL is
|
|
/// returned.
|
|
FunctionDecl *ResolveSingleFunctionTemplateSpecialization(
|
|
OverloadExpr *ovl, bool Complain = false, DeclAccessPair *Found = nullptr,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr);
|
|
|
|
// Resolve and fix an overloaded expression that can be resolved
|
|
// because it identifies a single function template specialization.
|
|
//
|
|
// Last three arguments should only be supplied if Complain = true
|
|
//
|
|
// Return true if it was logically possible to so resolve the
|
|
// expression, regardless of whether or not it succeeded. Always
|
|
// returns true if 'complain' is set.
|
|
bool ResolveAndFixSingleFunctionTemplateSpecialization(
|
|
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false,
|
|
bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(),
|
|
QualType DestTypeForComplaining = QualType(),
|
|
unsigned DiagIDForComplaining = 0);
|
|
|
|
/// Add the overload candidates named by callee and/or found by argument
|
|
/// dependent lookup to the given overload set.
|
|
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading = false);
|
|
|
|
/// Add the call candidates from the given set of lookup results to the given
|
|
/// overload set. Non-function lookup results are ignored.
|
|
void AddOverloadedCallCandidates(
|
|
LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
|
|
|
|
// An enum used to represent the different possible results of building a
|
|
// range-based for loop.
|
|
enum ForRangeStatus {
|
|
FRS_Success,
|
|
FRS_NoViableFunction,
|
|
FRS_DiagnosticIssued
|
|
};
|
|
|
|
/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
|
|
/// given LookupResult is non-empty, it is assumed to describe a member which
|
|
/// will be invoked. Otherwise, the function will be found via argument
|
|
/// dependent lookup.
|
|
/// CallExpr is set to a valid expression and FRS_Success returned on success,
|
|
/// otherwise CallExpr is set to ExprError() and some non-success value
|
|
/// is returned.
|
|
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
|
|
SourceLocation RangeLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
LookupResult &MemberLookup,
|
|
OverloadCandidateSet *CandidateSet,
|
|
Expr *Range, ExprResult *CallExpr);
|
|
|
|
/// BuildOverloadedCallExpr - Given the call expression that calls Fn
|
|
/// (which eventually refers to the declaration Func) and the call
|
|
/// arguments Args/NumArgs, attempt to resolve the function call down
|
|
/// to a specific function. If overload resolution succeeds, returns
|
|
/// the call expression produced by overload resolution.
|
|
/// Otherwise, emits diagnostics and returns ExprError.
|
|
ExprResult BuildOverloadedCallExpr(
|
|
Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc,
|
|
MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig,
|
|
bool AllowTypoCorrection = true, bool CalleesAddressIsTaken = false);
|
|
|
|
/// Constructs and populates an OverloadedCandidateSet from
|
|
/// the given function.
|
|
/// \returns true when an the ExprResult output parameter has been set.
|
|
bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
|
|
MultiExprArg Args, SourceLocation RParenLoc,
|
|
OverloadCandidateSet *CandidateSet,
|
|
ExprResult *Result);
|
|
|
|
ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
|
|
NestedNameSpecifierLoc NNSLoc,
|
|
DeclarationNameInfo DNI,
|
|
const UnresolvedSetImpl &Fns,
|
|
bool PerformADL = true);
|
|
|
|
/// Create a unary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '*').
|
|
///
|
|
/// \param Opc The UnaryOperatorKind that describes this operator.
|
|
///
|
|
/// \param Fns The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedUnaryOp().
|
|
///
|
|
/// \param Input The input argument.
|
|
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns, Expr *input,
|
|
bool RequiresADL = true);
|
|
|
|
/// Perform lookup for an overloaded binary operator.
|
|
void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
|
|
OverloadedOperatorKind Op,
|
|
const UnresolvedSetImpl &Fns,
|
|
ArrayRef<Expr *> Args, bool RequiresADL = true);
|
|
|
|
/// Create a binary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '+').
|
|
///
|
|
/// \param Opc The BinaryOperatorKind that describes this operator.
|
|
///
|
|
/// \param Fns The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedBinOp().
|
|
///
|
|
/// \param LHS Left-hand argument.
|
|
/// \param RHS Right-hand argument.
|
|
/// \param PerformADL Whether to consider operator candidates found by ADL.
|
|
/// \param AllowRewrittenCandidates Whether to consider candidates found by
|
|
/// C++20 operator rewrites.
|
|
/// \param DefaultedFn If we are synthesizing a defaulted operator function,
|
|
/// the function in question. Such a function is never a candidate in
|
|
/// our overload resolution. This also enables synthesizing a three-way
|
|
/// comparison from < and == as described in C++20 [class.spaceship]p1.
|
|
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns, Expr *LHS,
|
|
Expr *RHS, bool RequiresADL = true,
|
|
bool AllowRewrittenCandidates = true,
|
|
FunctionDecl *DefaultedFn = nullptr);
|
|
ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *LHS, Expr *RHS,
|
|
FunctionDecl *DefaultedFn);
|
|
|
|
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
|
|
SourceLocation RLoc, Expr *Base,
|
|
MultiExprArg Args);
|
|
|
|
/// BuildCallToMemberFunction - Build a call to a member
|
|
/// function. MemExpr is the expression that refers to the member
|
|
/// function (and includes the object parameter), Args/NumArgs are the
|
|
/// arguments to the function call (not including the object
|
|
/// parameter). The caller needs to validate that the member
|
|
/// expression refers to a non-static member function or an overloaded
|
|
/// member function.
|
|
ExprResult BuildCallToMemberFunction(
|
|
Scope *S, Expr *MemExpr, SourceLocation LParenLoc, MultiExprArg Args,
|
|
SourceLocation RParenLoc, Expr *ExecConfig = nullptr,
|
|
bool IsExecConfig = false, bool AllowRecovery = false);
|
|
|
|
/// BuildCallToObjectOfClassType - Build a call to an object of class
|
|
/// type (C++ [over.call.object]), which can end up invoking an
|
|
/// overloaded function call operator (@c operator()) or performing a
|
|
/// user-defined conversion on the object argument.
|
|
ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
|
|
/// (if one exists), where @c Base is an expression of class type and
|
|
/// @c Member is the name of the member we're trying to find.
|
|
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
bool *NoArrowOperatorFound = nullptr);
|
|
|
|
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
|
|
CXXConversionDecl *Method,
|
|
bool HadMultipleCandidates);
|
|
|
|
/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call
|
|
/// to a literal operator described by the provided lookup results.
|
|
ExprResult BuildLiteralOperatorCall(
|
|
LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef<Expr *> Args,
|
|
SourceLocation LitEndLoc,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
|
|
|
|
/// FixOverloadedFunctionReference - E is an expression that refers to
|
|
/// a C++ overloaded function (possibly with some parentheses and
|
|
/// perhaps a '&' around it). We have resolved the overloaded function
|
|
/// to the function declaration Fn, so patch up the expression E to
|
|
/// refer (possibly indirectly) to Fn. Returns the new expr.
|
|
ExprResult FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl,
|
|
FunctionDecl *Fn);
|
|
ExprResult FixOverloadedFunctionReference(ExprResult,
|
|
DeclAccessPair FoundDecl,
|
|
FunctionDecl *Fn);
|
|
|
|
/// - Returns a selector which best matches given argument list or
|
|
/// nullptr if none could be found
|
|
ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
|
|
bool IsInstance,
|
|
SmallVectorImpl<ObjCMethodDecl *> &Methods);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Statements
|
|
/// Implementations are in SemaStmt.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Stack of active SEH __finally scopes. Can be empty.
|
|
SmallVector<Scope *, 2> CurrentSEHFinally;
|
|
|
|
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
|
|
StmtResult ActOnExprStmtError();
|
|
|
|
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
|
|
bool HasLeadingEmptyMacro = false);
|
|
|
|
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
|
|
|
|
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
|
|
/// whose result is unused, warn.
|
|
void DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID);
|
|
|
|
void ActOnStartOfCompoundStmt(bool IsStmtExpr);
|
|
void ActOnAfterCompoundStatementLeadingPragmas();
|
|
void ActOnFinishOfCompoundStmt();
|
|
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
|
|
ArrayRef<Stmt *> Elts, bool isStmtExpr);
|
|
|
|
sema::CompoundScopeInfo &getCurCompoundScope() const;
|
|
|
|
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
|
|
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
|
|
SourceLocation DotDotDotLoc, ExprResult RHS,
|
|
SourceLocation ColonLoc);
|
|
|
|
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
|
|
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
|
|
|
|
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
|
|
SourceLocation ColonLoc, Stmt *SubStmt,
|
|
Scope *CurScope);
|
|
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
|
|
SourceLocation ColonLoc, Stmt *SubStmt);
|
|
|
|
StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
|
|
ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
|
|
StmtResult ActOnAttributedStmt(const ParsedAttributes &AttrList,
|
|
Stmt *SubStmt);
|
|
|
|
/// Check whether the given statement can have musttail applied to it,
|
|
/// issuing a diagnostic and returning false if not. In the success case,
|
|
/// the statement is rewritten to remove implicit nodes from the return
|
|
/// value.
|
|
bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
|
|
|
|
StmtResult ActOnIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
|
|
SourceLocation LParenLoc, Stmt *InitStmt,
|
|
ConditionResult Cond, SourceLocation RParenLoc,
|
|
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
|
|
StmtResult BuildIfStmt(SourceLocation IfLoc, IfStatementKind StatementKind,
|
|
SourceLocation LParenLoc, Stmt *InitStmt,
|
|
ConditionResult Cond, SourceLocation RParenLoc,
|
|
Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
|
|
|
|
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
|
|
|
|
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
|
|
SourceLocation LParenLoc, Stmt *InitStmt,
|
|
ConditionResult Cond,
|
|
SourceLocation RParenLoc);
|
|
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
|
|
Stmt *Body);
|
|
|
|
/// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
|
|
/// integer not in the range of enum values.
|
|
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr);
|
|
|
|
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
|
|
ConditionResult Cond, SourceLocation RParenLoc,
|
|
Stmt *Body);
|
|
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
|
|
SourceLocation WhileLoc, SourceLocation CondLParen,
|
|
Expr *Cond, SourceLocation CondRParen);
|
|
|
|
StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
|
|
Stmt *First, ConditionResult Second,
|
|
FullExprArg Third, SourceLocation RParenLoc,
|
|
Stmt *Body);
|
|
|
|
/// In an Objective C collection iteration statement:
|
|
/// for (x in y)
|
|
/// x can be an arbitrary l-value expression. Bind it up as a
|
|
/// full-expression.
|
|
StmtResult ActOnForEachLValueExpr(Expr *E);
|
|
|
|
enum BuildForRangeKind {
|
|
/// Initial building of a for-range statement.
|
|
BFRK_Build,
|
|
/// Instantiation or recovery rebuild of a for-range statement. Don't
|
|
/// attempt any typo-correction.
|
|
BFRK_Rebuild,
|
|
/// Determining whether a for-range statement could be built. Avoid any
|
|
/// unnecessary or irreversible actions.
|
|
BFRK_Check
|
|
};
|
|
|
|
/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
|
|
///
|
|
/// C++11 [stmt.ranged]:
|
|
/// A range-based for statement is equivalent to
|
|
///
|
|
/// {
|
|
/// auto && __range = range-init;
|
|
/// for ( auto __begin = begin-expr,
|
|
/// __end = end-expr;
|
|
/// __begin != __end;
|
|
/// ++__begin ) {
|
|
/// for-range-declaration = *__begin;
|
|
/// statement
|
|
/// }
|
|
/// }
|
|
///
|
|
/// The body of the loop is not available yet, since it cannot be analysed
|
|
/// until we have determined the type of the for-range-declaration.
|
|
StmtResult ActOnCXXForRangeStmt(
|
|
Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc,
|
|
Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection,
|
|
SourceLocation RParenLoc, BuildForRangeKind Kind,
|
|
ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps = {});
|
|
|
|
/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
|
|
StmtResult BuildCXXForRangeStmt(
|
|
SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
|
|
SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End,
|
|
Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc,
|
|
BuildForRangeKind Kind,
|
|
ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps = {});
|
|
|
|
/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
|
|
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
|
|
/// body cannot be performed until after the type of the range variable is
|
|
/// determined.
|
|
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
|
|
|
|
StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
|
|
LabelDecl *TheDecl);
|
|
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation StarLoc, Expr *DestExp);
|
|
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
|
|
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
|
|
|
|
struct NamedReturnInfo {
|
|
const VarDecl *Candidate;
|
|
|
|
enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
|
|
Status S;
|
|
|
|
bool isMoveEligible() const { return S != None; };
|
|
bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
|
|
};
|
|
enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
|
|
|
|
/// Determine whether the given expression might be move-eligible or
|
|
/// copy-elidable in either a (co_)return statement or throw expression,
|
|
/// without considering function return type, if applicable.
|
|
///
|
|
/// \param E The expression being returned from the function or block,
|
|
/// being thrown, or being co_returned from a coroutine. This expression
|
|
/// might be modified by the implementation.
|
|
///
|
|
/// \param Mode Overrides detection of current language mode
|
|
/// and uses the rules for C++23.
|
|
///
|
|
/// \returns An aggregate which contains the Candidate and isMoveEligible
|
|
/// and isCopyElidable methods. If Candidate is non-null, it means
|
|
/// isMoveEligible() would be true under the most permissive language
|
|
/// standard.
|
|
NamedReturnInfo getNamedReturnInfo(
|
|
Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
|
|
|
|
/// Determine whether the given NRVO candidate variable is move-eligible or
|
|
/// copy-elidable, without considering function return type.
|
|
///
|
|
/// \param VD The NRVO candidate variable.
|
|
///
|
|
/// \returns An aggregate which contains the Candidate and isMoveEligible
|
|
/// and isCopyElidable methods. If Candidate is non-null, it means
|
|
/// isMoveEligible() would be true under the most permissive language
|
|
/// standard.
|
|
NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
|
|
|
|
/// Updates given NamedReturnInfo's move-eligible and
|
|
/// copy-elidable statuses, considering the function
|
|
/// return type criteria as applicable to return statements.
|
|
///
|
|
/// \param Info The NamedReturnInfo object to update.
|
|
///
|
|
/// \param ReturnType This is the return type of the function.
|
|
/// \returns The copy elision candidate, in case the initial return expression
|
|
/// was copy elidable, or nullptr otherwise.
|
|
const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
|
|
QualType ReturnType);
|
|
|
|
/// Perform the initialization of a potentially-movable value, which
|
|
/// is the result of return value.
|
|
///
|
|
/// This routine implements C++20 [class.copy.elision]p3, which attempts to
|
|
/// treat returned lvalues as rvalues in certain cases (to prefer move
|
|
/// construction), then falls back to treating them as lvalues if that failed.
|
|
ExprResult
|
|
PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
|
|
const NamedReturnInfo &NRInfo, Expr *Value,
|
|
bool SupressSimplerImplicitMoves = false);
|
|
|
|
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
|
|
|
|
/// Deduce the return type for a function from a returned expression, per
|
|
/// C++1y [dcl.spec.auto]p6.
|
|
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
|
|
SourceLocation ReturnLoc, Expr *RetExpr,
|
|
const AutoType *AT);
|
|
|
|
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
|
|
Scope *CurScope);
|
|
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
|
|
bool AllowRecovery = false);
|
|
|
|
/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
|
|
/// for capturing scopes.
|
|
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
|
|
NamedReturnInfo &NRInfo,
|
|
bool SupressSimplerImplicitMoves);
|
|
|
|
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
|
|
/// and creates a proper catch handler from them.
|
|
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
|
|
Stmt *HandlerBlock);
|
|
|
|
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
|
|
/// handlers and creates a try statement from them.
|
|
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
|
|
ArrayRef<Stmt *> Handlers);
|
|
|
|
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
|
|
SourceLocation TryLoc, Stmt *TryBlock,
|
|
Stmt *Handler);
|
|
StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
|
|
Stmt *Block);
|
|
void ActOnStartSEHFinallyBlock();
|
|
void ActOnAbortSEHFinallyBlock();
|
|
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
|
|
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
|
|
|
|
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
|
|
bool IsIfExists,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
DeclarationNameInfo NameInfo,
|
|
Stmt *Nested);
|
|
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
|
|
bool IsIfExists, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name, Stmt *Nested);
|
|
|
|
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
|
|
CapturedRegionKind Kind, unsigned NumParams);
|
|
typedef std::pair<StringRef, QualType> CapturedParamNameType;
|
|
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
|
|
CapturedRegionKind Kind,
|
|
ArrayRef<CapturedParamNameType> Params,
|
|
unsigned OpenMPCaptureLevel = 0);
|
|
StmtResult ActOnCapturedRegionEnd(Stmt *S);
|
|
void ActOnCapturedRegionError();
|
|
RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
|
|
SourceLocation Loc,
|
|
unsigned NumParams);
|
|
|
|
private:
|
|
/// Check whether the given statement can have musttail applied to it,
|
|
/// issuing a diagnostic and returning false if not.
|
|
bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
|
|
|
|
/// Check if the given expression contains 'break' or 'continue'
|
|
/// statement that produces control flow different from GCC.
|
|
void CheckBreakContinueBinding(Expr *E);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name `inline asm` Statement
|
|
/// Implementations are in SemaStmtAsm.cpp
|
|
///@{
|
|
|
|
public:
|
|
StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg Constraints, MultiExprArg Exprs,
|
|
Expr *AsmString, MultiExprArg Clobbers,
|
|
unsigned NumLabels, SourceLocation RParenLoc);
|
|
|
|
void FillInlineAsmIdentifierInfo(Expr *Res,
|
|
llvm::InlineAsmIdentifierInfo &Info);
|
|
ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Id,
|
|
bool IsUnevaluatedContext);
|
|
bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset,
|
|
SourceLocation AsmLoc);
|
|
ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
|
|
SourceLocation AsmLoc);
|
|
StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
|
|
ArrayRef<Token> AsmToks, StringRef AsmString,
|
|
unsigned NumOutputs, unsigned NumInputs,
|
|
ArrayRef<StringRef> Constraints,
|
|
ArrayRef<StringRef> Clobbers,
|
|
ArrayRef<Expr *> Exprs, SourceLocation EndLoc);
|
|
LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
|
|
SourceLocation Location, bool AlwaysCreate);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Statement Attribute Handling
|
|
/// Implementations are in SemaStmtAttr.cpp
|
|
///@{
|
|
|
|
public:
|
|
bool CheckNoInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
|
|
const AttributeCommonInfo &A);
|
|
bool CheckAlwaysInlineAttr(const Stmt *OrigSt, const Stmt *CurSt,
|
|
const AttributeCommonInfo &A);
|
|
|
|
CodeAlignAttr *BuildCodeAlignAttr(const AttributeCommonInfo &CI, Expr *E);
|
|
bool CheckRebuiltStmtAttributes(ArrayRef<const Attr *> Attrs);
|
|
|
|
/// Process the attributes before creating an attributed statement. Returns
|
|
/// the semantic attributes that have been processed.
|
|
void ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributes &InAttrs,
|
|
SmallVectorImpl<const Attr *> &OutAttrs);
|
|
|
|
ExprResult ActOnCXXAssumeAttr(Stmt *St, const ParsedAttr &A,
|
|
SourceRange Range);
|
|
ExprResult BuildCXXAssumeExpr(Expr *Assumption,
|
|
const IdentifierInfo *AttrName,
|
|
SourceRange Range);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Templates
|
|
/// Implementations are in SemaTemplate.cpp
|
|
///@{
|
|
|
|
public:
|
|
// Saves the current floating-point pragma stack and clear it in this Sema.
|
|
class FpPragmaStackSaveRAII {
|
|
public:
|
|
FpPragmaStackSaveRAII(Sema &S)
|
|
: S(S), SavedStack(std::move(S.FpPragmaStack)) {
|
|
S.FpPragmaStack.Stack.clear();
|
|
}
|
|
~FpPragmaStackSaveRAII() { S.FpPragmaStack = std::move(SavedStack); }
|
|
|
|
private:
|
|
Sema &S;
|
|
PragmaStack<FPOptionsOverride> SavedStack;
|
|
};
|
|
|
|
void resetFPOptions(FPOptions FPO) {
|
|
CurFPFeatures = FPO;
|
|
FpPragmaStack.CurrentValue = FPO.getChangesFrom(FPOptions(LangOpts));
|
|
}
|
|
|
|
ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
|
|
return llvm::ArrayRef(InventedParameterInfos.begin() +
|
|
InventedParameterInfosStart,
|
|
InventedParameterInfos.end());
|
|
}
|
|
|
|
/// The number of SFINAE diagnostics that have been trapped.
|
|
unsigned NumSFINAEErrors;
|
|
|
|
ArrayRef<sema::FunctionScopeInfo *> getFunctionScopes() const {
|
|
return llvm::ArrayRef(FunctionScopes.begin() + FunctionScopesStart,
|
|
FunctionScopes.end());
|
|
}
|
|
|
|
typedef llvm::MapVector<const FunctionDecl *,
|
|
std::unique_ptr<LateParsedTemplate>>
|
|
LateParsedTemplateMapT;
|
|
LateParsedTemplateMapT LateParsedTemplateMap;
|
|
|
|
/// Determine the number of levels of enclosing template parameters. This is
|
|
/// only usable while parsing. Note that this does not include dependent
|
|
/// contexts in which no template parameters have yet been declared, such as
|
|
/// in a terse function template or generic lambda before the first 'auto' is
|
|
/// encountered.
|
|
unsigned getTemplateDepth(Scope *S) const;
|
|
|
|
void FilterAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true);
|
|
bool hasAnyAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true,
|
|
bool AllowNonTemplateFunctions = false);
|
|
/// Try to interpret the lookup result D as a template-name.
|
|
///
|
|
/// \param D A declaration found by name lookup.
|
|
/// \param AllowFunctionTemplates Whether function templates should be
|
|
/// considered valid results.
|
|
/// \param AllowDependent Whether unresolved using declarations (that might
|
|
/// name templates) should be considered valid results.
|
|
static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true);
|
|
|
|
enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
|
|
/// Whether and why a template name is required in this lookup.
|
|
class RequiredTemplateKind {
|
|
public:
|
|
/// Template name is required if TemplateKWLoc is valid.
|
|
RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
|
|
: TemplateKW(TemplateKWLoc) {}
|
|
/// Template name is unconditionally required.
|
|
RequiredTemplateKind(TemplateNameIsRequiredTag) {}
|
|
|
|
SourceLocation getTemplateKeywordLoc() const {
|
|
return TemplateKW.value_or(SourceLocation());
|
|
}
|
|
bool hasTemplateKeyword() const {
|
|
return getTemplateKeywordLoc().isValid();
|
|
}
|
|
bool isRequired() const { return TemplateKW != SourceLocation(); }
|
|
explicit operator bool() const { return isRequired(); }
|
|
|
|
private:
|
|
std::optional<SourceLocation> TemplateKW;
|
|
};
|
|
|
|
enum class AssumedTemplateKind {
|
|
/// This is not assumed to be a template name.
|
|
None,
|
|
/// This is assumed to be a template name because lookup found nothing.
|
|
FoundNothing,
|
|
/// This is assumed to be a template name because lookup found one or more
|
|
/// functions (but no function templates).
|
|
FoundFunctions,
|
|
};
|
|
|
|
bool
|
|
LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS,
|
|
QualType ObjectType, bool EnteringContext,
|
|
RequiredTemplateKind RequiredTemplate = SourceLocation(),
|
|
AssumedTemplateKind *ATK = nullptr,
|
|
bool AllowTypoCorrection = true);
|
|
|
|
TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS,
|
|
bool hasTemplateKeyword,
|
|
const UnqualifiedId &Name,
|
|
ParsedType ObjectType, bool EnteringContext,
|
|
TemplateTy &Template,
|
|
bool &MemberOfUnknownSpecialization,
|
|
bool Disambiguation = false);
|
|
|
|
/// Try to resolve an undeclared template name as a type template.
|
|
///
|
|
/// Sets II to the identifier corresponding to the template name, and updates
|
|
/// Name to a corresponding (typo-corrected) type template name and TNK to
|
|
/// the corresponding kind, if possible.
|
|
void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
|
|
TemplateNameKind &TNK,
|
|
SourceLocation NameLoc,
|
|
IdentifierInfo *&II);
|
|
|
|
bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
|
|
SourceLocation NameLoc,
|
|
bool Diagnose = true);
|
|
|
|
/// Determine whether a particular identifier might be the name in a C++1z
|
|
/// deduction-guide declaration.
|
|
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
|
|
SourceLocation NameLoc, CXXScopeSpec &SS,
|
|
ParsedTemplateTy *Template = nullptr);
|
|
|
|
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
|
|
SourceLocation IILoc, Scope *S,
|
|
const CXXScopeSpec *SS,
|
|
TemplateTy &SuggestedTemplate,
|
|
TemplateNameKind &SuggestedKind);
|
|
|
|
/// Determine whether we would be unable to instantiate this template (because
|
|
/// it either has no definition, or is in the process of being instantiated).
|
|
bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
|
|
NamedDecl *Instantiation,
|
|
bool InstantiatedFromMember,
|
|
const NamedDecl *Pattern,
|
|
const NamedDecl *PatternDef,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain = true);
|
|
|
|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
|
|
/// that the template parameter 'PrevDecl' is being shadowed by a new
|
|
/// declaration at location Loc. Returns true to indicate that this is
|
|
/// an error, and false otherwise.
|
|
///
|
|
/// \param Loc The location of the declaration that shadows a template
|
|
/// parameter.
|
|
///
|
|
/// \param PrevDecl The template parameter that the declaration shadows.
|
|
///
|
|
/// \param SupportedForCompatibility Whether to issue the diagnostic as
|
|
/// a warning for compatibility with older versions of clang.
|
|
/// Ignored when MSVC compatibility is enabled.
|
|
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl,
|
|
bool SupportedForCompatibility = false);
|
|
|
|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
|
|
/// the parameter D to reference the templated declaration and return a
|
|
/// pointer to the template declaration. Otherwise, do nothing to D and return
|
|
/// null.
|
|
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
|
|
|
|
/// ActOnTypeParameter - Called when a C++ template type parameter
|
|
/// (e.g., "typename T") has been parsed. Typename specifies whether
|
|
/// the keyword "typename" was used to declare the type parameter
|
|
/// (otherwise, "class" was used), and KeyLoc is the location of the
|
|
/// "class" or "typename" keyword. ParamName is the name of the
|
|
/// parameter (NULL indicates an unnamed template parameter) and
|
|
/// ParamNameLoc is the location of the parameter name (if any).
|
|
/// If the type parameter has a default argument, it will be added
|
|
/// later via ActOnTypeParameterDefault.
|
|
NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation KeyLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc, unsigned Depth,
|
|
unsigned Position, SourceLocation EqualLoc,
|
|
ParsedType DefaultArg, bool HasTypeConstraint);
|
|
|
|
bool CheckTypeConstraint(TemplateIdAnnotation *TypeConstraint);
|
|
|
|
bool ActOnTypeConstraint(const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TypeConstraint,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc);
|
|
bool BuildTypeConstraint(const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TypeConstraint,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc,
|
|
bool AllowUnexpandedPack);
|
|
|
|
/// Attach a type-constraint to a template parameter.
|
|
/// \returns true if an error occurred. This can happen if the
|
|
/// immediately-declared constraint could not be formed (e.g. incorrect number
|
|
/// of arguments for the named concept).
|
|
bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
|
|
DeclarationNameInfo NameInfo,
|
|
ConceptDecl *NamedConcept, NamedDecl *FoundDecl,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
TemplateTypeParmDecl *ConstrainedParameter,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
bool AttachTypeConstraint(AutoTypeLoc TL,
|
|
NonTypeTemplateParmDecl *NewConstrainedParm,
|
|
NonTypeTemplateParmDecl *OrigConstrainedParm,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// Require the given type to be a structural type, and diagnose if it is not.
|
|
///
|
|
/// \return \c true if an error was produced.
|
|
bool RequireStructuralType(QualType T, SourceLocation Loc);
|
|
|
|
/// Check that the type of a non-type template parameter is
|
|
/// well-formed.
|
|
///
|
|
/// \returns the (possibly-promoted) parameter type if valid;
|
|
/// otherwise, produces a diagnostic and returns a NULL type.
|
|
QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
|
|
SourceLocation Loc);
|
|
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
|
|
|
|
NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
|
|
unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
Expr *DefaultArg);
|
|
|
|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
|
|
/// parameter (e.g. T in template <template \<typename> class T> class array)
|
|
/// has been parsed. S is the current scope.
|
|
NamedDecl *ActOnTemplateTemplateParameter(
|
|
Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params,
|
|
bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc, unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg);
|
|
|
|
/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
|
|
/// constrained by RequiresClause, that contains the template parameters in
|
|
/// Params.
|
|
TemplateParameterList *ActOnTemplateParameterList(
|
|
unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc, ArrayRef<NamedDecl *> Params,
|
|
SourceLocation RAngleLoc, Expr *RequiresClause);
|
|
|
|
/// The context in which we are checking a template parameter list.
|
|
enum TemplateParamListContext {
|
|
TPC_ClassTemplate,
|
|
TPC_VarTemplate,
|
|
TPC_FunctionTemplate,
|
|
TPC_ClassTemplateMember,
|
|
TPC_FriendClassTemplate,
|
|
TPC_FriendFunctionTemplate,
|
|
TPC_FriendFunctionTemplateDefinition,
|
|
TPC_TypeAliasTemplate
|
|
};
|
|
|
|
/// Checks the validity of a template parameter list, possibly
|
|
/// considering the template parameter list from a previous
|
|
/// declaration.
|
|
///
|
|
/// If an "old" template parameter list is provided, it must be
|
|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
|
|
/// template parameter list.
|
|
///
|
|
/// \param NewParams Template parameter list for a new template
|
|
/// declaration. This template parameter list will be updated with any
|
|
/// default arguments that are carried through from the previous
|
|
/// template parameter list.
|
|
///
|
|
/// \param OldParams If provided, template parameter list from a
|
|
/// previous declaration of the same template. Default template
|
|
/// arguments will be merged from the old template parameter list to
|
|
/// the new template parameter list.
|
|
///
|
|
/// \param TPC Describes the context in which we are checking the given
|
|
/// template parameter list.
|
|
///
|
|
/// \param SkipBody If we might have already made a prior merged definition
|
|
/// of this template visible, the corresponding body-skipping information.
|
|
/// Default argument redefinition is not an error when skipping such a body,
|
|
/// because (under the ODR) we can assume the default arguments are the same
|
|
/// as the prior merged definition.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
|
|
TemplateParameterList *OldParams,
|
|
TemplateParamListContext TPC,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
/// Match the given template parameter lists to the given scope
|
|
/// specifier, returning the template parameter list that applies to the
|
|
/// name.
|
|
///
|
|
/// \param DeclStartLoc the start of the declaration that has a scope
|
|
/// specifier or a template parameter list.
|
|
///
|
|
/// \param DeclLoc The location of the declaration itself.
|
|
///
|
|
/// \param SS the scope specifier that will be matched to the given template
|
|
/// parameter lists. This scope specifier precedes a qualified name that is
|
|
/// being declared.
|
|
///
|
|
/// \param TemplateId The template-id following the scope specifier, if there
|
|
/// is one. Used to check for a missing 'template<>'.
|
|
///
|
|
/// \param ParamLists the template parameter lists, from the outermost to the
|
|
/// innermost template parameter lists.
|
|
///
|
|
/// \param IsFriend Whether to apply the slightly different rules for
|
|
/// matching template parameters to scope specifiers in friend
|
|
/// declarations.
|
|
///
|
|
/// \param IsMemberSpecialization will be set true if the scope specifier
|
|
/// denotes a fully-specialized type, and therefore this is a declaration of
|
|
/// a member specialization.
|
|
///
|
|
/// \returns the template parameter list, if any, that corresponds to the
|
|
/// name that is preceded by the scope specifier @p SS. This template
|
|
/// parameter list may have template parameters (if we're declaring a
|
|
/// template) or may have no template parameters (if we're declaring a
|
|
/// template specialization), or may be NULL (if what we're declaring isn't
|
|
/// itself a template).
|
|
TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
|
|
SourceLocation DeclStartLoc, SourceLocation DeclLoc,
|
|
const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
|
|
ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
|
|
bool &IsMemberSpecialization, bool &Invalid,
|
|
bool SuppressDiagnostic = false);
|
|
|
|
/// Returns the template parameter list with all default template argument
|
|
/// information.
|
|
TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD);
|
|
|
|
DeclResult CheckClassTemplate(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
|
|
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
|
|
SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
|
|
TemplateParameterList **OuterTemplateParamLists,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
/// Translates template arguments as provided by the parser
|
|
/// into template arguments used by semantic analysis.
|
|
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
|
|
TemplateArgumentListInfo &Out);
|
|
|
|
/// Convert a parsed type into a parsed template argument. This is mostly
|
|
/// trivial, except that we may have parsed a C++17 deduced class template
|
|
/// specialization type, in which case we should form a template template
|
|
/// argument instead of a type template argument.
|
|
ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
|
|
|
|
void NoteAllFoundTemplates(TemplateName Name);
|
|
|
|
QualType CheckTemplateIdType(TemplateName Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs);
|
|
|
|
TypeResult
|
|
ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy Template, const IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
|
|
bool IsCtorOrDtorName = false, bool IsClassName = false,
|
|
ImplicitTypenameContext AllowImplicitTypename =
|
|
ImplicitTypenameContext::No);
|
|
|
|
/// Parsed an elaborated-type-specifier that refers to a template-id,
|
|
/// such as \c class T::template apply<U>.
|
|
TypeResult ActOnTagTemplateIdType(
|
|
TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc,
|
|
CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD,
|
|
SourceLocation TemplateLoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc);
|
|
|
|
DeclResult ActOnVarTemplateSpecialization(
|
|
Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous,
|
|
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
|
|
StorageClass SC, bool IsPartialSpecialization);
|
|
|
|
/// Get the specialization of the given variable template corresponding to
|
|
/// the specified argument list, or a null-but-valid result if the arguments
|
|
/// are dependent.
|
|
DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation TemplateNameLoc,
|
|
const TemplateArgumentListInfo &TemplateArgs);
|
|
|
|
/// Form a reference to the specialization of the given variable template
|
|
/// corresponding to the specified argument list, or a null-but-valid result
|
|
/// if the arguments are dependent.
|
|
ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
VarTemplateDecl *Template, NamedDecl *FoundD,
|
|
SourceLocation TemplateLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult
|
|
CheckConceptTemplateId(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &ConceptNameInfo,
|
|
NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
|
|
void diagnoseMissingTemplateArguments(const CXXScopeSpec &SS,
|
|
bool TemplateKeyword, TemplateDecl *TD,
|
|
SourceLocation Loc);
|
|
|
|
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc, LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
// We actually only call this from template instantiation.
|
|
ExprResult
|
|
BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsAddressOfOperand);
|
|
|
|
/// Form a template name from a name that is syntactically required to name a
|
|
/// template, either due to use of the 'template' keyword or because a name in
|
|
/// this syntactic context is assumed to name a template (C++
|
|
/// [temp.names]p2-4).
|
|
///
|
|
/// This action forms a template name given the name of the template and its
|
|
/// optional scope specifier. This is used when the 'template' keyword is used
|
|
/// or when the parsing context unambiguously treats a following '<' as
|
|
/// introducing a template argument list. Note that this may produce a
|
|
/// non-dependent template name if we can perform the lookup now and identify
|
|
/// the named template.
|
|
///
|
|
/// For example, given "x.MetaFun::template apply", the scope specifier
|
|
/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
|
|
/// of the "template" keyword, and "apply" is the \p Name.
|
|
TemplateNameKind ActOnTemplateName(Scope *S, CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const UnqualifiedId &Name,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext, TemplateTy &Template,
|
|
bool AllowInjectedClassName = false);
|
|
|
|
DeclResult ActOnClassTemplateSpecialization(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
|
|
TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
/// Check the non-type template arguments of a class template
|
|
/// partial specialization according to C++ [temp.class.spec]p9.
|
|
///
|
|
/// \param TemplateNameLoc the location of the template name.
|
|
/// \param PrimaryTemplate the template parameters of the primary class
|
|
/// template.
|
|
/// \param NumExplicit the number of explicitly-specified template arguments.
|
|
/// \param TemplateArgs the template arguments of the class template
|
|
/// partial specialization.
|
|
///
|
|
/// \returns \c true if there was an error, \c false otherwise.
|
|
bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
|
|
TemplateDecl *PrimaryTemplate,
|
|
unsigned NumExplicitArgs,
|
|
ArrayRef<TemplateArgument> Args);
|
|
void CheckTemplatePartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *Partial);
|
|
void CheckTemplatePartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *Partial);
|
|
|
|
Decl *ActOnTemplateDeclarator(Scope *S,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Declarator &D);
|
|
|
|
/// Diagnose cases where we have an explicit template specialization
|
|
/// before/after an explicit template instantiation, producing diagnostics
|
|
/// for those cases where they are required and determining whether the
|
|
/// new specialization/instantiation will have any effect.
|
|
///
|
|
/// \param NewLoc the location of the new explicit specialization or
|
|
/// instantiation.
|
|
///
|
|
/// \param NewTSK the kind of the new explicit specialization or
|
|
/// instantiation.
|
|
///
|
|
/// \param PrevDecl the previous declaration of the entity.
|
|
///
|
|
/// \param PrevTSK the kind of the old explicit specialization or
|
|
/// instantiatin.
|
|
///
|
|
/// \param PrevPointOfInstantiation if valid, indicates where the previous
|
|
/// declaration was instantiated (either implicitly or explicitly).
|
|
///
|
|
/// \param HasNoEffect will be set to true to indicate that the new
|
|
/// specialization or instantiation has no effect and should be ignored.
|
|
///
|
|
/// \returns true if there was an error that should prevent the introduction
|
|
/// of the new declaration into the AST, false otherwise.
|
|
bool CheckSpecializationInstantiationRedecl(
|
|
SourceLocation NewLoc,
|
|
TemplateSpecializationKind ActOnExplicitInstantiationNewTSK,
|
|
NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK,
|
|
SourceLocation PrevPtOfInstantiation, bool &SuppressNew);
|
|
|
|
/// Perform semantic analysis for the given dependent function
|
|
/// template specialization.
|
|
///
|
|
/// The only possible way to get a dependent function template specialization
|
|
/// is with a friend declaration, like so:
|
|
///
|
|
/// \code
|
|
/// template \<class T> void foo(T);
|
|
/// template \<class T> class A {
|
|
/// friend void foo<>(T);
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// There really isn't any useful analysis we can do here, so we
|
|
/// just store the information.
|
|
bool CheckDependentFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous);
|
|
|
|
/// Perform semantic analysis for the given function template
|
|
/// specialization.
|
|
///
|
|
/// This routine performs all of the semantic analysis required for an
|
|
/// explicit function template specialization. On successful completion,
|
|
/// the function declaration \p FD will become a function template
|
|
/// specialization.
|
|
///
|
|
/// \param FD the function declaration, which will be updated to become a
|
|
/// function template specialization.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
|
|
/// if any. Note that this may be valid info even when 0 arguments are
|
|
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
|
|
/// as it anyway contains info on the angle brackets locations.
|
|
///
|
|
/// \param Previous the set of declarations that may be specialized by
|
|
/// this function specialization.
|
|
///
|
|
/// \param QualifiedFriend whether this is a lookup for a qualified friend
|
|
/// declaration with no explicit template argument list that might be
|
|
/// befriending a function template specialization.
|
|
bool CheckFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous, bool QualifiedFriend = false);
|
|
|
|
/// Perform semantic analysis for the given non-template member
|
|
/// specialization.
|
|
///
|
|
/// This routine performs all of the semantic analysis required for an
|
|
/// explicit member function specialization. On successful completion,
|
|
/// the function declaration \p FD will become a member function
|
|
/// specialization.
|
|
///
|
|
/// \param Member the member declaration, which will be updated to become a
|
|
/// specialization.
|
|
///
|
|
/// \param Previous the set of declarations, one of which may be specialized
|
|
/// by this function specialization; the set will be modified to contain the
|
|
/// redeclared member.
|
|
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
|
|
void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
|
|
|
|
// Explicit instantiation of a class template specialization
|
|
DeclResult ActOnExplicitInstantiation(
|
|
Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
|
|
unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
|
|
TemplateTy Template, SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
|
|
SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
|
|
|
|
// Explicit instantiation of a member class of a class template.
|
|
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
unsigned TagSpec, SourceLocation KWLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr);
|
|
|
|
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
Declarator &D);
|
|
|
|
/// If the given template parameter has a default template
|
|
/// argument, substitute into that default template argument and
|
|
/// return the corresponding template argument.
|
|
TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(
|
|
TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, Decl *Param,
|
|
ArrayRef<TemplateArgument> SugaredConverted,
|
|
ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg);
|
|
|
|
/// Returns the top most location responsible for the definition of \p N.
|
|
/// If \p N is a a template specialization, this is the location
|
|
/// of the top of the instantiation stack.
|
|
/// Otherwise, the location of \p N is returned.
|
|
SourceLocation getTopMostPointOfInstantiation(const NamedDecl *) const;
|
|
|
|
/// Specifies the context in which a particular template
|
|
/// argument is being checked.
|
|
enum CheckTemplateArgumentKind {
|
|
/// The template argument was specified in the code or was
|
|
/// instantiated with some deduced template arguments.
|
|
CTAK_Specified,
|
|
|
|
/// The template argument was deduced via template argument
|
|
/// deduction.
|
|
CTAK_Deduced,
|
|
|
|
/// The template argument was deduced from an array bound
|
|
/// via template argument deduction.
|
|
CTAK_DeducedFromArrayBound
|
|
};
|
|
|
|
/// Check that the given template argument corresponds to the given
|
|
/// template parameter.
|
|
///
|
|
/// \param Param The template parameter against which the argument will be
|
|
/// checked.
|
|
///
|
|
/// \param Arg The template argument, which may be updated due to conversions.
|
|
///
|
|
/// \param Template The template in which the template argument resides.
|
|
///
|
|
/// \param TemplateLoc The location of the template name for the template
|
|
/// whose argument list we're matching.
|
|
///
|
|
/// \param RAngleLoc The location of the right angle bracket ('>') that closes
|
|
/// the template argument list.
|
|
///
|
|
/// \param ArgumentPackIndex The index into the argument pack where this
|
|
/// argument will be placed. Only valid if the parameter is a parameter pack.
|
|
///
|
|
/// \param Converted The checked, converted argument will be added to the
|
|
/// end of this small vector.
|
|
///
|
|
/// \param CTAK Describes how we arrived at this particular template argument:
|
|
/// explicitly written, deduced, etc.
|
|
///
|
|
/// \returns true on error, false otherwise.
|
|
bool
|
|
CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg,
|
|
NamedDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc, unsigned ArgumentPackIndex,
|
|
SmallVectorImpl<TemplateArgument> &SugaredConverted,
|
|
SmallVectorImpl<TemplateArgument> &CanonicalConverted,
|
|
CheckTemplateArgumentKind CTAK);
|
|
|
|
/// Check that the given template arguments can be provided to
|
|
/// the given template, converting the arguments along the way.
|
|
///
|
|
/// \param Template The template to which the template arguments are being
|
|
/// provided.
|
|
///
|
|
/// \param TemplateLoc The location of the template name in the source.
|
|
///
|
|
/// \param TemplateArgs The list of template arguments. If the template is
|
|
/// a template template parameter, this function may extend the set of
|
|
/// template arguments to also include substituted, defaulted template
|
|
/// arguments.
|
|
///
|
|
/// \param PartialTemplateArgs True if the list of template arguments is
|
|
/// intentionally partial, e.g., because we're checking just the initial
|
|
/// set of template arguments.
|
|
///
|
|
/// \param Converted Will receive the converted, canonicalized template
|
|
/// arguments.
|
|
///
|
|
/// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
|
|
/// contain the converted forms of the template arguments as written.
|
|
/// Otherwise, \p TemplateArgs will not be modified.
|
|
///
|
|
/// \param ConstraintsNotSatisfied If provided, and an error occurred, will
|
|
/// receive true if the cause for the error is the associated constraints of
|
|
/// the template not being satisfied by the template arguments.
|
|
///
|
|
/// \param PartialOrderingTTP If true, assume these template arguments are
|
|
/// the injected template arguments for a template template parameter.
|
|
/// This will relax the requirement that all its possible uses are valid:
|
|
/// TTP checking is loose, and assumes that invalid uses will be diagnosed
|
|
/// during instantiation.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckTemplateArgumentList(
|
|
TemplateDecl *Template, SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
|
|
SmallVectorImpl<TemplateArgument> &SugaredConverted,
|
|
SmallVectorImpl<TemplateArgument> &CanonicalConverted,
|
|
bool UpdateArgsWithConversions = true,
|
|
bool *ConstraintsNotSatisfied = nullptr, bool PartialOrderingTTP = false);
|
|
|
|
bool CheckTemplateTypeArgument(
|
|
TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg,
|
|
SmallVectorImpl<TemplateArgument> &SugaredConverted,
|
|
SmallVectorImpl<TemplateArgument> &CanonicalConverted);
|
|
|
|
/// Check a template argument against its corresponding
|
|
/// template type parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.type]. It
|
|
/// returns true if an error occurred, and false otherwise.
|
|
bool CheckTemplateArgument(TypeSourceInfo *Arg);
|
|
|
|
/// Check a template argument against its corresponding
|
|
/// non-type template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.nontype].
|
|
/// If an error occurred, it returns ExprError(); otherwise, it
|
|
/// returns the converted template argument. \p ParamType is the
|
|
/// type of the non-type template parameter after it has been instantiated.
|
|
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
|
|
QualType InstantiatedParamType, Expr *Arg,
|
|
TemplateArgument &SugaredConverted,
|
|
TemplateArgument &CanonicalConverted,
|
|
CheckTemplateArgumentKind CTAK);
|
|
|
|
/// Check a template argument against its corresponding
|
|
/// template template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.template].
|
|
/// It returns true if an error occurred, and false otherwise.
|
|
bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
|
|
TemplateParameterList *Params,
|
|
TemplateArgumentLoc &Arg, bool IsDeduced);
|
|
|
|
void NoteTemplateLocation(const NamedDecl &Decl,
|
|
std::optional<SourceRange> ParamRange = {});
|
|
void NoteTemplateParameterLocation(const NamedDecl &Decl);
|
|
|
|
/// Given a non-type template argument that refers to a
|
|
/// declaration and the type of its corresponding non-type template
|
|
/// parameter, produce an expression that properly refers to that
|
|
/// declaration.
|
|
ExprResult BuildExpressionFromDeclTemplateArgument(
|
|
const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc,
|
|
NamedDecl *TemplateParam = nullptr);
|
|
ExprResult
|
|
BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
|
|
SourceLocation Loc);
|
|
|
|
/// Enumeration describing how template parameter lists are compared
|
|
/// for equality.
|
|
enum TemplateParameterListEqualKind {
|
|
/// We are matching the template parameter lists of two templates
|
|
/// that might be redeclarations.
|
|
///
|
|
/// \code
|
|
/// template<typename T> struct X;
|
|
/// template<typename T> struct X;
|
|
/// \endcode
|
|
TPL_TemplateMatch,
|
|
|
|
/// We are matching the template parameter lists of two template
|
|
/// template parameters as part of matching the template parameter lists
|
|
/// of two templates that might be redeclarations.
|
|
///
|
|
/// \code
|
|
/// template<template<int I> class TT> struct X;
|
|
/// template<template<int Value> class Other> struct X;
|
|
/// \endcode
|
|
TPL_TemplateTemplateParmMatch,
|
|
|
|
/// We are matching the template parameter lists of a template
|
|
/// template argument against the template parameter lists of a template
|
|
/// template parameter.
|
|
///
|
|
/// \code
|
|
/// template<template<int Value> class Metafun> struct X;
|
|
/// template<int Value> struct integer_c;
|
|
/// X<integer_c> xic;
|
|
/// \endcode
|
|
TPL_TemplateTemplateArgumentMatch,
|
|
|
|
/// We are determining whether the template-parameters are equivalent
|
|
/// according to C++ [temp.over.link]/6. This comparison does not consider
|
|
/// constraints.
|
|
///
|
|
/// \code
|
|
/// template<C1 T> void f(T);
|
|
/// template<C2 T> void f(T);
|
|
/// \endcode
|
|
TPL_TemplateParamsEquivalent,
|
|
};
|
|
|
|
// A struct to represent the 'new' declaration, which is either itself just
|
|
// the named decl, or the important information we need about it in order to
|
|
// do constraint comparisons.
|
|
class TemplateCompareNewDeclInfo {
|
|
const NamedDecl *ND = nullptr;
|
|
const DeclContext *DC = nullptr;
|
|
const DeclContext *LexicalDC = nullptr;
|
|
SourceLocation Loc;
|
|
|
|
public:
|
|
TemplateCompareNewDeclInfo(const NamedDecl *ND) : ND(ND) {}
|
|
TemplateCompareNewDeclInfo(const DeclContext *DeclCtx,
|
|
const DeclContext *LexicalDeclCtx,
|
|
SourceLocation Loc)
|
|
|
|
: DC(DeclCtx), LexicalDC(LexicalDeclCtx), Loc(Loc) {
|
|
assert(DC && LexicalDC &&
|
|
"Constructor only for cases where we have the information to put "
|
|
"in here");
|
|
}
|
|
|
|
// If this was constructed with no information, we cannot do substitution
|
|
// for constraint comparison, so make sure we can check that.
|
|
bool isInvalid() const { return !ND && !DC; }
|
|
|
|
const NamedDecl *getDecl() const { return ND; }
|
|
|
|
bool ContainsDecl(const NamedDecl *ND) const { return this->ND == ND; }
|
|
|
|
const DeclContext *getLexicalDeclContext() const {
|
|
return ND ? ND->getLexicalDeclContext() : LexicalDC;
|
|
}
|
|
|
|
const DeclContext *getDeclContext() const {
|
|
return ND ? ND->getDeclContext() : DC;
|
|
}
|
|
|
|
SourceLocation getLocation() const { return ND ? ND->getLocation() : Loc; }
|
|
};
|
|
|
|
/// Determine whether the given template parameter lists are
|
|
/// equivalent.
|
|
///
|
|
/// \param New The new template parameter list, typically written in the
|
|
/// source code as part of a new template declaration.
|
|
///
|
|
/// \param Old The old template parameter list, typically found via
|
|
/// name lookup of the template declared with this template parameter
|
|
/// list.
|
|
///
|
|
/// \param Complain If true, this routine will produce a diagnostic if
|
|
/// the template parameter lists are not equivalent.
|
|
///
|
|
/// \param Kind describes how we are to match the template parameter lists.
|
|
///
|
|
/// \param TemplateArgLoc If this source location is valid, then we
|
|
/// are actually checking the template parameter list of a template
|
|
/// argument (New) against the template parameter list of its
|
|
/// corresponding template template parameter (Old). We produce
|
|
/// slightly different diagnostics in this scenario.
|
|
///
|
|
/// \returns True if the template parameter lists are equal, false
|
|
/// otherwise.
|
|
bool TemplateParameterListsAreEqual(
|
|
const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
|
|
const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
|
|
TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc = SourceLocation());
|
|
|
|
bool TemplateParameterListsAreEqual(
|
|
TemplateParameterList *New, TemplateParameterList *Old, bool Complain,
|
|
TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc = SourceLocation()) {
|
|
return TemplateParameterListsAreEqual(nullptr, New, nullptr, Old, Complain,
|
|
Kind, TemplateArgLoc);
|
|
}
|
|
|
|
/// Check whether a template can be declared within this scope.
|
|
///
|
|
/// If the template declaration is valid in this scope, returns
|
|
/// false. Otherwise, issues a diagnostic and returns true.
|
|
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
|
|
|
|
/// Called when the parser has parsed a C++ typename
|
|
/// specifier, e.g., "typename T::type".
|
|
///
|
|
/// \param S The scope in which this typename type occurs.
|
|
/// \param TypenameLoc the location of the 'typename' keyword
|
|
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
|
|
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
|
|
/// \param IdLoc the location of the identifier.
|
|
/// \param IsImplicitTypename context where T::type refers to a type.
|
|
TypeResult ActOnTypenameType(
|
|
Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS,
|
|
const IdentifierInfo &II, SourceLocation IdLoc,
|
|
ImplicitTypenameContext IsImplicitTypename = ImplicitTypenameContext::No);
|
|
|
|
/// Called when the parser has parsed a C++ typename
|
|
/// specifier that ends in a template-id, e.g.,
|
|
/// "typename MetaFun::template apply<T1, T2>".
|
|
///
|
|
/// \param S The scope in which this typename type occurs.
|
|
/// \param TypenameLoc the location of the 'typename' keyword
|
|
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
|
|
/// \param TemplateLoc the location of the 'template' keyword, if any.
|
|
/// \param TemplateName The template name.
|
|
/// \param TemplateII The identifier used to name the template.
|
|
/// \param TemplateIILoc The location of the template name.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<').
|
|
/// \param TemplateArgs The template arguments.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>').
|
|
TypeResult
|
|
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS, SourceLocation TemplateLoc,
|
|
TemplateTy TemplateName, const IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc);
|
|
|
|
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II, SourceLocation IILoc,
|
|
TypeSourceInfo **TSI, bool DeducedTSTContext);
|
|
|
|
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II, SourceLocation IILoc,
|
|
bool DeducedTSTContext = true);
|
|
|
|
/// Rebuilds a type within the context of the current instantiation.
|
|
///
|
|
/// The type \p T is part of the type of an out-of-line member definition of
|
|
/// a class template (or class template partial specialization) that was
|
|
/// parsed and constructed before we entered the scope of the class template
|
|
/// (or partial specialization thereof). This routine will rebuild that type
|
|
/// now that we have entered the declarator's scope, which may produce
|
|
/// different canonical types, e.g.,
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// typedef T* pointer;
|
|
/// pointer data();
|
|
/// };
|
|
///
|
|
/// template<typename T>
|
|
/// typename X<T>::pointer X<T>::data() { ... }
|
|
/// \endcode
|
|
///
|
|
/// Here, the type "typename X<T>::pointer" will be created as a
|
|
/// DependentNameType, since we do not know that we can look into X<T> when we
|
|
/// parsed the type. This function will rebuild the type, performing the
|
|
/// lookup of "pointer" in X<T> and returning an ElaboratedType whose
|
|
/// canonical type is the same as the canonical type of T*, allowing the
|
|
/// return types of the out-of-line definition and the declaration to match.
|
|
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
|
|
SourceLocation Loc,
|
|
DeclarationName Name);
|
|
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
|
|
|
|
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
|
|
|
|
/// Rebuild the template parameters now that we know we're in a current
|
|
/// instantiation.
|
|
bool
|
|
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList *Params);
|
|
|
|
/// Produces a formatted string that describes the binding of
|
|
/// template parameters to template arguments.
|
|
std::string
|
|
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgumentList &Args);
|
|
|
|
std::string
|
|
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs);
|
|
|
|
void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
|
|
SourceLocation Less,
|
|
SourceLocation Greater);
|
|
|
|
/// ActOnDependentIdExpression - Handle a dependent id-expression that
|
|
/// was just parsed. This is only possible with an explicit scope
|
|
/// specifier naming a dependent type.
|
|
ExprResult ActOnDependentIdExpression(
|
|
const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo, bool isAddressOfOperand,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult
|
|
BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
// Calculates whether the expression Constraint depends on an enclosing
|
|
// template, for the purposes of [temp.friend] p9.
|
|
// TemplateDepth is the 'depth' of the friend function, which is used to
|
|
// compare whether a declaration reference is referring to a containing
|
|
// template, or just the current friend function. A 'lower' TemplateDepth in
|
|
// the AST refers to a 'containing' template. As the constraint is
|
|
// uninstantiated, this is relative to the 'top' of the TU.
|
|
bool
|
|
ConstraintExpressionDependsOnEnclosingTemplate(const FunctionDecl *Friend,
|
|
unsigned TemplateDepth,
|
|
const Expr *Constraint);
|
|
|
|
/// Find the failed Boolean condition within a given Boolean
|
|
/// constant expression, and describe it with a string.
|
|
std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
|
|
|
|
void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
|
|
|
|
ConceptDecl *ActOnStartConceptDefinition(
|
|
Scope *S, MultiTemplateParamsArg TemplateParameterLists,
|
|
const IdentifierInfo *Name, SourceLocation NameLoc);
|
|
|
|
ConceptDecl *ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C,
|
|
Expr *ConstraintExpr,
|
|
const ParsedAttributesView &Attrs);
|
|
|
|
void CheckConceptRedefinition(ConceptDecl *NewDecl, LookupResult &Previous,
|
|
bool &AddToScope);
|
|
bool CheckConceptUseInDefinition(ConceptDecl *Concept, SourceLocation Loc);
|
|
|
|
TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
const CXXScopeSpec &SS,
|
|
const IdentifierInfo *Name,
|
|
SourceLocation TagLoc, SourceLocation NameLoc);
|
|
|
|
void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
|
|
CachedTokens &Toks);
|
|
void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
|
|
bool IsInsideALocalClassWithinATemplateFunction();
|
|
|
|
/// We've found a use of a templated declaration that would trigger an
|
|
/// implicit instantiation. Check that any relevant explicit specializations
|
|
/// and partial specializations are visible/reachable, and diagnose if not.
|
|
void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
|
|
void checkSpecializationReachability(SourceLocation Loc, NamedDecl *Spec);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Template Argument Deduction
|
|
/// Implementations are in SemaTemplateDeduction.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// When true, access checking violations are treated as SFINAE
|
|
/// failures rather than hard errors.
|
|
bool AccessCheckingSFINAE;
|
|
|
|
/// RAII class used to determine whether SFINAE has
|
|
/// trapped any errors that occur during template argument
|
|
/// deduction.
|
|
class SFINAETrap {
|
|
Sema &SemaRef;
|
|
unsigned PrevSFINAEErrors;
|
|
bool PrevInNonInstantiationSFINAEContext;
|
|
bool PrevAccessCheckingSFINAE;
|
|
bool PrevLastDiagnosticIgnored;
|
|
|
|
public:
|
|
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
|
|
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
|
|
PrevInNonInstantiationSFINAEContext(
|
|
SemaRef.InNonInstantiationSFINAEContext),
|
|
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
|
|
PrevLastDiagnosticIgnored(
|
|
SemaRef.getDiagnostics().isLastDiagnosticIgnored()) {
|
|
if (!SemaRef.isSFINAEContext())
|
|
SemaRef.InNonInstantiationSFINAEContext = true;
|
|
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
|
|
}
|
|
|
|
~SFINAETrap() {
|
|
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
|
|
SemaRef.InNonInstantiationSFINAEContext =
|
|
PrevInNonInstantiationSFINAEContext;
|
|
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
|
|
SemaRef.getDiagnostics().setLastDiagnosticIgnored(
|
|
PrevLastDiagnosticIgnored);
|
|
}
|
|
|
|
/// Determine whether any SFINAE errors have been trapped.
|
|
bool hasErrorOccurred() const {
|
|
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
|
|
}
|
|
};
|
|
|
|
/// RAII class used to indicate that we are performing provisional
|
|
/// semantic analysis to determine the validity of a construct, so
|
|
/// typo-correction and diagnostics in the immediate context (not within
|
|
/// implicitly-instantiated templates) should be suppressed.
|
|
class TentativeAnalysisScope {
|
|
Sema &SemaRef;
|
|
// FIXME: Using a SFINAETrap for this is a hack.
|
|
SFINAETrap Trap;
|
|
bool PrevDisableTypoCorrection;
|
|
|
|
public:
|
|
explicit TentativeAnalysisScope(Sema &SemaRef)
|
|
: SemaRef(SemaRef), Trap(SemaRef, true),
|
|
PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
|
|
SemaRef.DisableTypoCorrection = true;
|
|
}
|
|
~TentativeAnalysisScope() {
|
|
SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
|
|
}
|
|
};
|
|
|
|
/// For each declaration that involved template argument deduction, the
|
|
/// set of diagnostics that were suppressed during that template argument
|
|
/// deduction.
|
|
///
|
|
/// FIXME: Serialize this structure to the AST file.
|
|
typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1>>
|
|
SuppressedDiagnosticsMap;
|
|
SuppressedDiagnosticsMap SuppressedDiagnostics;
|
|
|
|
/// Compare types for equality with respect to possibly compatible
|
|
/// function types (noreturn adjustment, implicit calling conventions). If any
|
|
/// of parameter and argument is not a function, just perform type comparison.
|
|
///
|
|
/// \param P the template parameter type.
|
|
///
|
|
/// \param A the argument type.
|
|
bool isSameOrCompatibleFunctionType(QualType Param, QualType Arg);
|
|
|
|
/// Allocate a TemplateArgumentLoc where all locations have
|
|
/// been initialized to the given location.
|
|
///
|
|
/// \param Arg The template argument we are producing template argument
|
|
/// location information for.
|
|
///
|
|
/// \param NTTPType For a declaration template argument, the type of
|
|
/// the non-type template parameter that corresponds to this template
|
|
/// argument. Can be null if no type sugar is available to add to the
|
|
/// type from the template argument.
|
|
///
|
|
/// \param Loc The source location to use for the resulting template
|
|
/// argument.
|
|
TemplateArgumentLoc
|
|
getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType,
|
|
SourceLocation Loc,
|
|
NamedDecl *TemplateParam = nullptr);
|
|
|
|
/// Get a template argument mapping the given template parameter to itself,
|
|
/// e.g. for X in \c template<int X>, this would return an expression template
|
|
/// argument referencing X.
|
|
TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
|
|
SourceLocation Location);
|
|
|
|
/// Adjust the type \p ArgFunctionType to match the calling convention,
|
|
/// noreturn, and optionally the exception specification of \p FunctionType.
|
|
/// Deduction often wants to ignore these properties when matching function
|
|
/// types.
|
|
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
|
|
bool AdjustExceptionSpec = false);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
/// Deduce the template arguments of the given template from \p FromType.
|
|
/// Used to implement the IsDeducible constraint for alias CTAD per C++
|
|
/// [over.match.class.deduct]p4.
|
|
///
|
|
/// It only supports class or type alias templates.
|
|
TemplateDeductionResult
|
|
DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
TemplateDeductionResult DeduceTemplateArguments(
|
|
TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch);
|
|
|
|
/// Substitute the explicitly-provided template arguments into the
|
|
/// given function template according to C++ [temp.arg.explicit].
|
|
///
|
|
/// \param FunctionTemplate the function template into which the explicit
|
|
/// template arguments will be substituted.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param Deduced the deduced template arguments, which will be populated
|
|
/// with the converted and checked explicit template arguments.
|
|
///
|
|
/// \param ParamTypes will be populated with the instantiated function
|
|
/// parameters.
|
|
///
|
|
/// \param FunctionType if non-NULL, the result type of the function template
|
|
/// will also be instantiated and the pointed-to value will be updated with
|
|
/// the instantiated function type.
|
|
///
|
|
/// \param Info if substitution fails for any reason, this object will be
|
|
/// populated with more information about the failure.
|
|
///
|
|
/// \returns TemplateDeductionResult::Success if substitution was successful,
|
|
/// or some failure condition.
|
|
TemplateDeductionResult SubstituteExplicitTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
/// brief A function argument from which we performed template argument
|
|
// deduction for a call.
|
|
struct OriginalCallArg {
|
|
OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
|
|
unsigned ArgIdx, QualType OriginalArgType)
|
|
: OriginalParamType(OriginalParamType),
|
|
DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
|
|
OriginalArgType(OriginalArgType) {}
|
|
|
|
QualType OriginalParamType;
|
|
bool DecomposedParam;
|
|
unsigned ArgIdx;
|
|
QualType OriginalArgType;
|
|
};
|
|
|
|
/// Finish template argument deduction for a function template,
|
|
/// checking the deduced template arguments for completeness and forming
|
|
/// the function template specialization.
|
|
///
|
|
/// \param OriginalCallArgs If non-NULL, the original call arguments against
|
|
/// which the deduced argument types should be compared.
|
|
TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
|
|
bool PartialOverloading = false,
|
|
llvm::function_ref<bool()> CheckNonDependent = [] { return false; });
|
|
|
|
/// Perform template argument deduction from a function call
|
|
/// (C++ [temp.deduct.call]).
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicit template arguments provided
|
|
/// for this call.
|
|
///
|
|
/// \param Args the function call arguments
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \param CheckNonDependent A callback to invoke to check conversions for
|
|
/// non-dependent parameters, between deduction and substitution, per DR1391.
|
|
/// If this returns true, substitution will be skipped and we return
|
|
/// TemplateDeductionResult::NonDependentConversionFailure. The callback is
|
|
/// passed the parameter types (after substituting explicit template
|
|
/// arguments).
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
TemplateDeductionResult DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
|
|
bool PartialOverloading, bool AggregateDeductionCandidate,
|
|
QualType ObjectType, Expr::Classification ObjectClassification,
|
|
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
|
|
|
|
/// Deduce template arguments when taking the address of a function
|
|
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
|
|
/// a template.
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param ArgFunctionType the function type that will be used as the
|
|
/// "argument" type (A) when performing template argument deduction from the
|
|
/// function template's function type. This type may be NULL, if there is no
|
|
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
|
|
/// the address of a function template per [temp.deduct.funcaddr] and
|
|
/// [over.over]. If \c false, we are looking up a function template
|
|
/// specialization based on its signature, per [temp.deduct.decl].
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
TemplateDeductionResult DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
|
|
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction = false);
|
|
|
|
/// Deduce template arguments for a templated conversion
|
|
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
|
|
/// conversion function template specialization.
|
|
TemplateDeductionResult DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, QualType ToType,
|
|
CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info);
|
|
|
|
/// Deduce template arguments for a function template when there is
|
|
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
|
|
/// the address of a function template in a context where we do not have a
|
|
/// target type, per [over.over]. If \c false, we are looking up a function
|
|
/// template specialization based on its signature, which only happens when
|
|
/// deducing a function parameter type from an argument that is a template-id
|
|
/// naming a function template specialization.
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
FunctionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction = false);
|
|
|
|
/// Substitute Replacement for \p auto in \p TypeWithAuto
|
|
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
|
|
/// Substitute Replacement for auto in TypeWithAuto
|
|
TypeSourceInfo *SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType Replacement);
|
|
|
|
// Substitute auto in TypeWithAuto for a Dependent auto type
|
|
QualType SubstAutoTypeDependent(QualType TypeWithAuto);
|
|
|
|
// Substitute auto in TypeWithAuto for a Dependent auto type
|
|
TypeSourceInfo *
|
|
SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto);
|
|
|
|
/// Completely replace the \c auto in \p TypeWithAuto by
|
|
/// \p Replacement. This does not retain any \c auto type sugar.
|
|
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
|
|
TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType Replacement);
|
|
|
|
/// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
|
|
///
|
|
/// Note that this is done even if the initializer is dependent. (This is
|
|
/// necessary to support partial ordering of templates using 'auto'.)
|
|
/// A dependent type will be produced when deducing from a dependent type.
|
|
///
|
|
/// \param Type the type pattern using the auto type-specifier.
|
|
/// \param Init the initializer for the variable whose type is to be deduced.
|
|
/// \param Result if type deduction was successful, this will be set to the
|
|
/// deduced type.
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
/// \param DependentDeduction Set if we should permit deduction in
|
|
/// dependent cases. This is necessary for template partial ordering
|
|
/// with 'auto' template parameters. The template parameter depth to be
|
|
/// used should be specified in the 'Info' parameter.
|
|
/// \param IgnoreConstraints Set if we should not fail if the deduced type
|
|
/// does not satisfy the type-constraint in the auto
|
|
/// type.
|
|
TemplateDeductionResult
|
|
DeduceAutoType(TypeLoc AutoTypeLoc, Expr *Initializer, QualType &Result,
|
|
sema::TemplateDeductionInfo &Info,
|
|
bool DependentDeduction = false,
|
|
bool IgnoreConstraints = false,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr);
|
|
void DiagnoseAutoDeductionFailure(const VarDecl *VDecl, const Expr *Init);
|
|
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
|
|
bool Diagnose = true);
|
|
|
|
bool CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD,
|
|
SourceLocation Loc);
|
|
|
|
/// Returns the more specialized class template partial specialization
|
|
/// according to the rules of partial ordering of class template partial
|
|
/// specializations (C++ [temp.class.order]).
|
|
///
|
|
/// \param PS1 the first class template partial specialization
|
|
///
|
|
/// \param PS2 the second class template partial specialization
|
|
///
|
|
/// \returns the more specialized class template partial specialization. If
|
|
/// neither partial specialization is more specialized, returns NULL.
|
|
ClassTemplatePartialSpecializationDecl *
|
|
getMoreSpecializedPartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *PS1,
|
|
ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
|
|
|
|
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *PS1,
|
|
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
|
|
|
|
bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
|
|
TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc,
|
|
bool IsDeduced);
|
|
|
|
/// Mark which template parameters are used in a given expression.
|
|
///
|
|
/// \param E the expression from which template parameters will be deduced.
|
|
///
|
|
/// \param Used a bit vector whose elements will be set to \c true
|
|
/// to indicate when the corresponding template parameter will be
|
|
/// deduced.
|
|
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
|
|
unsigned Depth, llvm::SmallBitVector &Used);
|
|
|
|
/// Mark which template parameters can be deduced from a given
|
|
/// template argument list.
|
|
///
|
|
/// \param TemplateArgs the template argument list from which template
|
|
/// parameters will be deduced.
|
|
///
|
|
/// \param Used a bit vector whose elements will be set to \c true
|
|
/// to indicate when the corresponding template parameter will be
|
|
/// deduced.
|
|
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used);
|
|
void
|
|
MarkDeducedTemplateParameters(const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced) {
|
|
return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
|
|
}
|
|
|
|
/// Marks all of the template parameters that will be deduced by a
|
|
/// call to the given function template.
|
|
static void
|
|
MarkDeducedTemplateParameters(ASTContext &Ctx,
|
|
const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced);
|
|
|
|
/// Returns the more specialized function template according
|
|
/// to the rules of function template partial ordering (C++
|
|
/// [temp.func.order]).
|
|
///
|
|
/// \param FT1 the first function template
|
|
///
|
|
/// \param FT2 the second function template
|
|
///
|
|
/// \param TPOC the context in which we are performing partial ordering of
|
|
/// function templates.
|
|
///
|
|
/// \param NumCallArguments1 The number of arguments in the call to FT1, used
|
|
/// only when \c TPOC is \c TPOC_Call. Does not include the object argument
|
|
/// when calling a member function.
|
|
///
|
|
/// \param RawObj1Ty The type of the object parameter of FT1 if a member
|
|
/// function only used if \c TPOC is \c TPOC_Call and FT1 is a Function
|
|
/// template from a member function
|
|
///
|
|
/// \param RawObj2Ty The type of the object parameter of FT2 if a member
|
|
/// function only used if \c TPOC is \c TPOC_Call and FT2 is a Function
|
|
/// template from a member function
|
|
///
|
|
/// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload
|
|
/// candidate with a reversed parameter order. In this case, the corresponding
|
|
/// P/A pairs between FT1 and FT2 are reversed.
|
|
///
|
|
/// \returns the more specialized function template. If neither
|
|
/// template is more specialized, returns NULL.
|
|
FunctionTemplateDecl *getMoreSpecializedTemplate(
|
|
FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
|
|
TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
|
|
QualType RawObj1Ty = {}, QualType RawObj2Ty = {}, bool Reversed = false);
|
|
|
|
/// Retrieve the most specialized of the given function template
|
|
/// specializations.
|
|
///
|
|
/// \param SpecBegin the start iterator of the function template
|
|
/// specializations that we will be comparing.
|
|
///
|
|
/// \param SpecEnd the end iterator of the function template
|
|
/// specializations, paired with \p SpecBegin.
|
|
///
|
|
/// \param Loc the location where the ambiguity or no-specializations
|
|
/// diagnostic should occur.
|
|
///
|
|
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
|
|
/// no matching candidates.
|
|
///
|
|
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
|
|
/// occurs.
|
|
///
|
|
/// \param CandidateDiag partial diagnostic used for each function template
|
|
/// specialization that is a candidate in the ambiguous ordering. One
|
|
/// parameter in this diagnostic should be unbound, which will correspond to
|
|
/// the string describing the template arguments for the function template
|
|
/// specialization.
|
|
///
|
|
/// \returns the most specialized function template specialization, if
|
|
/// found. Otherwise, returns SpecEnd.
|
|
UnresolvedSetIterator
|
|
getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
|
|
TemplateSpecCandidateSet &FailedCandidates,
|
|
SourceLocation Loc, const PartialDiagnostic &NoneDiag,
|
|
const PartialDiagnostic &AmbigDiag,
|
|
const PartialDiagnostic &CandidateDiag,
|
|
bool Complain = true, QualType TargetType = QualType());
|
|
|
|
/// Returns the more constrained function according to the rules of
|
|
/// partial ordering by constraints (C++ [temp.constr.order]).
|
|
///
|
|
/// \param FD1 the first function
|
|
///
|
|
/// \param FD2 the second function
|
|
///
|
|
/// \returns the more constrained function. If neither function is
|
|
/// more constrained, returns NULL.
|
|
FunctionDecl *getMoreConstrainedFunction(FunctionDecl *FD1,
|
|
FunctionDecl *FD2);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Template Deduction Guide
|
|
/// Implementations are in SemaTemplateDeductionGuide.cpp
|
|
///@{
|
|
|
|
/// Declare implicit deduction guides for a class template if we've
|
|
/// not already done so.
|
|
void DeclareImplicitDeductionGuides(TemplateDecl *Template,
|
|
SourceLocation Loc);
|
|
|
|
FunctionTemplateDecl *DeclareAggregateDeductionGuideFromInitList(
|
|
TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
|
|
SourceLocation Loc);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Template Instantiation
|
|
/// Implementations are in SemaTemplateInstantiate.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// A helper class for building up ExtParameterInfos.
|
|
class ExtParameterInfoBuilder {
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
|
|
bool HasInteresting = false;
|
|
|
|
public:
|
|
/// Set the ExtParameterInfo for the parameter at the given index,
|
|
///
|
|
void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
|
|
assert(Infos.size() <= index);
|
|
Infos.resize(index);
|
|
Infos.push_back(info);
|
|
|
|
if (!HasInteresting)
|
|
HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
|
|
}
|
|
|
|
/// Return a pointer (suitable for setting in an ExtProtoInfo) to the
|
|
/// ExtParameterInfo array we've built up.
|
|
const FunctionProtoType::ExtParameterInfo *
|
|
getPointerOrNull(unsigned numParams) {
|
|
if (!HasInteresting)
|
|
return nullptr;
|
|
Infos.resize(numParams);
|
|
return Infos.data();
|
|
}
|
|
};
|
|
|
|
/// The current instantiation scope used to store local
|
|
/// variables.
|
|
LocalInstantiationScope *CurrentInstantiationScope;
|
|
|
|
typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
|
|
UnparsedDefaultArgInstantiationsMap;
|
|
|
|
/// A mapping from parameters with unparsed default arguments to the
|
|
/// set of instantiations of each parameter.
|
|
///
|
|
/// This mapping is a temporary data structure used when parsing
|
|
/// nested class templates or nested classes of class templates,
|
|
/// where we might end up instantiating an inner class before the
|
|
/// default arguments of its methods have been parsed.
|
|
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
|
|
|
|
/// A context in which code is being synthesized (where a source location
|
|
/// alone is not sufficient to identify the context). This covers template
|
|
/// instantiation and various forms of implicitly-generated functions.
|
|
struct CodeSynthesisContext {
|
|
/// The kind of template instantiation we are performing
|
|
enum SynthesisKind {
|
|
/// We are instantiating a template declaration. The entity is
|
|
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
|
|
TemplateInstantiation,
|
|
|
|
/// We are instantiating a default argument for a template
|
|
/// parameter. The Entity is the template parameter whose argument is
|
|
/// being instantiated, the Template is the template, and the
|
|
/// TemplateArgs/NumTemplateArguments provide the template arguments as
|
|
/// specified.
|
|
DefaultTemplateArgumentInstantiation,
|
|
|
|
/// We are instantiating a default argument for a function.
|
|
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
|
|
/// provides the template arguments as specified.
|
|
DefaultFunctionArgumentInstantiation,
|
|
|
|
/// We are substituting explicit template arguments provided for
|
|
/// a function template. The entity is a FunctionTemplateDecl.
|
|
ExplicitTemplateArgumentSubstitution,
|
|
|
|
/// We are substituting template argument determined as part of
|
|
/// template argument deduction for either a class template
|
|
/// partial specialization or a function template. The
|
|
/// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
|
|
/// a TemplateDecl.
|
|
DeducedTemplateArgumentSubstitution,
|
|
|
|
/// We are substituting into a lambda expression.
|
|
LambdaExpressionSubstitution,
|
|
|
|
/// We are substituting prior template arguments into a new
|
|
/// template parameter. The template parameter itself is either a
|
|
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
|
|
PriorTemplateArgumentSubstitution,
|
|
|
|
/// We are checking the validity of a default template argument that
|
|
/// has been used when naming a template-id.
|
|
DefaultTemplateArgumentChecking,
|
|
|
|
/// We are computing the exception specification for a defaulted special
|
|
/// member function.
|
|
ExceptionSpecEvaluation,
|
|
|
|
/// We are instantiating the exception specification for a function
|
|
/// template which was deferred until it was needed.
|
|
ExceptionSpecInstantiation,
|
|
|
|
/// We are instantiating a requirement of a requires expression.
|
|
RequirementInstantiation,
|
|
|
|
/// We are checking the satisfaction of a nested requirement of a requires
|
|
/// expression.
|
|
NestedRequirementConstraintsCheck,
|
|
|
|
/// We are declaring an implicit special member function.
|
|
DeclaringSpecialMember,
|
|
|
|
/// We are declaring an implicit 'operator==' for a defaulted
|
|
/// 'operator<=>'.
|
|
DeclaringImplicitEqualityComparison,
|
|
|
|
/// We are defining a synthesized function (such as a defaulted special
|
|
/// member).
|
|
DefiningSynthesizedFunction,
|
|
|
|
// We are checking the constraints associated with a constrained entity or
|
|
// the constraint expression of a concept. This includes the checks that
|
|
// atomic constraints have the type 'bool' and that they can be constant
|
|
// evaluated.
|
|
ConstraintsCheck,
|
|
|
|
// We are substituting template arguments into a constraint expression.
|
|
ConstraintSubstitution,
|
|
|
|
// We are normalizing a constraint expression.
|
|
ConstraintNormalization,
|
|
|
|
// Instantiating a Requires Expression parameter clause.
|
|
RequirementParameterInstantiation,
|
|
|
|
// We are substituting into the parameter mapping of an atomic constraint
|
|
// during normalization.
|
|
ParameterMappingSubstitution,
|
|
|
|
/// We are rewriting a comparison operator in terms of an operator<=>.
|
|
RewritingOperatorAsSpaceship,
|
|
|
|
/// We are initializing a structured binding.
|
|
InitializingStructuredBinding,
|
|
|
|
/// We are marking a class as __dllexport.
|
|
MarkingClassDllexported,
|
|
|
|
/// We are building an implied call from __builtin_dump_struct. The
|
|
/// arguments are in CallArgs.
|
|
BuildingBuiltinDumpStructCall,
|
|
|
|
/// Added for Template instantiation observation.
|
|
/// Memoization means we are _not_ instantiating a template because
|
|
/// it is already instantiated (but we entered a context where we
|
|
/// would have had to if it was not already instantiated).
|
|
Memoization,
|
|
|
|
/// We are building deduction guides for a class.
|
|
BuildingDeductionGuides,
|
|
|
|
/// We are instantiating a type alias template declaration.
|
|
TypeAliasTemplateInstantiation,
|
|
} Kind;
|
|
|
|
/// Was the enclosing context a non-instantiation SFINAE context?
|
|
bool SavedInNonInstantiationSFINAEContext;
|
|
|
|
/// The point of instantiation or synthesis within the source code.
|
|
SourceLocation PointOfInstantiation;
|
|
|
|
/// The entity that is being synthesized.
|
|
Decl *Entity;
|
|
|
|
/// The template (or partial specialization) in which we are
|
|
/// performing the instantiation, for substitutions of prior template
|
|
/// arguments.
|
|
NamedDecl *Template;
|
|
|
|
union {
|
|
/// The list of template arguments we are substituting, if they
|
|
/// are not part of the entity.
|
|
const TemplateArgument *TemplateArgs;
|
|
|
|
/// The list of argument expressions in a synthesized call.
|
|
const Expr *const *CallArgs;
|
|
};
|
|
|
|
// FIXME: Wrap this union around more members, or perhaps store the
|
|
// kind-specific members in the RAII object owning the context.
|
|
union {
|
|
/// The number of template arguments in TemplateArgs.
|
|
unsigned NumTemplateArgs;
|
|
|
|
/// The number of expressions in CallArgs.
|
|
unsigned NumCallArgs;
|
|
|
|
/// The special member being declared or defined.
|
|
CXXSpecialMemberKind SpecialMember;
|
|
};
|
|
|
|
ArrayRef<TemplateArgument> template_arguments() const {
|
|
assert(Kind != DeclaringSpecialMember);
|
|
return {TemplateArgs, NumTemplateArgs};
|
|
}
|
|
|
|
/// The template deduction info object associated with the
|
|
/// substitution or checking of explicit or deduced template arguments.
|
|
sema::TemplateDeductionInfo *DeductionInfo;
|
|
|
|
/// The source range that covers the construct that cause
|
|
/// the instantiation, e.g., the template-id that causes a class
|
|
/// template instantiation.
|
|
SourceRange InstantiationRange;
|
|
|
|
CodeSynthesisContext()
|
|
: Kind(TemplateInstantiation),
|
|
SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
|
|
Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
|
|
DeductionInfo(nullptr) {}
|
|
|
|
/// Determines whether this template is an actual instantiation
|
|
/// that should be counted toward the maximum instantiation depth.
|
|
bool isInstantiationRecord() const;
|
|
};
|
|
|
|
/// A stack object to be created when performing template
|
|
/// instantiation.
|
|
///
|
|
/// Construction of an object of type \c InstantiatingTemplate
|
|
/// pushes the current instantiation onto the stack of active
|
|
/// instantiations. If the size of this stack exceeds the maximum
|
|
/// number of recursive template instantiations, construction
|
|
/// produces an error and evaluates true.
|
|
///
|
|
/// Destruction of this object will pop the named instantiation off
|
|
/// the stack.
|
|
struct InstantiatingTemplate {
|
|
/// Note that we are instantiating a class template,
|
|
/// function template, variable template, alias template,
|
|
/// or a member thereof.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
Decl *Entity,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
struct ExceptionSpecification {};
|
|
/// Note that we are instantiating an exception specification
|
|
/// of a function template.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Entity, ExceptionSpecification,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating a type alias template declaration.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TypeAliasTemplateDecl *Entity,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating a default argument in a
|
|
/// template-id.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateParameter Param, TemplateDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are substituting either explicitly-specified or
|
|
/// deduced template arguments during function template argument deduction.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
CodeSynthesisContext::SynthesisKind Kind,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a class template declaration.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a class template partial
|
|
/// specialization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ClassTemplatePartialSpecializationDecl *PartialSpec,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a variable template partial
|
|
/// specialization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
VarTemplatePartialSpecializationDecl *PartialSpec,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating a default argument for a function
|
|
/// parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ParmVarDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are substituting prior template arguments into a
|
|
/// non-type parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
NamedDecl *Template, NonTypeTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// Note that we are substituting prior template arguments into a
|
|
/// template template parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
NamedDecl *Template, TemplateTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// Note that we are checking the default template argument
|
|
/// against the template parameter for a given template-id.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateDecl *Template, NamedDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintsCheck {};
|
|
/// \brief Note that we are checking the constraints associated with some
|
|
/// constrained entity (a concept declaration or a template with associated
|
|
/// constraints).
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintsCheck, NamedDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintSubstitution {};
|
|
/// \brief Note that we are checking a constraint expression associated
|
|
/// with a template declaration or as part of the satisfaction check of a
|
|
/// concept.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintSubstitution, NamedDecl *Template,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintNormalization {};
|
|
/// \brief Note that we are normalizing a constraint expression.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintNormalization, NamedDecl *Template,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ParameterMappingSubstitution {};
|
|
/// \brief Note that we are subtituting into the parameter mapping of an
|
|
/// atomic constraint during constraint normalization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ParameterMappingSubstitution, NamedDecl *Template,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// \brief Note that we are substituting template arguments into a part of
|
|
/// a requirement of a requires expression.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
concepts::Requirement *Req,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// \brief Note that we are checking the satisfaction of the constraint
|
|
/// expression inside of a nested requirement.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
concepts::NestedRequirement *Req, ConstraintsCheck,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// \brief Note that we are checking a requires clause.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
const RequiresExpr *E,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct BuildingDeductionGuidesTag {};
|
|
/// \brief Note that we are building deduction guides.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateDecl *Entity, BuildingDeductionGuidesTag,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we have finished instantiating this template.
|
|
void Clear();
|
|
|
|
~InstantiatingTemplate() { Clear(); }
|
|
|
|
/// Determines whether we have exceeded the maximum
|
|
/// recursive template instantiations.
|
|
bool isInvalid() const { return Invalid; }
|
|
|
|
/// Determine whether we are already instantiating this
|
|
/// specialization in some surrounding active instantiation.
|
|
bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
|
|
|
|
private:
|
|
Sema &SemaRef;
|
|
bool Invalid;
|
|
bool AlreadyInstantiating;
|
|
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
|
|
SourceRange InstantiationRange);
|
|
|
|
InstantiatingTemplate(
|
|
Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
|
|
SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
|
|
Decl *Entity, NamedDecl *Template = nullptr,
|
|
ArrayRef<TemplateArgument> TemplateArgs = std::nullopt,
|
|
sema::TemplateDeductionInfo *DeductionInfo = nullptr);
|
|
|
|
InstantiatingTemplate(const InstantiatingTemplate &) = delete;
|
|
|
|
InstantiatingTemplate &operator=(const InstantiatingTemplate &) = delete;
|
|
};
|
|
|
|
bool SubstTemplateArgument(const TemplateArgumentLoc &Input,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateArgumentLoc &Output,
|
|
SourceLocation Loc = {},
|
|
const DeclarationName &Entity = {});
|
|
bool
|
|
SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateArgumentListInfo &Outputs);
|
|
|
|
/// Retrieve the template argument list(s) that should be used to
|
|
/// instantiate the definition of the given declaration.
|
|
///
|
|
/// \param ND the declaration for which we are computing template
|
|
/// instantiation arguments.
|
|
///
|
|
/// \param DC In the event we don't HAVE a declaration yet, we instead provide
|
|
/// the decl context where it will be created. In this case, the `Innermost`
|
|
/// should likely be provided. If ND is non-null, this is ignored.
|
|
///
|
|
/// \param Innermost if non-NULL, specifies a template argument list for the
|
|
/// template declaration passed as ND.
|
|
///
|
|
/// \param RelativeToPrimary true if we should get the template
|
|
/// arguments relative to the primary template, even when we're
|
|
/// dealing with a specialization. This is only relevant for function
|
|
/// template specializations.
|
|
///
|
|
/// \param Pattern If non-NULL, indicates the pattern from which we will be
|
|
/// instantiating the definition of the given declaration, \p ND. This is
|
|
/// used to determine the proper set of template instantiation arguments for
|
|
/// friend function template specializations.
|
|
///
|
|
/// \param ForConstraintInstantiation when collecting arguments,
|
|
/// ForConstraintInstantiation indicates we should continue looking when
|
|
/// encountering a lambda generic call operator, and continue looking for
|
|
/// arguments on an enclosing class template.
|
|
///
|
|
/// \param SkipForSpecialization when specified, any template specializations
|
|
/// in a traversal would be ignored.
|
|
/// \param ForDefaultArgumentSubstitution indicates we should continue looking
|
|
/// when encountering a specialized member function template, rather than
|
|
/// returning immediately.
|
|
MultiLevelTemplateArgumentList getTemplateInstantiationArgs(
|
|
const NamedDecl *D, const DeclContext *DC = nullptr, bool Final = false,
|
|
std::optional<ArrayRef<TemplateArgument>> Innermost = std::nullopt,
|
|
bool RelativeToPrimary = false, const FunctionDecl *Pattern = nullptr,
|
|
bool ForConstraintInstantiation = false,
|
|
bool SkipForSpecialization = false,
|
|
bool ForDefaultArgumentSubstitution = false);
|
|
|
|
/// RAII object to handle the state changes required to synthesize
|
|
/// a function body.
|
|
class SynthesizedFunctionScope {
|
|
Sema &S;
|
|
Sema::ContextRAII SavedContext;
|
|
bool PushedCodeSynthesisContext = false;
|
|
|
|
public:
|
|
SynthesizedFunctionScope(Sema &S, DeclContext *DC)
|
|
: S(S), SavedContext(S, DC) {
|
|
auto *FD = dyn_cast<FunctionDecl>(DC);
|
|
S.PushFunctionScope();
|
|
S.PushExpressionEvaluationContext(
|
|
(FD && FD->isConsteval())
|
|
? ExpressionEvaluationContext::ImmediateFunctionContext
|
|
: ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
if (FD) {
|
|
FD->setWillHaveBody(true);
|
|
S.ExprEvalContexts.back().InImmediateFunctionContext =
|
|
FD->isImmediateFunction() ||
|
|
S.ExprEvalContexts[S.ExprEvalContexts.size() - 2]
|
|
.isConstantEvaluated() ||
|
|
S.ExprEvalContexts[S.ExprEvalContexts.size() - 2]
|
|
.isImmediateFunctionContext();
|
|
S.ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
|
|
S.getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
|
|
} else
|
|
assert(isa<ObjCMethodDecl>(DC));
|
|
}
|
|
|
|
void addContextNote(SourceLocation UseLoc) {
|
|
assert(!PushedCodeSynthesisContext);
|
|
|
|
Sema::CodeSynthesisContext Ctx;
|
|
Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
|
|
Ctx.PointOfInstantiation = UseLoc;
|
|
Ctx.Entity = cast<Decl>(S.CurContext);
|
|
S.pushCodeSynthesisContext(Ctx);
|
|
|
|
PushedCodeSynthesisContext = true;
|
|
}
|
|
|
|
~SynthesizedFunctionScope() {
|
|
if (PushedCodeSynthesisContext)
|
|
S.popCodeSynthesisContext();
|
|
if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext)) {
|
|
FD->setWillHaveBody(false);
|
|
S.CheckImmediateEscalatingFunctionDefinition(FD, S.getCurFunction());
|
|
}
|
|
S.PopExpressionEvaluationContext();
|
|
S.PopFunctionScopeInfo();
|
|
}
|
|
};
|
|
|
|
/// List of active code synthesis contexts.
|
|
///
|
|
/// This vector is treated as a stack. As synthesis of one entity requires
|
|
/// synthesis of another, additional contexts are pushed onto the stack.
|
|
SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
|
|
|
|
/// Specializations whose definitions are currently being instantiated.
|
|
llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
|
|
|
|
/// Non-dependent types used in templates that have already been instantiated
|
|
/// by some template instantiation.
|
|
llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
|
|
|
|
/// Extra modules inspected when performing a lookup during a template
|
|
/// instantiation. Computed lazily.
|
|
SmallVector<Module *, 16> CodeSynthesisContextLookupModules;
|
|
|
|
/// Cache of additional modules that should be used for name lookup
|
|
/// within the current template instantiation. Computed lazily; use
|
|
/// getLookupModules() to get a complete set.
|
|
llvm::DenseSet<Module *> LookupModulesCache;
|
|
|
|
/// Map from the most recent declaration of a namespace to the most
|
|
/// recent visible declaration of that namespace.
|
|
llvm::DenseMap<NamedDecl *, NamedDecl *> VisibleNamespaceCache;
|
|
|
|
/// Whether we are in a SFINAE context that is not associated with
|
|
/// template instantiation.
|
|
///
|
|
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
|
|
/// of a template instantiation or template argument deduction.
|
|
bool InNonInstantiationSFINAEContext;
|
|
|
|
/// The number of \p CodeSynthesisContexts that are not template
|
|
/// instantiations and, therefore, should not be counted as part of the
|
|
/// instantiation depth.
|
|
///
|
|
/// When the instantiation depth reaches the user-configurable limit
|
|
/// \p LangOptions::InstantiationDepth we will abort instantiation.
|
|
// FIXME: Should we have a similar limit for other forms of synthesis?
|
|
unsigned NonInstantiationEntries;
|
|
|
|
/// The depth of the context stack at the point when the most recent
|
|
/// error or warning was produced.
|
|
///
|
|
/// This value is used to suppress printing of redundant context stacks
|
|
/// when there are multiple errors or warnings in the same instantiation.
|
|
// FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
|
|
unsigned LastEmittedCodeSynthesisContextDepth = 0;
|
|
|
|
/// The template instantiation callbacks to trace or track
|
|
/// instantiations (objects can be chained).
|
|
///
|
|
/// This callbacks is used to print, trace or track template
|
|
/// instantiations as they are being constructed.
|
|
std::vector<std::unique_ptr<TemplateInstantiationCallback>>
|
|
TemplateInstCallbacks;
|
|
|
|
/// The current index into pack expansion arguments that will be
|
|
/// used for substitution of parameter packs.
|
|
///
|
|
/// The pack expansion index will be -1 to indicate that parameter packs
|
|
/// should be instantiated as themselves. Otherwise, the index specifies
|
|
/// which argument within the parameter pack will be used for substitution.
|
|
int ArgumentPackSubstitutionIndex;
|
|
|
|
/// RAII object used to change the argument pack substitution index
|
|
/// within a \c Sema object.
|
|
///
|
|
/// See \c ArgumentPackSubstitutionIndex for more information.
|
|
class ArgumentPackSubstitutionIndexRAII {
|
|
Sema &Self;
|
|
int OldSubstitutionIndex;
|
|
|
|
public:
|
|
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
|
|
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
|
|
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
|
|
}
|
|
|
|
~ArgumentPackSubstitutionIndexRAII() {
|
|
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
|
|
}
|
|
};
|
|
|
|
friend class ArgumentPackSubstitutionRAII;
|
|
|
|
void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
|
|
void popCodeSynthesisContext();
|
|
|
|
void PrintContextStack() {
|
|
if (!CodeSynthesisContexts.empty() &&
|
|
CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
|
|
PrintInstantiationStack();
|
|
LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
|
|
}
|
|
if (PragmaAttributeCurrentTargetDecl)
|
|
PrintPragmaAttributeInstantiationPoint();
|
|
}
|
|
/// Prints the current instantiation stack through a series of
|
|
/// notes.
|
|
void PrintInstantiationStack();
|
|
|
|
/// Determines whether we are currently in a context where
|
|
/// template argument substitution failures are not considered
|
|
/// errors.
|
|
///
|
|
/// \returns An empty \c Optional if we're not in a SFINAE context.
|
|
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
|
|
/// template-deduction context object, which can be used to capture
|
|
/// diagnostics that will be suppressed.
|
|
std::optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
|
|
|
|
/// Perform substitution on the type T with a given set of template
|
|
/// arguments.
|
|
///
|
|
/// This routine substitutes the given template arguments into the
|
|
/// type T and produces the instantiated type.
|
|
///
|
|
/// \param T the type into which the template arguments will be
|
|
/// substituted. If this type is not dependent, it will be returned
|
|
/// immediately.
|
|
///
|
|
/// \param Args the template arguments that will be
|
|
/// substituted for the top-level template parameters within T.
|
|
///
|
|
/// \param Loc the location in the source code where this substitution
|
|
/// is being performed. It will typically be the location of the
|
|
/// declarator (if we're instantiating the type of some declaration)
|
|
/// or the location of the type in the source code (if, e.g., we're
|
|
/// instantiating the type of a cast expression).
|
|
///
|
|
/// \param Entity the name of the entity associated with a declaration
|
|
/// being instantiated (if any). May be empty to indicate that there
|
|
/// is no such entity (if, e.g., this is a type that occurs as part of
|
|
/// a cast expression) or that the entity has no name (e.g., an
|
|
/// unnamed function parameter).
|
|
///
|
|
/// \param AllowDeducedTST Whether a DeducedTemplateSpecializationType is
|
|
/// acceptable as the top level type of the result.
|
|
///
|
|
/// \returns If the instantiation succeeds, the instantiated
|
|
/// type. Otherwise, produces diagnostics and returns a NULL type.
|
|
TypeSourceInfo *SubstType(TypeSourceInfo *T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
bool AllowDeducedTST = false);
|
|
|
|
QualType SubstType(QualType T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
|
|
TypeSourceInfo *SubstType(TypeLoc TL,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
|
|
/// A form of SubstType intended specifically for instantiating the
|
|
/// type of a FunctionDecl. Its purpose is solely to force the
|
|
/// instantiation of default-argument expressions and to avoid
|
|
/// instantiating an exception-specification.
|
|
TypeSourceInfo *SubstFunctionDeclType(
|
|
TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext,
|
|
Qualifiers ThisTypeQuals, bool EvaluateConstraints = true);
|
|
void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
|
|
const MultiLevelTemplateArgumentList &Args);
|
|
bool SubstExceptionSpec(SourceLocation Loc,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI,
|
|
SmallVectorImpl<QualType> &ExceptionStorage,
|
|
const MultiLevelTemplateArgumentList &Args);
|
|
ParmVarDecl *
|
|
SubstParmVarDecl(ParmVarDecl *D,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
int indexAdjustment, std::optional<unsigned> NumExpansions,
|
|
bool ExpectParameterPack, bool EvaluateConstraints = true);
|
|
|
|
/// Substitute the given template arguments into the given set of
|
|
/// parameters, producing the set of parameter types that would be generated
|
|
/// from such a substitution.
|
|
bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
|
|
const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<QualType> &ParamTypes,
|
|
SmallVectorImpl<ParmVarDecl *> *OutParams,
|
|
ExtParameterInfoBuilder &ParamInfos);
|
|
|
|
/// Substitute the given template arguments into the default argument.
|
|
bool SubstDefaultArgument(SourceLocation Loc, ParmVarDecl *Param,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool ForCallExpr = false);
|
|
ExprResult SubstExpr(Expr *E,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
// A RAII type used by the TemplateDeclInstantiator and TemplateInstantiator
|
|
// to disable constraint evaluation, then restore the state.
|
|
template <typename InstTy> struct ConstraintEvalRAII {
|
|
InstTy &TI;
|
|
bool OldValue;
|
|
|
|
ConstraintEvalRAII(InstTy &TI)
|
|
: TI(TI), OldValue(TI.getEvaluateConstraints()) {
|
|
TI.setEvaluateConstraints(false);
|
|
}
|
|
~ConstraintEvalRAII() { TI.setEvaluateConstraints(OldValue); }
|
|
};
|
|
|
|
// Must be used instead of SubstExpr at 'constraint checking' time.
|
|
ExprResult
|
|
SubstConstraintExpr(Expr *E,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
// Unlike the above, this does not evaluates constraints.
|
|
ExprResult SubstConstraintExprWithoutSatisfaction(
|
|
Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Substitute the given template arguments into a list of
|
|
/// expressions, expanding pack expansions if required.
|
|
///
|
|
/// \param Exprs The list of expressions to substitute into.
|
|
///
|
|
/// \param IsCall Whether this is some form of call, in which case
|
|
/// default arguments will be dropped.
|
|
///
|
|
/// \param TemplateArgs The set of template arguments to substitute.
|
|
///
|
|
/// \param Outputs Will receive all of the substituted arguments.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<Expr *> &Outputs);
|
|
|
|
StmtResult SubstStmt(Stmt *S,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
ExprResult
|
|
SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool CXXDirectInit);
|
|
|
|
/// Perform substitution on the base class specifiers of the
|
|
/// given class template specialization.
|
|
///
|
|
/// Produces a diagnostic and returns true on error, returns false and
|
|
/// attaches the instantiated base classes to the class template
|
|
/// specialization if successful.
|
|
bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Instantiate the definition of a class from a given pattern.
|
|
///
|
|
/// \param PointOfInstantiation The point of instantiation within the
|
|
/// source code.
|
|
///
|
|
/// \param Instantiation is the declaration whose definition is being
|
|
/// instantiated. This will be either a class template specialization
|
|
/// or a member class of a class template specialization.
|
|
///
|
|
/// \param Pattern is the pattern from which the instantiation
|
|
/// occurs. This will be either the declaration of a class template or
|
|
/// the declaration of a member class of a class template.
|
|
///
|
|
/// \param TemplateArgs The template arguments to be substituted into
|
|
/// the pattern.
|
|
///
|
|
/// \param TSK the kind of implicit or explicit instantiation to perform.
|
|
///
|
|
/// \param Complain whether to complain if the class cannot be instantiated
|
|
/// due to the lack of a definition.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool InstantiateClass(SourceLocation PointOfInstantiation,
|
|
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK, bool Complain = true);
|
|
|
|
/// Instantiate the definition of an enum from a given pattern.
|
|
///
|
|
/// \param PointOfInstantiation The point of instantiation within the
|
|
/// source code.
|
|
/// \param Instantiation is the declaration whose definition is being
|
|
/// instantiated. This will be a member enumeration of a class
|
|
/// temploid specialization, or a local enumeration within a
|
|
/// function temploid specialization.
|
|
/// \param Pattern The templated declaration from which the instantiation
|
|
/// occurs.
|
|
/// \param TemplateArgs The template arguments to be substituted into
|
|
/// the pattern.
|
|
/// \param TSK The kind of implicit or explicit instantiation to perform.
|
|
///
|
|
/// \return \c true if an error occurred, \c false otherwise.
|
|
bool InstantiateEnum(SourceLocation PointOfInstantiation,
|
|
EnumDecl *Instantiation, EnumDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// Instantiate the definition of a field from the given pattern.
|
|
///
|
|
/// \param PointOfInstantiation The point of instantiation within the
|
|
/// source code.
|
|
/// \param Instantiation is the declaration whose definition is being
|
|
/// instantiated. This will be a class of a class temploid
|
|
/// specialization, or a local enumeration within a function temploid
|
|
/// specialization.
|
|
/// \param Pattern The templated declaration from which the instantiation
|
|
/// occurs.
|
|
/// \param TemplateArgs The template arguments to be substituted into
|
|
/// the pattern.
|
|
///
|
|
/// \return \c true if an error occurred, \c false otherwise.
|
|
bool InstantiateInClassInitializer(
|
|
SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
|
|
FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
bool usesPartialOrExplicitSpecialization(
|
|
SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
|
|
|
|
bool InstantiateClassTemplateSpecialization(
|
|
SourceLocation PointOfInstantiation,
|
|
ClassTemplateSpecializationDecl *ClassTemplateSpec,
|
|
TemplateSpecializationKind TSK, bool Complain = true);
|
|
|
|
/// Instantiates the definitions of all of the member
|
|
/// of the given class, which is an instantiation of a class template
|
|
/// or a member class of a template.
|
|
void
|
|
InstantiateClassMembers(SourceLocation PointOfInstantiation,
|
|
CXXRecordDecl *Instantiation,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// Instantiate the definitions of all of the members of the
|
|
/// given class template specialization, which was named as part of an
|
|
/// explicit instantiation.
|
|
void InstantiateClassTemplateSpecializationMembers(
|
|
SourceLocation PointOfInstantiation,
|
|
ClassTemplateSpecializationDecl *ClassTemplateSpec,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(
|
|
NestedNameSpecifierLoc NNS,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Do template substitution on declaration name info.
|
|
DeclarationNameInfo
|
|
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
TemplateName
|
|
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
|
|
SourceLocation Loc,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
bool SubstTypeConstraint(TemplateTypeParmDecl *Inst, const TypeConstraint *TC,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool EvaluateConstraint);
|
|
|
|
/// Determine whether we are currently performing template instantiation.
|
|
bool inTemplateInstantiation() const {
|
|
return CodeSynthesisContexts.size() > NonInstantiationEntries;
|
|
}
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Template Declaration Instantiation
|
|
/// Implementations are in SemaTemplateInstantiateDecl.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// An entity for which implicit template instantiation is required.
|
|
///
|
|
/// The source location associated with the declaration is the first place in
|
|
/// the source code where the declaration was "used". It is not necessarily
|
|
/// the point of instantiation (which will be either before or after the
|
|
/// namespace-scope declaration that triggered this implicit instantiation),
|
|
/// However, it is the location that diagnostics should generally refer to,
|
|
/// because users will need to know what code triggered the instantiation.
|
|
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
|
|
|
|
/// The queue of implicit template instantiations that are required
|
|
/// but have not yet been performed.
|
|
std::deque<PendingImplicitInstantiation> PendingInstantiations;
|
|
|
|
/// Queue of implicit template instantiations that cannot be performed
|
|
/// eagerly.
|
|
SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
|
|
|
|
SmallVector<SmallVector<VTableUse, 16>, 8> SavedVTableUses;
|
|
SmallVector<std::deque<PendingImplicitInstantiation>, 8>
|
|
SavedPendingInstantiations;
|
|
|
|
/// The queue of implicit template instantiations that are required
|
|
/// and must be performed within the current local scope.
|
|
///
|
|
/// This queue is only used for member functions of local classes in
|
|
/// templates, which must be instantiated in the same scope as their
|
|
/// enclosing function, so that they can reference function-local
|
|
/// types, static variables, enumerators, etc.
|
|
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
|
|
|
|
class LocalEagerInstantiationScope {
|
|
public:
|
|
LocalEagerInstantiationScope(Sema &S) : S(S) {
|
|
SavedPendingLocalImplicitInstantiations.swap(
|
|
S.PendingLocalImplicitInstantiations);
|
|
}
|
|
|
|
void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
|
|
|
|
~LocalEagerInstantiationScope() {
|
|
assert(S.PendingLocalImplicitInstantiations.empty() &&
|
|
"there shouldn't be any pending local implicit instantiations");
|
|
SavedPendingLocalImplicitInstantiations.swap(
|
|
S.PendingLocalImplicitInstantiations);
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
std::deque<PendingImplicitInstantiation>
|
|
SavedPendingLocalImplicitInstantiations;
|
|
};
|
|
|
|
/// Records and restores the CurFPFeatures state on entry/exit of compound
|
|
/// statements.
|
|
class FPFeaturesStateRAII {
|
|
public:
|
|
FPFeaturesStateRAII(Sema &S);
|
|
~FPFeaturesStateRAII();
|
|
FPOptionsOverride getOverrides() { return OldOverrides; }
|
|
|
|
private:
|
|
Sema &S;
|
|
FPOptions OldFPFeaturesState;
|
|
FPOptionsOverride OldOverrides;
|
|
LangOptions::FPEvalMethodKind OldEvalMethod;
|
|
SourceLocation OldFPPragmaLocation;
|
|
};
|
|
|
|
class GlobalEagerInstantiationScope {
|
|
public:
|
|
GlobalEagerInstantiationScope(Sema &S, bool Enabled)
|
|
: S(S), Enabled(Enabled) {
|
|
if (!Enabled)
|
|
return;
|
|
|
|
S.SavedPendingInstantiations.emplace_back();
|
|
S.SavedPendingInstantiations.back().swap(S.PendingInstantiations);
|
|
|
|
S.SavedVTableUses.emplace_back();
|
|
S.SavedVTableUses.back().swap(S.VTableUses);
|
|
}
|
|
|
|
void perform() {
|
|
if (Enabled) {
|
|
S.DefineUsedVTables();
|
|
S.PerformPendingInstantiations();
|
|
}
|
|
}
|
|
|
|
~GlobalEagerInstantiationScope() {
|
|
if (!Enabled)
|
|
return;
|
|
|
|
// Restore the set of pending vtables.
|
|
assert(S.VTableUses.empty() &&
|
|
"VTableUses should be empty before it is discarded.");
|
|
S.VTableUses.swap(S.SavedVTableUses.back());
|
|
S.SavedVTableUses.pop_back();
|
|
|
|
// Restore the set of pending implicit instantiations.
|
|
if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
|
|
assert(S.PendingInstantiations.empty() &&
|
|
"PendingInstantiations should be empty before it is discarded.");
|
|
S.PendingInstantiations.swap(S.SavedPendingInstantiations.back());
|
|
S.SavedPendingInstantiations.pop_back();
|
|
} else {
|
|
// Template instantiations in the PCH may be delayed until the TU.
|
|
S.PendingInstantiations.swap(S.SavedPendingInstantiations.back());
|
|
S.PendingInstantiations.insert(
|
|
S.PendingInstantiations.end(),
|
|
S.SavedPendingInstantiations.back().begin(),
|
|
S.SavedPendingInstantiations.back().end());
|
|
S.SavedPendingInstantiations.pop_back();
|
|
}
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
bool Enabled;
|
|
};
|
|
|
|
ExplicitSpecifier instantiateExplicitSpecifier(
|
|
const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES);
|
|
|
|
struct LateInstantiatedAttribute {
|
|
const Attr *TmplAttr;
|
|
LocalInstantiationScope *Scope;
|
|
Decl *NewDecl;
|
|
|
|
LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
|
|
Decl *D)
|
|
: TmplAttr(A), Scope(S), NewDecl(D) {}
|
|
};
|
|
typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
|
|
|
|
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Decl *Pattern, Decl *Inst,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *OuterMostScope = nullptr);
|
|
|
|
/// Update instantiation attributes after template was late parsed.
|
|
///
|
|
/// Some attributes are evaluated based on the body of template. If it is
|
|
/// late parsed, such attributes cannot be evaluated when declaration is
|
|
/// instantiated. This function is used to update instantiation attributes
|
|
/// when template definition is ready.
|
|
void updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst);
|
|
|
|
void
|
|
InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Decl *Pattern, Decl *Inst,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *OuterMostScope = nullptr);
|
|
|
|
/// In the MS ABI, we need to instantiate default arguments of dllexported
|
|
/// default constructors along with the constructor definition. This allows IR
|
|
/// gen to emit a constructor closure which calls the default constructor with
|
|
/// its default arguments.
|
|
void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
|
|
|
|
bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param);
|
|
void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Function);
|
|
|
|
/// Instantiate (or find existing instantiation of) a function template with a
|
|
/// given set of template arguments.
|
|
///
|
|
/// Usually this should not be used, and template argument deduction should be
|
|
/// used in its place.
|
|
FunctionDecl *InstantiateFunctionDeclaration(
|
|
FunctionTemplateDecl *FTD, const TemplateArgumentList *Args,
|
|
SourceLocation Loc,
|
|
CodeSynthesisContext::SynthesisKind CSC =
|
|
CodeSynthesisContext::ExplicitTemplateArgumentSubstitution);
|
|
|
|
/// Instantiate the definition of the given function from its
|
|
/// template.
|
|
///
|
|
/// \param PointOfInstantiation the point at which the instantiation was
|
|
/// required. Note that this is not precisely a "point of instantiation"
|
|
/// for the function, but it's close.
|
|
///
|
|
/// \param Function the already-instantiated declaration of a
|
|
/// function template specialization or member function of a class template
|
|
/// specialization.
|
|
///
|
|
/// \param Recursive if true, recursively instantiates any functions that
|
|
/// are required by this instantiation.
|
|
///
|
|
/// \param DefinitionRequired if true, then we are performing an explicit
|
|
/// instantiation where the body of the function is required. Complain if
|
|
/// there is no such body.
|
|
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Function,
|
|
bool Recursive = false,
|
|
bool DefinitionRequired = false,
|
|
bool AtEndOfTU = false);
|
|
VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
|
|
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
|
|
const TemplateArgumentList *PartialSpecArgs,
|
|
const TemplateArgumentListInfo &TemplateArgsInfo,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
SourceLocation PointOfInstantiation,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *StartingScope = nullptr);
|
|
|
|
/// Instantiates a variable template specialization by completing it
|
|
/// with appropriate type information and initializer.
|
|
VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
|
|
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// BuildVariableInstantiation - Used after a new variable has been created.
|
|
/// Sets basic variable data and decides whether to postpone the
|
|
/// variable instantiation.
|
|
void
|
|
BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
LateInstantiatedAttrVec *LateAttrs,
|
|
DeclContext *Owner,
|
|
LocalInstantiationScope *StartingScope,
|
|
bool InstantiatingVarTemplate = false,
|
|
VarTemplateSpecializationDecl *PrevVTSD = nullptr);
|
|
|
|
/// Instantiate the initializer of a variable.
|
|
void InstantiateVariableInitializer(
|
|
VarDecl *Var, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Instantiate the definition of the given variable from its
|
|
/// template.
|
|
///
|
|
/// \param PointOfInstantiation the point at which the instantiation was
|
|
/// required. Note that this is not precisely a "point of instantiation"
|
|
/// for the variable, but it's close.
|
|
///
|
|
/// \param Var the already-instantiated declaration of a templated variable.
|
|
///
|
|
/// \param Recursive if true, recursively instantiates any functions that
|
|
/// are required by this instantiation.
|
|
///
|
|
/// \param DefinitionRequired if true, then we are performing an explicit
|
|
/// instantiation where a definition of the variable is required. Complain
|
|
/// if there is no such definition.
|
|
void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
|
|
VarDecl *Var, bool Recursive = false,
|
|
bool DefinitionRequired = false,
|
|
bool AtEndOfTU = false);
|
|
|
|
void InstantiateMemInitializers(
|
|
CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Find the instantiation of the given declaration within the
|
|
/// current instantiation.
|
|
///
|
|
/// This routine is intended to be used when \p D is a declaration
|
|
/// referenced from within a template, that needs to mapped into the
|
|
/// corresponding declaration within an instantiation. For example,
|
|
/// given:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// enum Kind {
|
|
/// KnownValue = sizeof(T)
|
|
/// };
|
|
///
|
|
/// bool getKind() const { return KnownValue; }
|
|
/// };
|
|
///
|
|
/// template struct X<int>;
|
|
/// \endcode
|
|
///
|
|
/// In the instantiation of X<int>::getKind(), we need to map the \p
|
|
/// EnumConstantDecl for \p KnownValue (which refers to
|
|
/// X<T>::<Kind>::KnownValue) to its instantiation
|
|
/// (X<int>::<Kind>::KnownValue).
|
|
/// \p FindInstantiatedDecl performs this mapping from within the
|
|
/// instantiation of X<int>.
|
|
NamedDecl *
|
|
FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool FindingInstantiatedContext = false);
|
|
|
|
/// Finds the instantiation of the given declaration context
|
|
/// within the current instantiation.
|
|
///
|
|
/// \returns NULL if there was an error
|
|
DeclContext *
|
|
FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
Decl *SubstDecl(Decl *D, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Substitute the name and return type of a defaulted 'operator<=>' to form
|
|
/// an implicit 'operator=='.
|
|
FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
|
|
FunctionDecl *Spaceship);
|
|
|
|
/// Performs template instantiation for all implicit template
|
|
/// instantiations we have seen until this point.
|
|
void PerformPendingInstantiations(bool LocalOnly = false);
|
|
|
|
TemplateParameterList *
|
|
SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool EvaluateConstraints = true);
|
|
|
|
void PerformDependentDiagnostics(
|
|
const DeclContext *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
private:
|
|
/// Introduce the instantiated local variables into the local
|
|
/// instantiation scope.
|
|
void addInstantiatedLocalVarsToScope(FunctionDecl *Function,
|
|
const FunctionDecl *PatternDecl,
|
|
LocalInstantiationScope &Scope);
|
|
/// Introduce the instantiated function parameters into the local
|
|
/// instantiation scope, and set the parameter names to those used
|
|
/// in the template.
|
|
bool addInstantiatedParametersToScope(
|
|
FunctionDecl *Function, const FunctionDecl *PatternDecl,
|
|
LocalInstantiationScope &Scope,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
int ParsingClassDepth = 0;
|
|
|
|
class SavePendingParsedClassStateRAII {
|
|
public:
|
|
SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
|
|
|
|
~SavePendingParsedClassStateRAII() {
|
|
assert(S.DelayedOverridingExceptionSpecChecks.empty() &&
|
|
"there shouldn't be any pending delayed exception spec checks");
|
|
assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&
|
|
"there shouldn't be any pending delayed exception spec checks");
|
|
swapSavedState();
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
decltype(DelayedOverridingExceptionSpecChecks)
|
|
SavedOverridingExceptionSpecChecks;
|
|
decltype(DelayedEquivalentExceptionSpecChecks)
|
|
SavedEquivalentExceptionSpecChecks;
|
|
|
|
void swapSavedState() {
|
|
SavedOverridingExceptionSpecChecks.swap(
|
|
S.DelayedOverridingExceptionSpecChecks);
|
|
SavedEquivalentExceptionSpecChecks.swap(
|
|
S.DelayedEquivalentExceptionSpecChecks);
|
|
}
|
|
};
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name C++ Variadic Templates
|
|
/// Implementations are in SemaTemplateVariadic.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Determine whether an unexpanded parameter pack might be permitted in this
|
|
/// location. Useful for error recovery.
|
|
bool isUnexpandedParameterPackPermitted();
|
|
|
|
/// The context in which an unexpanded parameter pack is
|
|
/// being diagnosed.
|
|
///
|
|
/// Note that the values of this enumeration line up with the first
|
|
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
|
|
enum UnexpandedParameterPackContext {
|
|
/// An arbitrary expression.
|
|
UPPC_Expression = 0,
|
|
|
|
/// The base type of a class type.
|
|
UPPC_BaseType,
|
|
|
|
/// The type of an arbitrary declaration.
|
|
UPPC_DeclarationType,
|
|
|
|
/// The type of a data member.
|
|
UPPC_DataMemberType,
|
|
|
|
/// The size of a bit-field.
|
|
UPPC_BitFieldWidth,
|
|
|
|
/// The expression in a static assertion.
|
|
UPPC_StaticAssertExpression,
|
|
|
|
/// The fixed underlying type of an enumeration.
|
|
UPPC_FixedUnderlyingType,
|
|
|
|
/// The enumerator value.
|
|
UPPC_EnumeratorValue,
|
|
|
|
/// A using declaration.
|
|
UPPC_UsingDeclaration,
|
|
|
|
/// A friend declaration.
|
|
UPPC_FriendDeclaration,
|
|
|
|
/// A declaration qualifier.
|
|
UPPC_DeclarationQualifier,
|
|
|
|
/// An initializer.
|
|
UPPC_Initializer,
|
|
|
|
/// A default argument.
|
|
UPPC_DefaultArgument,
|
|
|
|
/// The type of a non-type template parameter.
|
|
UPPC_NonTypeTemplateParameterType,
|
|
|
|
/// The type of an exception.
|
|
UPPC_ExceptionType,
|
|
|
|
/// Explicit specialization.
|
|
UPPC_ExplicitSpecialization,
|
|
|
|
/// Partial specialization.
|
|
UPPC_PartialSpecialization,
|
|
|
|
/// Microsoft __if_exists.
|
|
UPPC_IfExists,
|
|
|
|
/// Microsoft __if_not_exists.
|
|
UPPC_IfNotExists,
|
|
|
|
/// Lambda expression.
|
|
UPPC_Lambda,
|
|
|
|
/// Block expression.
|
|
UPPC_Block,
|
|
|
|
/// A type constraint.
|
|
UPPC_TypeConstraint,
|
|
|
|
// A requirement in a requires-expression.
|
|
UPPC_Requirement,
|
|
|
|
// A requires-clause.
|
|
UPPC_RequiresClause,
|
|
};
|
|
|
|
/// Diagnose unexpanded parameter packs.
|
|
///
|
|
/// \param Loc The location at which we should emit the diagnostic.
|
|
///
|
|
/// \param UPPC The context in which we are diagnosing unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \param Unexpanded the set of unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPacks(
|
|
SourceLocation Loc, UnexpandedParameterPackContext UPPC,
|
|
ArrayRef<UnexpandedParameterPack> Unexpanded);
|
|
|
|
/// If the given type contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param Loc The source location where a diagnostc should be emitted.
|
|
///
|
|
/// \param T The type that is being checked for unexpanded parameter
|
|
/// packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given expression contains an unexpanded parameter
|
|
/// pack, diagnose the error.
|
|
///
|
|
/// \param E The expression that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(
|
|
Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression);
|
|
|
|
/// If the given requirees-expression contains an unexpanded reference to one
|
|
/// of its own parameter packs, diagnose the error.
|
|
///
|
|
/// \param RE The requiress-expression that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
|
|
|
|
/// If the given nested-name-specifier contains an unexpanded
|
|
/// parameter pack, diagnose the error.
|
|
///
|
|
/// \param SS The nested-name-specifier that is being checked for
|
|
/// unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given name contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param NameInfo The name (with source location information) that
|
|
/// is being checked for unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given template name contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param Loc The location of the template name.
|
|
///
|
|
/// \param Template The template name that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
|
|
TemplateName Template,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given template argument contains an unexpanded parameter
|
|
/// pack, diagnose the error.
|
|
///
|
|
/// \param Arg The template argument that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// template argument.
|
|
///
|
|
/// \param Arg The template argument that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
TemplateArgument Arg,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// template argument.
|
|
///
|
|
/// \param Arg The template argument that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
TemplateArgumentLoc Arg,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// type.
|
|
///
|
|
/// \param T The type that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
QualType T, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// type.
|
|
///
|
|
/// \param TL The type that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
TypeLoc TL, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param NNS The nested-name-specifier that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
NestedNameSpecifierLoc NNS,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// name.
|
|
///
|
|
/// \param NameInfo The name that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(
|
|
const DeclarationNameInfo &NameInfo,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// expression.
|
|
static void collectUnexpandedParameterPacks(
|
|
Expr *E, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Invoked when parsing a template argument followed by an
|
|
/// ellipsis, which creates a pack expansion.
|
|
///
|
|
/// \param Arg The template argument preceding the ellipsis, which
|
|
/// may already be invalid.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// Invoked when parsing a type followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Type The type preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
|
|
|
|
/// Construct a pack expansion type from the pattern of the pack
|
|
/// expansion.
|
|
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
|
|
SourceLocation EllipsisLoc,
|
|
std::optional<unsigned> NumExpansions);
|
|
|
|
/// Construct a pack expansion type from the pattern of the pack
|
|
/// expansion.
|
|
QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
|
|
SourceLocation EllipsisLoc,
|
|
std::optional<unsigned> NumExpansions);
|
|
|
|
/// Invoked when parsing an expression followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Pattern The expression preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
|
|
|
|
/// Invoked when parsing an expression followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Pattern The expression preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
|
|
std::optional<unsigned> NumExpansions);
|
|
|
|
/// Determine whether we could expand a pack expansion with the
|
|
/// given set of parameter packs into separate arguments by repeatedly
|
|
/// transforming the pattern.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis that identifies the
|
|
/// pack expansion.
|
|
///
|
|
/// \param PatternRange The source range that covers the entire pattern of
|
|
/// the pack expansion.
|
|
///
|
|
/// \param Unexpanded The set of unexpanded parameter packs within the
|
|
/// pattern.
|
|
///
|
|
/// \param ShouldExpand Will be set to \c true if the transformer should
|
|
/// expand the corresponding pack expansions into separate arguments. When
|
|
/// set, \c NumExpansions must also be set.
|
|
///
|
|
/// \param RetainExpansion Whether the caller should add an unexpanded
|
|
/// pack expansion after all of the expanded arguments. This is used
|
|
/// when extending explicitly-specified template argument packs per
|
|
/// C++0x [temp.arg.explicit]p9.
|
|
///
|
|
/// \param NumExpansions The number of separate arguments that will be in
|
|
/// the expanded form of the corresponding pack expansion. This is both an
|
|
/// input and an output parameter, which can be set by the caller if the
|
|
/// number of expansions is known a priori (e.g., due to a prior substitution)
|
|
/// and will be set by the callee when the number of expansions is known.
|
|
/// The callee must set this value when \c ShouldExpand is \c true; it may
|
|
/// set this value in other cases.
|
|
///
|
|
/// \returns true if an error occurred (e.g., because the parameter packs
|
|
/// are to be instantiated with arguments of different lengths), false
|
|
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
|
|
/// must be set.
|
|
bool CheckParameterPacksForExpansion(
|
|
SourceLocation EllipsisLoc, SourceRange PatternRange,
|
|
ArrayRef<UnexpandedParameterPack> Unexpanded,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
|
|
bool &RetainExpansion, std::optional<unsigned> &NumExpansions);
|
|
|
|
/// Determine the number of arguments in the given pack expansion
|
|
/// type.
|
|
///
|
|
/// This routine assumes that the number of arguments in the expansion is
|
|
/// consistent across all of the unexpanded parameter packs in its pattern.
|
|
///
|
|
/// Returns an empty Optional if the type can't be expanded.
|
|
std::optional<unsigned> getNumArgumentsInExpansion(
|
|
QualType T, const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
std::optional<unsigned> getNumArgumentsInExpansionFromUnexpanded(
|
|
llvm::ArrayRef<UnexpandedParameterPack> Unexpanded,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Determine whether the given declarator contains any unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// This routine is used by the parser to disambiguate function declarators
|
|
/// with an ellipsis prior to the ')', e.g.,
|
|
///
|
|
/// \code
|
|
/// void f(T...);
|
|
/// \endcode
|
|
///
|
|
/// To determine whether we have an (unnamed) function parameter pack or
|
|
/// a variadic function.
|
|
///
|
|
/// \returns true if the declarator contains any unexpanded parameter packs,
|
|
/// false otherwise.
|
|
bool containsUnexpandedParameterPacks(Declarator &D);
|
|
|
|
/// Returns the pattern of the pack expansion for a template argument.
|
|
///
|
|
/// \param OrigLoc The template argument to expand.
|
|
///
|
|
/// \param Ellipsis Will be set to the location of the ellipsis.
|
|
///
|
|
/// \param NumExpansions Will be set to the number of expansions that will
|
|
/// be generated from this pack expansion, if known a priori.
|
|
TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
|
|
TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis,
|
|
std::optional<unsigned> &NumExpansions) const;
|
|
|
|
/// Given a template argument that contains an unexpanded parameter pack, but
|
|
/// which has already been substituted, attempt to determine the number of
|
|
/// elements that will be produced once this argument is fully-expanded.
|
|
///
|
|
/// This is intended for use when transforming 'sizeof...(Arg)' in order to
|
|
/// avoid actually expanding the pack where possible.
|
|
std::optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
|
|
|
|
/// Called when an expression computing the size of a parameter pack
|
|
/// is parsed.
|
|
///
|
|
/// \code
|
|
/// template<typename ...Types> struct count {
|
|
/// static const unsigned value = sizeof...(Types);
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
//
|
|
/// \param OpLoc The location of the "sizeof" keyword.
|
|
/// \param Name The name of the parameter pack whose size will be determined.
|
|
/// \param NameLoc The source location of the name of the parameter pack.
|
|
/// \param RParenLoc The location of the closing parentheses.
|
|
ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc,
|
|
IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult ActOnPackIndexingExpr(Scope *S, Expr *PackExpression,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation LSquareLoc, Expr *IndexExpr,
|
|
SourceLocation RSquareLoc);
|
|
|
|
ExprResult BuildPackIndexingExpr(Expr *PackExpression,
|
|
SourceLocation EllipsisLoc, Expr *IndexExpr,
|
|
SourceLocation RSquareLoc,
|
|
ArrayRef<Expr *> ExpandedExprs = {},
|
|
bool EmptyPack = false);
|
|
|
|
/// Handle a C++1z fold-expression: ( expr op ... op expr ).
|
|
ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
|
|
tok::TokenKind Operator,
|
|
SourceLocation EllipsisLoc, Expr *RHS,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
|
|
SourceLocation LParenLoc, Expr *LHS,
|
|
BinaryOperatorKind Operator,
|
|
SourceLocation EllipsisLoc, Expr *RHS,
|
|
SourceLocation RParenLoc,
|
|
std::optional<unsigned> NumExpansions);
|
|
ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
|
|
BinaryOperatorKind Operator);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Constraints and Concepts
|
|
/// Implementations are in SemaConcept.cpp
|
|
///@{
|
|
|
|
public:
|
|
void PushSatisfactionStackEntry(const NamedDecl *D,
|
|
const llvm::FoldingSetNodeID &ID) {
|
|
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
|
|
SatisfactionStack.emplace_back(Can, ID);
|
|
}
|
|
|
|
void PopSatisfactionStackEntry() { SatisfactionStack.pop_back(); }
|
|
|
|
bool SatisfactionStackContains(const NamedDecl *D,
|
|
const llvm::FoldingSetNodeID &ID) const {
|
|
const NamedDecl *Can = cast<NamedDecl>(D->getCanonicalDecl());
|
|
return llvm::find(SatisfactionStack, SatisfactionStackEntryTy{Can, ID}) !=
|
|
SatisfactionStack.end();
|
|
}
|
|
|
|
using SatisfactionStackEntryTy =
|
|
std::pair<const NamedDecl *, llvm::FoldingSetNodeID>;
|
|
|
|
// Resets the current SatisfactionStack for cases where we are instantiating
|
|
// constraints as a 'side effect' of normal instantiation in a way that is not
|
|
// indicative of recursive definition.
|
|
class SatisfactionStackResetRAII {
|
|
llvm::SmallVector<SatisfactionStackEntryTy, 10> BackupSatisfactionStack;
|
|
Sema &SemaRef;
|
|
|
|
public:
|
|
SatisfactionStackResetRAII(Sema &S) : SemaRef(S) {
|
|
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
|
|
}
|
|
|
|
~SatisfactionStackResetRAII() {
|
|
SemaRef.SwapSatisfactionStack(BackupSatisfactionStack);
|
|
}
|
|
};
|
|
|
|
void SwapSatisfactionStack(
|
|
llvm::SmallVectorImpl<SatisfactionStackEntryTy> &NewSS) {
|
|
SatisfactionStack.swap(NewSS);
|
|
}
|
|
|
|
/// Check whether the given expression is a valid constraint expression.
|
|
/// A diagnostic is emitted if it is not, false is returned, and
|
|
/// PossibleNonPrimary will be set to true if the failure might be due to a
|
|
/// non-primary expression being used as an atomic constraint.
|
|
bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
|
|
bool *PossibleNonPrimary = nullptr,
|
|
bool IsTrailingRequiresClause = false);
|
|
|
|
/// \brief Check whether the given list of constraint expressions are
|
|
/// satisfied (as if in a 'conjunction') given template arguments.
|
|
/// \param Template the template-like entity that triggered the constraints
|
|
/// check (either a concept or a constrained entity).
|
|
/// \param ConstraintExprs a list of constraint expressions, treated as if
|
|
/// they were 'AND'ed together.
|
|
/// \param TemplateArgLists the list of template arguments to substitute into
|
|
/// the constraint expression.
|
|
/// \param TemplateIDRange The source range of the template id that
|
|
/// caused the constraints check.
|
|
/// \param Satisfaction if true is returned, will contain details of the
|
|
/// satisfaction, with enough information to diagnose an unsatisfied
|
|
/// expression.
|
|
/// \returns true if an error occurred and satisfaction could not be checked,
|
|
/// false otherwise.
|
|
bool CheckConstraintSatisfaction(
|
|
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
|
|
const MultiLevelTemplateArgumentList &TemplateArgLists,
|
|
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
|
|
llvm::SmallVector<Expr *, 4> Converted;
|
|
return CheckConstraintSatisfaction(Template, ConstraintExprs, Converted,
|
|
TemplateArgLists, TemplateIDRange,
|
|
Satisfaction);
|
|
}
|
|
|
|
/// \brief Check whether the given list of constraint expressions are
|
|
/// satisfied (as if in a 'conjunction') given template arguments.
|
|
/// Additionally, takes an empty list of Expressions which is populated with
|
|
/// the instantiated versions of the ConstraintExprs.
|
|
/// \param Template the template-like entity that triggered the constraints
|
|
/// check (either a concept or a constrained entity).
|
|
/// \param ConstraintExprs a list of constraint expressions, treated as if
|
|
/// they were 'AND'ed together.
|
|
/// \param ConvertedConstraints a out parameter that will get populated with
|
|
/// the instantiated version of the ConstraintExprs if we successfully checked
|
|
/// satisfaction.
|
|
/// \param TemplateArgList the multi-level list of template arguments to
|
|
/// substitute into the constraint expression. This should be relative to the
|
|
/// top-level (hence multi-level), since we need to instantiate fully at the
|
|
/// time of checking.
|
|
/// \param TemplateIDRange The source range of the template id that
|
|
/// caused the constraints check.
|
|
/// \param Satisfaction if true is returned, will contain details of the
|
|
/// satisfaction, with enough information to diagnose an unsatisfied
|
|
/// expression.
|
|
/// \returns true if an error occurred and satisfaction could not be checked,
|
|
/// false otherwise.
|
|
bool CheckConstraintSatisfaction(
|
|
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
|
|
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
|
|
const MultiLevelTemplateArgumentList &TemplateArgList,
|
|
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
|
|
|
|
/// \brief Check whether the given non-dependent constraint expression is
|
|
/// satisfied. Returns false and updates Satisfaction with the satisfaction
|
|
/// verdict if successful, emits a diagnostic and returns true if an error
|
|
/// occurred and satisfaction could not be determined.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
/// Check whether the given function decl's trailing requires clause is
|
|
/// satisfied, if any. Returns false and updates Satisfaction with the
|
|
/// satisfaction verdict if successful, emits a diagnostic and returns true if
|
|
/// an error occurred and satisfaction could not be determined.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckFunctionConstraints(const FunctionDecl *FD,
|
|
ConstraintSatisfaction &Satisfaction,
|
|
SourceLocation UsageLoc = SourceLocation(),
|
|
bool ForOverloadResolution = false);
|
|
|
|
// Calculates whether two constraint expressions are equal irrespective of a
|
|
// difference in 'depth'. This takes a pair of optional 'NamedDecl's 'Old' and
|
|
// 'New', which are the "source" of the constraint, since this is necessary
|
|
// for figuring out the relative 'depth' of the constraint. The depth of the
|
|
// 'primary template' and the 'instantiated from' templates aren't necessarily
|
|
// the same, such as a case when one is a 'friend' defined in a class.
|
|
bool AreConstraintExpressionsEqual(const NamedDecl *Old,
|
|
const Expr *OldConstr,
|
|
const TemplateCompareNewDeclInfo &New,
|
|
const Expr *NewConstr);
|
|
|
|
// Calculates whether the friend function depends on an enclosing template for
|
|
// the purposes of [temp.friend] p9.
|
|
bool FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD);
|
|
|
|
/// \brief Ensure that the given template arguments satisfy the constraints
|
|
/// associated with the given template, emitting a diagnostic if they do not.
|
|
///
|
|
/// \param Template The template to which the template arguments are being
|
|
/// provided.
|
|
///
|
|
/// \param TemplateArgs The converted, canonicalized template arguments.
|
|
///
|
|
/// \param TemplateIDRange The source range of the template id that
|
|
/// caused the constraints check.
|
|
///
|
|
/// \returns true if the constrains are not satisfied or could not be checked
|
|
/// for satisfaction, false if the constraints are satisfied.
|
|
bool EnsureTemplateArgumentListConstraints(
|
|
TemplateDecl *Template,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceRange TemplateIDRange);
|
|
|
|
bool CheckInstantiatedFunctionTemplateConstraints(
|
|
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
/// \brief Emit diagnostics explaining why a constraint expression was deemed
|
|
/// unsatisfied.
|
|
/// \param First whether this is the first time an unsatisfied constraint is
|
|
/// diagnosed for this error.
|
|
void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
|
|
bool First = true);
|
|
|
|
/// \brief Emit diagnostics explaining why a constraint expression was deemed
|
|
/// unsatisfied.
|
|
void
|
|
DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
|
|
bool First = true);
|
|
|
|
const NormalizedConstraint *getNormalizedAssociatedConstraints(
|
|
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
|
|
|
|
/// \brief Check whether the given declaration's associated constraints are
|
|
/// at least as constrained than another declaration's according to the
|
|
/// partial ordering of constraints.
|
|
///
|
|
/// \param Result If no error occurred, receives the result of true if D1 is
|
|
/// at least constrained than D2, and false otherwise.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool IsAtLeastAsConstrained(NamedDecl *D1, MutableArrayRef<const Expr *> AC1,
|
|
NamedDecl *D2, MutableArrayRef<const Expr *> AC2,
|
|
bool &Result);
|
|
|
|
/// If D1 was not at least as constrained as D2, but would've been if a pair
|
|
/// of atomic constraints involved had been declared in a concept and not
|
|
/// repeated in two separate places in code.
|
|
/// \returns true if such a diagnostic was emitted, false otherwise.
|
|
bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(
|
|
NamedDecl *D1, ArrayRef<const Expr *> AC1, NamedDecl *D2,
|
|
ArrayRef<const Expr *> AC2);
|
|
|
|
private:
|
|
/// Caches pairs of template-like decls whose associated constraints were
|
|
/// checked for subsumption and whether or not the first's constraints did in
|
|
/// fact subsume the second's.
|
|
llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
|
|
/// Caches the normalized associated constraints of declarations (concepts or
|
|
/// constrained declarations). If an error occurred while normalizing the
|
|
/// associated constraints of the template or concept, nullptr will be cached
|
|
/// here.
|
|
llvm::DenseMap<NamedDecl *, NormalizedConstraint *> NormalizationCache;
|
|
|
|
llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
|
|
SatisfactionCache;
|
|
|
|
// The current stack of constraint satisfactions, so we can exit-early.
|
|
llvm::SmallVector<SatisfactionStackEntryTy, 10> SatisfactionStack;
|
|
|
|
/// Introduce the instantiated captures of the lambda into the local
|
|
/// instantiation scope.
|
|
bool addInstantiatedCapturesToScope(
|
|
FunctionDecl *Function, const FunctionDecl *PatternDecl,
|
|
LocalInstantiationScope &Scope,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Used by SetupConstraintCheckingTemplateArgumentsAndScope to recursively(in
|
|
/// the case of lambdas) set up the LocalInstantiationScope of the current
|
|
/// function.
|
|
bool
|
|
SetupConstraintScope(FunctionDecl *FD,
|
|
std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
|
|
const MultiLevelTemplateArgumentList &MLTAL,
|
|
LocalInstantiationScope &Scope);
|
|
|
|
/// Used during constraint checking, sets up the constraint template argument
|
|
/// lists, and calls SetupConstraintScope to set up the
|
|
/// LocalInstantiationScope to have the proper set of ParVarDecls configured.
|
|
std::optional<MultiLevelTemplateArgumentList>
|
|
SetupConstraintCheckingTemplateArgumentsAndScope(
|
|
FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
|
|
LocalInstantiationScope &Scope);
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name Types
|
|
/// Implementations are in SemaType.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// A mapping that describes the nullability we've seen in each header file.
|
|
FileNullabilityMap NullabilityMap;
|
|
|
|
static int getPrintable(int I) { return I; }
|
|
static unsigned getPrintable(unsigned I) { return I; }
|
|
static bool getPrintable(bool B) { return B; }
|
|
static const char *getPrintable(const char *S) { return S; }
|
|
static StringRef getPrintable(StringRef S) { return S; }
|
|
static const std::string &getPrintable(const std::string &S) { return S; }
|
|
static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
|
|
return II;
|
|
}
|
|
static DeclarationName getPrintable(DeclarationName N) { return N; }
|
|
static QualType getPrintable(QualType T) { return T; }
|
|
static SourceRange getPrintable(SourceRange R) { return R; }
|
|
static SourceRange getPrintable(SourceLocation L) { return L; }
|
|
static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
|
|
static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange(); }
|
|
|
|
enum class CompleteTypeKind {
|
|
/// Apply the normal rules for complete types. In particular,
|
|
/// treat all sizeless types as incomplete.
|
|
Normal,
|
|
|
|
/// Relax the normal rules for complete types so that they include
|
|
/// sizeless built-in types.
|
|
AcceptSizeless,
|
|
|
|
// FIXME: Eventually we should flip the default to Normal and opt in
|
|
// to AcceptSizeless rather than opt out of it.
|
|
Default = AcceptSizeless
|
|
};
|
|
|
|
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
|
|
const DeclSpec *DS = nullptr);
|
|
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
|
|
const DeclSpec *DS = nullptr);
|
|
|
|
/// Build a pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a pointer.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// pointer type or, if there is no such entity, the location of the
|
|
/// type that will have pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType BuildPointerType(QualType T, SourceLocation Loc,
|
|
DeclarationName Entity);
|
|
|
|
/// Build a reference type.
|
|
///
|
|
/// \param T The type to which we'll be building a reference.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// reference type or, if there is no such entity, the location of the
|
|
/// type that will have reference type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the reference
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable reference type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc,
|
|
DeclarationName Entity);
|
|
|
|
/// Build an array type.
|
|
///
|
|
/// \param T The type of each element in the array.
|
|
///
|
|
/// \param ASM C99 array size modifier (e.g., '*', 'static').
|
|
///
|
|
/// \param ArraySize Expression describing the size of the array.
|
|
///
|
|
/// \param Brackets The range from the opening '[' to the closing ']'.
|
|
///
|
|
/// \param Entity The name of the entity that involves the array
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable array type, if there are no errors. Otherwise,
|
|
/// returns a NULL type.
|
|
QualType BuildArrayType(QualType T, ArraySizeModifier ASM, Expr *ArraySize,
|
|
unsigned Quals, SourceRange Brackets,
|
|
DeclarationName Entity);
|
|
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
|
|
|
|
/// Build an ext-vector type.
|
|
///
|
|
/// Run the required checks for the extended vector type.
|
|
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
|
|
SourceLocation AttrLoc);
|
|
QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
|
|
SourceLocation AttrLoc);
|
|
|
|
QualType BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
|
|
Expr *CountExpr,
|
|
bool CountInBytes,
|
|
bool OrNull);
|
|
|
|
/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an
|
|
/// expression is uninstantiated. If instantiated it will apply the
|
|
/// appropriate address space to the type. This function allows dependent
|
|
/// template variables to be used in conjunction with the address_space
|
|
/// attribute
|
|
QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
|
|
SourceLocation AttrLoc);
|
|
|
|
/// Same as above, but constructs the AddressSpace index if not provided.
|
|
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
|
|
SourceLocation AttrLoc);
|
|
|
|
bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
|
|
|
|
bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
|
|
|
|
/// Build a function type.
|
|
///
|
|
/// This routine checks the function type according to C++ rules and
|
|
/// under the assumption that the result type and parameter types have
|
|
/// just been instantiated from a template. It therefore duplicates
|
|
/// some of the behavior of GetTypeForDeclarator, but in a much
|
|
/// simpler form that is only suitable for this narrow use case.
|
|
///
|
|
/// \param T The return type of the function.
|
|
///
|
|
/// \param ParamTypes The parameter types of the function. This array
|
|
/// will be modified to account for adjustments to the types of the
|
|
/// function parameters.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// function type or, if there is no such entity, the location of the
|
|
/// type that will have function type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the function
|
|
/// type, if known.
|
|
///
|
|
/// \param EPI Extra information about the function type. Usually this will
|
|
/// be taken from an existing function with the same prototype.
|
|
///
|
|
/// \returns A suitable function type, if there are no errors. The
|
|
/// unqualified type will always be a FunctionProtoType.
|
|
/// Otherwise, returns a NULL type.
|
|
QualType BuildFunctionType(QualType T, MutableArrayRef<QualType> ParamTypes,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
const FunctionProtoType::ExtProtoInfo &EPI);
|
|
|
|
/// Build a member pointer type \c T Class::*.
|
|
///
|
|
/// \param T the type to which the member pointer refers.
|
|
/// \param Class the class type into which the member pointer points.
|
|
/// \param Loc the location where this type begins
|
|
/// \param Entity the name of the entity that will have this member pointer
|
|
/// type
|
|
///
|
|
/// \returns a member pointer type, if successful, or a NULL type if there was
|
|
/// an error.
|
|
QualType BuildMemberPointerType(QualType T, QualType Class,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
|
|
/// Build a block pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a block pointer.
|
|
///
|
|
/// \param Loc The source location, used for diagnostics.
|
|
///
|
|
/// \param Entity The name of the entity that involves the block pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable block pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType BuildBlockPointerType(QualType T, SourceLocation Loc,
|
|
DeclarationName Entity);
|
|
|
|
/// Build a paren type including \p T.
|
|
QualType BuildParenType(QualType T);
|
|
QualType BuildAtomicType(QualType T, SourceLocation Loc);
|
|
|
|
/// Build a Read-only Pipe type.
|
|
///
|
|
/// \param T The type to which we'll be building a Pipe.
|
|
///
|
|
/// \param Loc We do not use it for now.
|
|
///
|
|
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns
|
|
/// a NULL type.
|
|
QualType BuildReadPipeType(QualType T, SourceLocation Loc);
|
|
|
|
/// Build a Write-only Pipe type.
|
|
///
|
|
/// \param T The type to which we'll be building a Pipe.
|
|
///
|
|
/// \param Loc We do not use it for now.
|
|
///
|
|
/// \returns A suitable pipe type, if there are no errors. Otherwise, returns
|
|
/// a NULL type.
|
|
QualType BuildWritePipeType(QualType T, SourceLocation Loc);
|
|
|
|
/// Build a bit-precise integer type.
|
|
///
|
|
/// \param IsUnsigned Boolean representing the signedness of the type.
|
|
///
|
|
/// \param BitWidth Size of this int type in bits, or an expression
|
|
/// representing that.
|
|
///
|
|
/// \param Loc Location of the keyword.
|
|
QualType BuildBitIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified
|
|
/// declarator to Type instances.
|
|
///
|
|
/// The result of this call will never be null, but the associated
|
|
/// type may be a null type if there's an unrecoverable error.
|
|
TypeSourceInfo *GetTypeForDeclarator(Declarator &D);
|
|
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
|
|
|
|
/// Package the given type and TSI into a ParsedType.
|
|
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
|
|
static QualType GetTypeFromParser(ParsedType Ty,
|
|
TypeSourceInfo **TInfo = nullptr);
|
|
|
|
TypeResult ActOnTypeName(Declarator &D);
|
|
|
|
// Check whether the size of array element of type \p EltTy is a multiple of
|
|
// its alignment and return false if it isn't.
|
|
bool checkArrayElementAlignment(QualType EltTy, SourceLocation Loc);
|
|
|
|
void
|
|
diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
|
|
SourceLocation FallbackLoc,
|
|
SourceLocation ConstQualLoc = SourceLocation(),
|
|
SourceLocation VolatileQualLoc = SourceLocation(),
|
|
SourceLocation RestrictQualLoc = SourceLocation(),
|
|
SourceLocation AtomicQualLoc = SourceLocation(),
|
|
SourceLocation UnalignedQualLoc = SourceLocation());
|
|
|
|
/// Retrieve the keyword associated
|
|
IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
|
|
|
|
/// Adjust the calling convention of a method to be the ABI default if it
|
|
/// wasn't specified explicitly. This handles method types formed from
|
|
/// function type typedefs and typename template arguments.
|
|
void adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
|
|
bool IsCtorOrDtor, SourceLocation Loc);
|
|
|
|
// Check if there is an explicit attribute, but only look through parens.
|
|
// The intent is to look for an attribute on the current declarator, but not
|
|
// one that came from a typedef.
|
|
bool hasExplicitCallingConv(QualType T);
|
|
|
|
/// Check whether a nullability type specifier can be added to the given
|
|
/// type through some means not written in source (e.g. API notes).
|
|
///
|
|
/// \param Type The type to which the nullability specifier will be
|
|
/// added. On success, this type will be updated appropriately.
|
|
///
|
|
/// \param Nullability The nullability specifier to add.
|
|
///
|
|
/// \param DiagLoc The location to use for diagnostics.
|
|
///
|
|
/// \param AllowArrayTypes Whether to accept nullability specifiers on an
|
|
/// array type (e.g., because it will decay to a pointer).
|
|
///
|
|
/// \param OverrideExisting Whether to override an existing, locally-specified
|
|
/// nullability specifier rather than complaining about the conflict.
|
|
///
|
|
/// \returns true if nullability cannot be applied, false otherwise.
|
|
bool CheckImplicitNullabilityTypeSpecifier(QualType &Type,
|
|
NullabilityKind Nullability,
|
|
SourceLocation DiagLoc,
|
|
bool AllowArrayTypes,
|
|
bool OverrideExisting);
|
|
|
|
/// Get the type of expression E, triggering instantiation to complete the
|
|
/// type if necessary -- that is, if the expression refers to a templated
|
|
/// static data member of incomplete array type.
|
|
///
|
|
/// May still return an incomplete type if instantiation was not possible or
|
|
/// if the type is incomplete for a different reason. Use
|
|
/// RequireCompleteExprType instead if a diagnostic is expected for an
|
|
/// incomplete expression type.
|
|
QualType getCompletedType(Expr *E);
|
|
|
|
void completeExprArrayBound(Expr *E);
|
|
|
|
/// Ensure that the type of the given expression is complete.
|
|
///
|
|
/// This routine checks whether the expression \p E has a complete type. If
|
|
/// the expression refers to an instantiable construct, that instantiation is
|
|
/// performed as needed to complete its type. Furthermore
|
|
/// Sema::RequireCompleteType is called for the expression's type (or in the
|
|
/// case of a reference type, the referred-to type).
|
|
///
|
|
/// \param E The expression whose type is required to be complete.
|
|
/// \param Kind Selects which completeness rules should be applied.
|
|
/// \param Diagnoser The object that will emit a diagnostic if the type is
|
|
/// incomplete.
|
|
///
|
|
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
|
|
/// otherwise.
|
|
bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
|
|
TypeDiagnoser &Diagnoser);
|
|
bool RequireCompleteExprType(Expr *E, unsigned DiagID);
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
|
|
}
|
|
|
|
/// Retrieve a version of the type 'T' that is elaborated by Keyword,
|
|
/// qualified by the nested-name-specifier contained in SS, and that is
|
|
/// (re)declared by OwnedTagDecl, which is nullptr if this is not a
|
|
/// (re)declaration.
|
|
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
const CXXScopeSpec &SS, QualType T,
|
|
TagDecl *OwnedTagDecl = nullptr);
|
|
|
|
// Returns the underlying type of a decltype with the given expression.
|
|
QualType getDecltypeForExpr(Expr *E);
|
|
|
|
QualType BuildTypeofExprType(Expr *E, TypeOfKind Kind);
|
|
/// If AsUnevaluated is false, E is treated as though it were an evaluated
|
|
/// context, such as when building a type for decltype(auto).
|
|
QualType BuildDecltypeType(Expr *E, bool AsUnevaluated = true);
|
|
|
|
QualType ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
|
|
SourceLocation Loc,
|
|
SourceLocation EllipsisLoc);
|
|
QualType BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
|
|
SourceLocation Loc, SourceLocation EllipsisLoc,
|
|
bool FullySubstituted = false,
|
|
ArrayRef<QualType> Expansions = {});
|
|
|
|
using UTTKind = UnaryTransformType::UTTKind;
|
|
QualType BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
QualType BuiltinEnumUnderlyingType(QualType BaseType, SourceLocation Loc);
|
|
QualType BuiltinAddPointer(QualType BaseType, SourceLocation Loc);
|
|
QualType BuiltinRemovePointer(QualType BaseType, SourceLocation Loc);
|
|
QualType BuiltinDecay(QualType BaseType, SourceLocation Loc);
|
|
QualType BuiltinAddReference(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
QualType BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
QualType BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
QualType BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
QualType BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
|
|
SourceLocation Loc);
|
|
|
|
/// Ensure that the type T is a literal type.
|
|
///
|
|
/// This routine checks whether the type @p T is a literal type. If @p T is an
|
|
/// incomplete type, an attempt is made to complete it. If @p T is a literal
|
|
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
|
|
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
|
|
/// it the type @p T), along with notes explaining why the type is not a
|
|
/// literal type, and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the non-literal type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for literalness.
|
|
///
|
|
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
|
|
///
|
|
/// @returns @c true if @p T is not a literal type and a diagnostic was
|
|
/// emitted, @c false otherwise.
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser);
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
|
|
|
|
template <typename... Ts>
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireLiteralType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
bool isCompleteType(SourceLocation Loc, QualType T,
|
|
CompleteTypeKind Kind = CompleteTypeKind::Default) {
|
|
return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
|
|
}
|
|
|
|
/// Ensure that the type T is a complete type.
|
|
///
|
|
/// This routine checks whether the type @p T is complete in any
|
|
/// context where a complete type is required. If @p T is a complete
|
|
/// type, returns false. If @p T is a class template specialization,
|
|
/// this routine then attempts to perform class template
|
|
/// instantiation. If instantiation fails, or if @p T is incomplete
|
|
/// and cannot be completed, issues the diagnostic @p diag (giving it
|
|
/// the type @p T) and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the incomplete type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for completeness.
|
|
///
|
|
/// @param Kind Selects which completeness rules should be applied.
|
|
///
|
|
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T,
|
|
CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T,
|
|
CompleteTypeKind Kind, unsigned DiagID);
|
|
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
|
|
}
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
|
|
return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
|
|
}
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
/// Determine whether a declaration is visible to name lookup.
|
|
bool isVisible(const NamedDecl *D) {
|
|
return D->isUnconditionallyVisible() ||
|
|
isAcceptableSlow(D, AcceptableKind::Visible);
|
|
}
|
|
|
|
/// Determine whether a declaration is reachable.
|
|
bool isReachable(const NamedDecl *D) {
|
|
// All visible declarations are reachable.
|
|
return D->isUnconditionallyVisible() ||
|
|
isAcceptableSlow(D, AcceptableKind::Reachable);
|
|
}
|
|
|
|
/// Determine whether a declaration is acceptable (visible/reachable).
|
|
bool isAcceptable(const NamedDecl *D, AcceptableKind Kind) {
|
|
return Kind == AcceptableKind::Visible ? isVisible(D) : isReachable(D);
|
|
}
|
|
|
|
/// Determine if \p D and \p Suggested have a structurally compatible
|
|
/// layout as described in C11 6.2.7/1.
|
|
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
|
|
|
|
/// Determine if \p D has a visible definition. If not, suggest a declaration
|
|
/// that should be made visible to expose the definition.
|
|
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
|
|
bool OnlyNeedComplete = false);
|
|
bool hasVisibleDefinition(const NamedDecl *D) {
|
|
NamedDecl *Hidden;
|
|
return hasVisibleDefinition(const_cast<NamedDecl *>(D), &Hidden);
|
|
}
|
|
|
|
/// Determine if \p D has a reachable definition. If not, suggest a
|
|
/// declaration that should be made reachable to expose the definition.
|
|
bool hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
|
|
bool OnlyNeedComplete = false);
|
|
bool hasReachableDefinition(NamedDecl *D) {
|
|
NamedDecl *Hidden;
|
|
return hasReachableDefinition(D, &Hidden);
|
|
}
|
|
|
|
bool hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
|
|
AcceptableKind Kind,
|
|
bool OnlyNeedComplete = false);
|
|
bool hasAcceptableDefinition(NamedDecl *D, AcceptableKind Kind) {
|
|
NamedDecl *Hidden;
|
|
return hasAcceptableDefinition(D, &Hidden, Kind);
|
|
}
|
|
|
|
private:
|
|
/// The implementation of RequireCompleteType
|
|
bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
|
|
CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
|
|
|
|
/// Nullability type specifiers.
|
|
IdentifierInfo *Ident__Nonnull = nullptr;
|
|
IdentifierInfo *Ident__Nullable = nullptr;
|
|
IdentifierInfo *Ident__Nullable_result = nullptr;
|
|
IdentifierInfo *Ident__Null_unspecified = nullptr;
|
|
|
|
///@}
|
|
|
|
//
|
|
//
|
|
// -------------------------------------------------------------------------
|
|
//
|
|
//
|
|
|
|
/// \name FixIt Helpers
|
|
/// Implementations are in SemaFixItUtils.cpp
|
|
///@{
|
|
|
|
public:
|
|
/// Get a string to suggest for zero-initialization of a type.
|
|
std::string getFixItZeroInitializerForType(QualType T,
|
|
SourceLocation Loc) const;
|
|
std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
|
|
|
|
///@}
|
|
};
|
|
|
|
DeductionFailureInfo
|
|
MakeDeductionFailureInfo(ASTContext &Context, TemplateDeductionResult TDK,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
/// Contains a late templated function.
|
|
/// Will be parsed at the end of the translation unit, used by Sema & Parser.
|
|
struct LateParsedTemplate {
|
|
CachedTokens Toks;
|
|
/// The template function declaration to be late parsed.
|
|
Decl *D;
|
|
/// Floating-point options in the point of definition.
|
|
FPOptions FPO;
|
|
};
|
|
|
|
template <>
|
|
void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
|
|
PragmaMsStackAction Action,
|
|
llvm::StringRef StackSlotLabel,
|
|
AlignPackInfo Value);
|
|
} // end namespace clang
|
|
|
|
#endif
|