clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1306 lines
46 KiB
C++
1306 lines
46 KiB
C++
//===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the data structures and types used in C++
|
|
// overload resolution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_SEMA_OVERLOAD_H
|
|
#define LLVM_CLANG_SEMA_OVERLOAD_H
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclAccessPair.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Sema/SemaFixItUtils.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace clang {
|
|
|
|
class APValue;
|
|
class ASTContext;
|
|
class Sema;
|
|
|
|
/// OverloadingResult - Capture the result of performing overload
|
|
/// resolution.
|
|
enum OverloadingResult {
|
|
/// Overload resolution succeeded.
|
|
OR_Success,
|
|
|
|
/// No viable function found.
|
|
OR_No_Viable_Function,
|
|
|
|
/// Ambiguous candidates found.
|
|
OR_Ambiguous,
|
|
|
|
/// Succeeded, but refers to a deleted function.
|
|
OR_Deleted
|
|
};
|
|
|
|
enum OverloadCandidateDisplayKind {
|
|
/// Requests that all candidates be shown. Viable candidates will
|
|
/// be printed first.
|
|
OCD_AllCandidates,
|
|
|
|
/// Requests that only viable candidates be shown.
|
|
OCD_ViableCandidates,
|
|
|
|
/// Requests that only tied-for-best candidates be shown.
|
|
OCD_AmbiguousCandidates
|
|
};
|
|
|
|
/// The parameter ordering that will be used for the candidate. This is
|
|
/// used to represent C++20 binary operator rewrites that reverse the order
|
|
/// of the arguments. If the parameter ordering is Reversed, the Args list is
|
|
/// reversed (but obviously the ParamDecls for the function are not).
|
|
///
|
|
/// After forming an OverloadCandidate with reversed parameters, the list
|
|
/// of conversions will (as always) be indexed by argument, so will be
|
|
/// in reverse parameter order.
|
|
enum class OverloadCandidateParamOrder : char { Normal, Reversed };
|
|
|
|
/// The kinds of rewrite we perform on overload candidates. Note that the
|
|
/// values here are chosen to serve as both bitflags and as a rank (lower
|
|
/// values are preferred by overload resolution).
|
|
enum OverloadCandidateRewriteKind : unsigned {
|
|
/// Candidate is not a rewritten candidate.
|
|
CRK_None = 0x0,
|
|
|
|
/// Candidate is a rewritten candidate with a different operator name.
|
|
CRK_DifferentOperator = 0x1,
|
|
|
|
/// Candidate is a rewritten candidate with a reversed order of parameters.
|
|
CRK_Reversed = 0x2,
|
|
};
|
|
|
|
/// ImplicitConversionKind - The kind of implicit conversion used to
|
|
/// convert an argument to a parameter's type. The enumerator values
|
|
/// match with the table titled 'Conversions' in [over.ics.scs] and are listed
|
|
/// such that better conversion kinds have smaller values.
|
|
enum ImplicitConversionKind {
|
|
/// Identity conversion (no conversion)
|
|
ICK_Identity = 0,
|
|
|
|
/// Lvalue-to-rvalue conversion (C++ [conv.lval])
|
|
ICK_Lvalue_To_Rvalue,
|
|
|
|
/// Array-to-pointer conversion (C++ [conv.array])
|
|
ICK_Array_To_Pointer,
|
|
|
|
/// Function-to-pointer (C++ [conv.array])
|
|
ICK_Function_To_Pointer,
|
|
|
|
/// Function pointer conversion (C++17 [conv.fctptr])
|
|
ICK_Function_Conversion,
|
|
|
|
/// Qualification conversions (C++ [conv.qual])
|
|
ICK_Qualification,
|
|
|
|
/// Integral promotions (C++ [conv.prom])
|
|
ICK_Integral_Promotion,
|
|
|
|
/// Floating point promotions (C++ [conv.fpprom])
|
|
ICK_Floating_Promotion,
|
|
|
|
/// Complex promotions (Clang extension)
|
|
ICK_Complex_Promotion,
|
|
|
|
/// Integral conversions (C++ [conv.integral])
|
|
ICK_Integral_Conversion,
|
|
|
|
/// Floating point conversions (C++ [conv.double]
|
|
ICK_Floating_Conversion,
|
|
|
|
/// Complex conversions (C99 6.3.1.6)
|
|
ICK_Complex_Conversion,
|
|
|
|
/// Floating-integral conversions (C++ [conv.fpint])
|
|
ICK_Floating_Integral,
|
|
|
|
/// Pointer conversions (C++ [conv.ptr])
|
|
ICK_Pointer_Conversion,
|
|
|
|
/// Pointer-to-member conversions (C++ [conv.mem])
|
|
ICK_Pointer_Member,
|
|
|
|
/// Boolean conversions (C++ [conv.bool])
|
|
ICK_Boolean_Conversion,
|
|
|
|
/// Conversions between compatible types in C99
|
|
ICK_Compatible_Conversion,
|
|
|
|
/// Derived-to-base (C++ [over.best.ics])
|
|
ICK_Derived_To_Base,
|
|
|
|
/// Vector conversions
|
|
ICK_Vector_Conversion,
|
|
|
|
/// Arm SVE Vector conversions
|
|
ICK_SVE_Vector_Conversion,
|
|
|
|
/// RISC-V RVV Vector conversions
|
|
ICK_RVV_Vector_Conversion,
|
|
|
|
/// A vector splat from an arithmetic type
|
|
ICK_Vector_Splat,
|
|
|
|
/// Complex-real conversions (C99 6.3.1.7)
|
|
ICK_Complex_Real,
|
|
|
|
/// Block Pointer conversions
|
|
ICK_Block_Pointer_Conversion,
|
|
|
|
/// Transparent Union Conversions
|
|
ICK_TransparentUnionConversion,
|
|
|
|
/// Objective-C ARC writeback conversion
|
|
ICK_Writeback_Conversion,
|
|
|
|
/// Zero constant to event (OpenCL1.2 6.12.10)
|
|
ICK_Zero_Event_Conversion,
|
|
|
|
/// Zero constant to queue
|
|
ICK_Zero_Queue_Conversion,
|
|
|
|
/// Conversions allowed in C, but not C++
|
|
ICK_C_Only_Conversion,
|
|
|
|
/// C-only conversion between pointers with incompatible types
|
|
ICK_Incompatible_Pointer_Conversion,
|
|
|
|
/// Fixed point type conversions according to N1169.
|
|
ICK_Fixed_Point_Conversion,
|
|
|
|
/// HLSL vector truncation.
|
|
ICK_HLSL_Vector_Truncation,
|
|
|
|
/// HLSL non-decaying array rvalue cast.
|
|
ICK_HLSL_Array_RValue,
|
|
|
|
// HLSL vector splat from scalar or boolean type.
|
|
ICK_HLSL_Vector_Splat,
|
|
|
|
/// The number of conversion kinds
|
|
ICK_Num_Conversion_Kinds,
|
|
};
|
|
|
|
/// ImplicitConversionRank - The rank of an implicit conversion
|
|
/// kind. The enumerator values match with Table 9 of (C++
|
|
/// 13.3.3.1.1) and are listed such that better conversion ranks
|
|
/// have smaller values.
|
|
enum ImplicitConversionRank {
|
|
/// Exact Match
|
|
ICR_Exact_Match = 0,
|
|
|
|
/// HLSL Scalar Widening
|
|
ICR_HLSL_Scalar_Widening,
|
|
|
|
/// Promotion
|
|
ICR_Promotion,
|
|
|
|
/// HLSL Scalar Widening with promotion
|
|
ICR_HLSL_Scalar_Widening_Promotion,
|
|
|
|
/// HLSL Matching Dimension Reduction
|
|
ICR_HLSL_Dimension_Reduction,
|
|
|
|
/// Conversion
|
|
ICR_Conversion,
|
|
|
|
/// OpenCL Scalar Widening
|
|
ICR_OCL_Scalar_Widening,
|
|
|
|
/// HLSL Scalar Widening with conversion
|
|
ICR_HLSL_Scalar_Widening_Conversion,
|
|
|
|
/// Complex <-> Real conversion
|
|
ICR_Complex_Real_Conversion,
|
|
|
|
/// ObjC ARC writeback conversion
|
|
ICR_Writeback_Conversion,
|
|
|
|
/// Conversion only allowed in the C standard (e.g. void* to char*).
|
|
ICR_C_Conversion,
|
|
|
|
/// Conversion not allowed by the C standard, but that we accept as an
|
|
/// extension anyway.
|
|
ICR_C_Conversion_Extension,
|
|
|
|
/// HLSL Dimension reduction with promotion
|
|
ICR_HLSL_Dimension_Reduction_Promotion,
|
|
|
|
/// HLSL Dimension reduction with conversion
|
|
ICR_HLSL_Dimension_Reduction_Conversion,
|
|
};
|
|
|
|
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
|
|
|
|
ImplicitConversionRank
|
|
GetDimensionConversionRank(ImplicitConversionRank Base,
|
|
ImplicitConversionKind Dimension);
|
|
|
|
/// NarrowingKind - The kind of narrowing conversion being performed by a
|
|
/// standard conversion sequence according to C++11 [dcl.init.list]p7.
|
|
enum NarrowingKind {
|
|
/// Not a narrowing conversion.
|
|
NK_Not_Narrowing,
|
|
|
|
/// A narrowing conversion by virtue of the source and destination types.
|
|
NK_Type_Narrowing,
|
|
|
|
/// A narrowing conversion, because a constant expression got narrowed.
|
|
NK_Constant_Narrowing,
|
|
|
|
/// A narrowing conversion, because a non-constant-expression variable might
|
|
/// have got narrowed.
|
|
NK_Variable_Narrowing,
|
|
|
|
/// Cannot tell whether this is a narrowing conversion because the
|
|
/// expression is value-dependent.
|
|
NK_Dependent_Narrowing,
|
|
};
|
|
|
|
/// StandardConversionSequence - represents a standard conversion
|
|
/// sequence (C++ 13.3.3.1.1). A standard conversion sequence
|
|
/// contains between zero and three conversions. If a particular
|
|
/// conversion is not needed, it will be set to the identity conversion
|
|
/// (ICK_Identity).
|
|
class StandardConversionSequence {
|
|
public:
|
|
/// First -- The first conversion can be an lvalue-to-rvalue
|
|
/// conversion, array-to-pointer conversion, or
|
|
/// function-to-pointer conversion.
|
|
ImplicitConversionKind First : 8;
|
|
|
|
/// Second - The second conversion can be an integral promotion,
|
|
/// floating point promotion, integral conversion, floating point
|
|
/// conversion, floating-integral conversion, pointer conversion,
|
|
/// pointer-to-member conversion, or boolean conversion.
|
|
ImplicitConversionKind Second : 8;
|
|
|
|
/// Dimension - Between the second and third conversion a vector or matrix
|
|
/// dimension conversion may occur. If this is not ICK_Identity this
|
|
/// conversion truncates the vector or matrix, or extends a scalar.
|
|
ImplicitConversionKind Dimension : 8;
|
|
|
|
/// Third - The third conversion can be a qualification conversion
|
|
/// or a function conversion.
|
|
ImplicitConversionKind Third : 8;
|
|
|
|
/// Whether this is the deprecated conversion of a
|
|
/// string literal to a pointer to non-const character data
|
|
/// (C++ 4.2p2).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned DeprecatedStringLiteralToCharPtr : 1;
|
|
|
|
/// Whether the qualification conversion involves a change in the
|
|
/// Objective-C lifetime (for automatic reference counting).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned QualificationIncludesObjCLifetime : 1;
|
|
|
|
/// IncompatibleObjC - Whether this is an Objective-C conversion
|
|
/// that we should warn about (if we actually use it).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned IncompatibleObjC : 1;
|
|
|
|
/// ReferenceBinding - True when this is a reference binding
|
|
/// (C++ [over.ics.ref]).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned ReferenceBinding : 1;
|
|
|
|
/// DirectBinding - True when this is a reference binding that is a
|
|
/// direct binding (C++ [dcl.init.ref]).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned DirectBinding : 1;
|
|
|
|
/// Whether this is an lvalue reference binding (otherwise, it's
|
|
/// an rvalue reference binding).
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned IsLvalueReference : 1;
|
|
|
|
/// Whether we're binding to a function lvalue.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned BindsToFunctionLvalue : 1;
|
|
|
|
/// Whether we're binding to an rvalue.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned BindsToRvalue : 1;
|
|
|
|
/// Whether this binds an implicit object argument to a
|
|
/// non-static member function without a ref-qualifier.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
|
|
|
|
/// Whether this binds a reference to an object with a different
|
|
/// Objective-C lifetime qualifier.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned ObjCLifetimeConversionBinding : 1;
|
|
|
|
/// FromType - The type that this conversion is converting
|
|
/// from. This is an opaque pointer that can be translated into a
|
|
/// QualType.
|
|
void *FromTypePtr;
|
|
|
|
/// ToType - The types that this conversion is converting to in
|
|
/// each step. This is an opaque pointer that can be translated
|
|
/// into a QualType.
|
|
void *ToTypePtrs[3];
|
|
|
|
/// CopyConstructor - The copy constructor that is used to perform
|
|
/// this conversion, when the conversion is actually just the
|
|
/// initialization of an object via copy constructor. Such
|
|
/// conversions are either identity conversions or derived-to-base
|
|
/// conversions.
|
|
CXXConstructorDecl *CopyConstructor;
|
|
DeclAccessPair FoundCopyConstructor;
|
|
|
|
void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
|
|
|
|
void setToType(unsigned Idx, QualType T) {
|
|
assert(Idx < 3 && "To type index is out of range");
|
|
ToTypePtrs[Idx] = T.getAsOpaquePtr();
|
|
}
|
|
|
|
void setAllToTypes(QualType T) {
|
|
ToTypePtrs[0] = T.getAsOpaquePtr();
|
|
ToTypePtrs[1] = ToTypePtrs[0];
|
|
ToTypePtrs[2] = ToTypePtrs[0];
|
|
}
|
|
|
|
QualType getFromType() const {
|
|
return QualType::getFromOpaquePtr(FromTypePtr);
|
|
}
|
|
|
|
QualType getToType(unsigned Idx) const {
|
|
assert(Idx < 3 && "To type index is out of range");
|
|
return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
|
|
}
|
|
|
|
void setAsIdentityConversion();
|
|
|
|
bool isIdentityConversion() const {
|
|
return Second == ICK_Identity && Dimension == ICK_Identity &&
|
|
Third == ICK_Identity;
|
|
}
|
|
|
|
ImplicitConversionRank getRank() const;
|
|
NarrowingKind
|
|
getNarrowingKind(ASTContext &Context, const Expr *Converted,
|
|
APValue &ConstantValue, QualType &ConstantType,
|
|
bool IgnoreFloatToIntegralConversion = false) const;
|
|
bool isPointerConversionToBool() const;
|
|
bool isPointerConversionToVoidPointer(ASTContext& Context) const;
|
|
void dump() const;
|
|
};
|
|
|
|
/// UserDefinedConversionSequence - Represents a user-defined
|
|
/// conversion sequence (C++ 13.3.3.1.2).
|
|
struct UserDefinedConversionSequence {
|
|
/// Represents the standard conversion that occurs before
|
|
/// the actual user-defined conversion.
|
|
///
|
|
/// C++11 13.3.3.1.2p1:
|
|
/// If the user-defined conversion is specified by a constructor
|
|
/// (12.3.1), the initial standard conversion sequence converts
|
|
/// the source type to the type required by the argument of the
|
|
/// constructor. If the user-defined conversion is specified by
|
|
/// a conversion function (12.3.2), the initial standard
|
|
/// conversion sequence converts the source type to the implicit
|
|
/// object parameter of the conversion function.
|
|
StandardConversionSequence Before;
|
|
|
|
/// EllipsisConversion - When this is true, it means user-defined
|
|
/// conversion sequence starts with a ... (ellipsis) conversion, instead of
|
|
/// a standard conversion. In this case, 'Before' field must be ignored.
|
|
// FIXME. I much rather put this as the first field. But there seems to be
|
|
// a gcc code gen. bug which causes a crash in a test. Putting it here seems
|
|
// to work around the crash.
|
|
bool EllipsisConversion : 1;
|
|
|
|
/// HadMultipleCandidates - When this is true, it means that the
|
|
/// conversion function was resolved from an overloaded set having
|
|
/// size greater than 1.
|
|
bool HadMultipleCandidates : 1;
|
|
|
|
/// After - Represents the standard conversion that occurs after
|
|
/// the actual user-defined conversion.
|
|
StandardConversionSequence After;
|
|
|
|
/// ConversionFunction - The function that will perform the
|
|
/// user-defined conversion. Null if the conversion is an
|
|
/// aggregate initialization from an initializer list.
|
|
FunctionDecl* ConversionFunction;
|
|
|
|
/// The declaration that we found via name lookup, which might be
|
|
/// the same as \c ConversionFunction or it might be a using declaration
|
|
/// that refers to \c ConversionFunction.
|
|
DeclAccessPair FoundConversionFunction;
|
|
|
|
void dump() const;
|
|
};
|
|
|
|
/// Represents an ambiguous user-defined conversion sequence.
|
|
struct AmbiguousConversionSequence {
|
|
using ConversionSet =
|
|
SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
|
|
|
|
void *FromTypePtr;
|
|
void *ToTypePtr;
|
|
char Buffer[sizeof(ConversionSet)];
|
|
|
|
QualType getFromType() const {
|
|
return QualType::getFromOpaquePtr(FromTypePtr);
|
|
}
|
|
|
|
QualType getToType() const {
|
|
return QualType::getFromOpaquePtr(ToTypePtr);
|
|
}
|
|
|
|
void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
|
|
void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
|
|
|
|
ConversionSet &conversions() {
|
|
return *reinterpret_cast<ConversionSet*>(Buffer);
|
|
}
|
|
|
|
const ConversionSet &conversions() const {
|
|
return *reinterpret_cast<const ConversionSet*>(Buffer);
|
|
}
|
|
|
|
void addConversion(NamedDecl *Found, FunctionDecl *D) {
|
|
conversions().push_back(std::make_pair(Found, D));
|
|
}
|
|
|
|
using iterator = ConversionSet::iterator;
|
|
|
|
iterator begin() { return conversions().begin(); }
|
|
iterator end() { return conversions().end(); }
|
|
|
|
using const_iterator = ConversionSet::const_iterator;
|
|
|
|
const_iterator begin() const { return conversions().begin(); }
|
|
const_iterator end() const { return conversions().end(); }
|
|
|
|
void construct();
|
|
void destruct();
|
|
void copyFrom(const AmbiguousConversionSequence &);
|
|
};
|
|
|
|
/// BadConversionSequence - Records information about an invalid
|
|
/// conversion sequence.
|
|
struct BadConversionSequence {
|
|
enum FailureKind {
|
|
no_conversion,
|
|
unrelated_class,
|
|
bad_qualifiers,
|
|
lvalue_ref_to_rvalue,
|
|
rvalue_ref_to_lvalue,
|
|
too_few_initializers,
|
|
too_many_initializers,
|
|
};
|
|
|
|
// This can be null, e.g. for implicit object arguments.
|
|
Expr *FromExpr;
|
|
|
|
FailureKind Kind;
|
|
|
|
private:
|
|
// The type we're converting from (an opaque QualType).
|
|
void *FromTy;
|
|
|
|
// The type we're converting to (an opaque QualType).
|
|
void *ToTy;
|
|
|
|
public:
|
|
void init(FailureKind K, Expr *From, QualType To) {
|
|
init(K, From->getType(), To);
|
|
FromExpr = From;
|
|
}
|
|
|
|
void init(FailureKind K, QualType From, QualType To) {
|
|
Kind = K;
|
|
FromExpr = nullptr;
|
|
setFromType(From);
|
|
setToType(To);
|
|
}
|
|
|
|
QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
|
|
QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
|
|
|
|
void setFromExpr(Expr *E) {
|
|
FromExpr = E;
|
|
setFromType(E->getType());
|
|
}
|
|
|
|
void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
|
|
void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
|
|
};
|
|
|
|
/// ImplicitConversionSequence - Represents an implicit conversion
|
|
/// sequence, which may be a standard conversion sequence
|
|
/// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
|
|
/// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
|
|
class ImplicitConversionSequence {
|
|
public:
|
|
/// Kind - The kind of implicit conversion sequence. BadConversion
|
|
/// specifies that there is no conversion from the source type to
|
|
/// the target type. AmbiguousConversion represents the unique
|
|
/// ambiguous conversion (C++0x [over.best.ics]p10).
|
|
/// StaticObjectArgumentConversion represents the conversion rules for
|
|
/// the synthesized first argument of calls to static member functions
|
|
/// ([over.best.ics.general]p8).
|
|
enum Kind {
|
|
StandardConversion = 0,
|
|
StaticObjectArgumentConversion,
|
|
UserDefinedConversion,
|
|
AmbiguousConversion,
|
|
EllipsisConversion,
|
|
BadConversion
|
|
};
|
|
|
|
private:
|
|
enum {
|
|
Uninitialized = BadConversion + 1
|
|
};
|
|
|
|
/// ConversionKind - The kind of implicit conversion sequence.
|
|
LLVM_PREFERRED_TYPE(Kind)
|
|
unsigned ConversionKind : 31;
|
|
|
|
// Whether the initializer list was of an incomplete array.
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned InitializerListOfIncompleteArray : 1;
|
|
|
|
/// When initializing an array or std::initializer_list from an
|
|
/// initializer-list, this is the array or std::initializer_list type being
|
|
/// initialized. The remainder of the conversion sequence, including ToType,
|
|
/// describe the worst conversion of an initializer to an element of the
|
|
/// array or std::initializer_list. (Note, 'worst' is not well defined.)
|
|
QualType InitializerListContainerType;
|
|
|
|
void setKind(Kind K) {
|
|
destruct();
|
|
ConversionKind = K;
|
|
}
|
|
|
|
void destruct() {
|
|
if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
|
|
}
|
|
|
|
public:
|
|
union {
|
|
/// When ConversionKind == StandardConversion, provides the
|
|
/// details of the standard conversion sequence.
|
|
StandardConversionSequence Standard;
|
|
|
|
/// When ConversionKind == UserDefinedConversion, provides the
|
|
/// details of the user-defined conversion sequence.
|
|
UserDefinedConversionSequence UserDefined;
|
|
|
|
/// When ConversionKind == AmbiguousConversion, provides the
|
|
/// details of the ambiguous conversion.
|
|
AmbiguousConversionSequence Ambiguous;
|
|
|
|
/// When ConversionKind == BadConversion, provides the details
|
|
/// of the bad conversion.
|
|
BadConversionSequence Bad;
|
|
};
|
|
|
|
ImplicitConversionSequence()
|
|
: ConversionKind(Uninitialized),
|
|
InitializerListOfIncompleteArray(false) {
|
|
Standard.setAsIdentityConversion();
|
|
}
|
|
|
|
ImplicitConversionSequence(const ImplicitConversionSequence &Other)
|
|
: ConversionKind(Other.ConversionKind),
|
|
InitializerListOfIncompleteArray(
|
|
Other.InitializerListOfIncompleteArray),
|
|
InitializerListContainerType(Other.InitializerListContainerType) {
|
|
switch (ConversionKind) {
|
|
case Uninitialized: break;
|
|
case StandardConversion: Standard = Other.Standard; break;
|
|
case StaticObjectArgumentConversion:
|
|
break;
|
|
case UserDefinedConversion: UserDefined = Other.UserDefined; break;
|
|
case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
|
|
case EllipsisConversion: break;
|
|
case BadConversion: Bad = Other.Bad; break;
|
|
}
|
|
}
|
|
|
|
ImplicitConversionSequence &
|
|
operator=(const ImplicitConversionSequence &Other) {
|
|
destruct();
|
|
new (this) ImplicitConversionSequence(Other);
|
|
return *this;
|
|
}
|
|
|
|
~ImplicitConversionSequence() {
|
|
destruct();
|
|
}
|
|
|
|
Kind getKind() const {
|
|
assert(isInitialized() && "querying uninitialized conversion");
|
|
return Kind(ConversionKind);
|
|
}
|
|
|
|
/// Return a ranking of the implicit conversion sequence
|
|
/// kind, where smaller ranks represent better conversion
|
|
/// sequences.
|
|
///
|
|
/// In particular, this routine gives user-defined conversion
|
|
/// sequences and ambiguous conversion sequences the same rank,
|
|
/// per C++ [over.best.ics]p10.
|
|
unsigned getKindRank() const {
|
|
switch (getKind()) {
|
|
case StandardConversion:
|
|
case StaticObjectArgumentConversion:
|
|
return 0;
|
|
|
|
case UserDefinedConversion:
|
|
case AmbiguousConversion:
|
|
return 1;
|
|
|
|
case EllipsisConversion:
|
|
return 2;
|
|
|
|
case BadConversion:
|
|
return 3;
|
|
}
|
|
|
|
llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
|
|
}
|
|
|
|
bool isBad() const { return getKind() == BadConversion; }
|
|
bool isStandard() const { return getKind() == StandardConversion; }
|
|
bool isStaticObjectArgument() const {
|
|
return getKind() == StaticObjectArgumentConversion;
|
|
}
|
|
bool isEllipsis() const { return getKind() == EllipsisConversion; }
|
|
bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
|
|
bool isUserDefined() const { return getKind() == UserDefinedConversion; }
|
|
bool isFailure() const { return isBad() || isAmbiguous(); }
|
|
|
|
/// Determines whether this conversion sequence has been
|
|
/// initialized. Most operations should never need to query
|
|
/// uninitialized conversions and should assert as above.
|
|
bool isInitialized() const { return ConversionKind != Uninitialized; }
|
|
|
|
/// Sets this sequence as a bad conversion for an explicit argument.
|
|
void setBad(BadConversionSequence::FailureKind Failure,
|
|
Expr *FromExpr, QualType ToType) {
|
|
setKind(BadConversion);
|
|
Bad.init(Failure, FromExpr, ToType);
|
|
}
|
|
|
|
/// Sets this sequence as a bad conversion for an implicit argument.
|
|
void setBad(BadConversionSequence::FailureKind Failure,
|
|
QualType FromType, QualType ToType) {
|
|
setKind(BadConversion);
|
|
Bad.init(Failure, FromType, ToType);
|
|
}
|
|
|
|
void setStandard() { setKind(StandardConversion); }
|
|
void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); }
|
|
void setEllipsis() { setKind(EllipsisConversion); }
|
|
void setUserDefined() { setKind(UserDefinedConversion); }
|
|
|
|
void setAmbiguous() {
|
|
if (ConversionKind == AmbiguousConversion) return;
|
|
ConversionKind = AmbiguousConversion;
|
|
Ambiguous.construct();
|
|
}
|
|
|
|
void setAsIdentityConversion(QualType T) {
|
|
setStandard();
|
|
Standard.setAsIdentityConversion();
|
|
Standard.setFromType(T);
|
|
Standard.setAllToTypes(T);
|
|
}
|
|
|
|
// True iff this is a conversion sequence from an initializer list to an
|
|
// array or std::initializer.
|
|
bool hasInitializerListContainerType() const {
|
|
return !InitializerListContainerType.isNull();
|
|
}
|
|
void setInitializerListContainerType(QualType T, bool IA) {
|
|
InitializerListContainerType = T;
|
|
InitializerListOfIncompleteArray = IA;
|
|
}
|
|
bool isInitializerListOfIncompleteArray() const {
|
|
return InitializerListOfIncompleteArray;
|
|
}
|
|
QualType getInitializerListContainerType() const {
|
|
assert(hasInitializerListContainerType() &&
|
|
"not initializer list container");
|
|
return InitializerListContainerType;
|
|
}
|
|
|
|
/// Form an "implicit" conversion sequence from nullptr_t to bool, for a
|
|
/// direct-initialization of a bool object from nullptr_t.
|
|
static ImplicitConversionSequence getNullptrToBool(QualType SourceType,
|
|
QualType DestType,
|
|
bool NeedLValToRVal) {
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(SourceType);
|
|
if (NeedLValToRVal)
|
|
ICS.Standard.First = ICK_Lvalue_To_Rvalue;
|
|
ICS.Standard.setToType(0, SourceType);
|
|
ICS.Standard.Second = ICK_Boolean_Conversion;
|
|
ICS.Standard.setToType(1, DestType);
|
|
ICS.Standard.setToType(2, DestType);
|
|
return ICS;
|
|
}
|
|
|
|
// The result of a comparison between implicit conversion
|
|
// sequences. Use Sema::CompareImplicitConversionSequences to
|
|
// actually perform the comparison.
|
|
enum CompareKind {
|
|
Better = -1,
|
|
Indistinguishable = 0,
|
|
Worse = 1
|
|
};
|
|
|
|
void DiagnoseAmbiguousConversion(Sema &S,
|
|
SourceLocation CaretLoc,
|
|
const PartialDiagnostic &PDiag) const;
|
|
|
|
void dump() const;
|
|
};
|
|
|
|
enum OverloadFailureKind {
|
|
ovl_fail_too_many_arguments,
|
|
ovl_fail_too_few_arguments,
|
|
ovl_fail_bad_conversion,
|
|
ovl_fail_bad_deduction,
|
|
|
|
/// This conversion candidate was not considered because it
|
|
/// duplicates the work of a trivial or derived-to-base
|
|
/// conversion.
|
|
ovl_fail_trivial_conversion,
|
|
|
|
/// This conversion candidate was not considered because it is
|
|
/// an illegal instantiation of a constructor temploid: it is
|
|
/// callable with one argument, we only have one argument, and
|
|
/// its first parameter type is exactly the type of the class.
|
|
///
|
|
/// Defining such a constructor directly is illegal, and
|
|
/// template-argument deduction is supposed to ignore such
|
|
/// instantiations, but we can still get one with the right
|
|
/// kind of implicit instantiation.
|
|
ovl_fail_illegal_constructor,
|
|
|
|
/// This conversion candidate is not viable because its result
|
|
/// type is not implicitly convertible to the desired type.
|
|
ovl_fail_bad_final_conversion,
|
|
|
|
/// This conversion function template specialization candidate is not
|
|
/// viable because the final conversion was not an exact match.
|
|
ovl_fail_final_conversion_not_exact,
|
|
|
|
/// (CUDA) This candidate was not viable because the callee
|
|
/// was not accessible from the caller's target (i.e. host->device,
|
|
/// global->host, device->host).
|
|
ovl_fail_bad_target,
|
|
|
|
/// This candidate function was not viable because an enable_if
|
|
/// attribute disabled it.
|
|
ovl_fail_enable_if,
|
|
|
|
/// This candidate constructor or conversion function is explicit but
|
|
/// the context doesn't permit explicit functions.
|
|
ovl_fail_explicit,
|
|
|
|
/// This candidate was not viable because its address could not be taken.
|
|
ovl_fail_addr_not_available,
|
|
|
|
/// This inherited constructor is not viable because it would slice the
|
|
/// argument.
|
|
ovl_fail_inhctor_slice,
|
|
|
|
/// This candidate was not viable because it is a non-default multiversioned
|
|
/// function.
|
|
ovl_non_default_multiversion_function,
|
|
|
|
/// This constructor/conversion candidate fail due to an address space
|
|
/// mismatch between the object being constructed and the overload
|
|
/// candidate.
|
|
ovl_fail_object_addrspace_mismatch,
|
|
|
|
/// This candidate was not viable because its associated constraints were
|
|
/// not satisfied.
|
|
ovl_fail_constraints_not_satisfied,
|
|
|
|
/// This candidate was not viable because it has internal linkage and is
|
|
/// from a different module unit than the use.
|
|
ovl_fail_module_mismatched,
|
|
};
|
|
|
|
/// A list of implicit conversion sequences for the arguments of an
|
|
/// OverloadCandidate.
|
|
using ConversionSequenceList =
|
|
llvm::MutableArrayRef<ImplicitConversionSequence>;
|
|
|
|
/// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
|
|
struct OverloadCandidate {
|
|
/// Function - The actual function that this candidate
|
|
/// represents. When NULL, this is a built-in candidate
|
|
/// (C++ [over.oper]) or a surrogate for a conversion to a
|
|
/// function pointer or reference (C++ [over.call.object]).
|
|
FunctionDecl *Function;
|
|
|
|
/// FoundDecl - The original declaration that was looked up /
|
|
/// invented / otherwise found, together with its access.
|
|
/// Might be a UsingShadowDecl or a FunctionTemplateDecl.
|
|
DeclAccessPair FoundDecl;
|
|
|
|
/// BuiltinParamTypes - Provides the parameter types of a built-in overload
|
|
/// candidate. Only valid when Function is NULL.
|
|
QualType BuiltinParamTypes[3];
|
|
|
|
/// Surrogate - The conversion function for which this candidate
|
|
/// is a surrogate, but only if IsSurrogate is true.
|
|
CXXConversionDecl *Surrogate;
|
|
|
|
/// The conversion sequences used to convert the function arguments
|
|
/// to the function parameters. Note that these are indexed by argument,
|
|
/// so may not match the parameter order of Function.
|
|
ConversionSequenceList Conversions;
|
|
|
|
/// The FixIt hints which can be used to fix the Bad candidate.
|
|
ConversionFixItGenerator Fix;
|
|
|
|
/// Viable - True to indicate that this overload candidate is viable.
|
|
bool Viable : 1;
|
|
|
|
/// Whether this candidate is the best viable function, or tied for being
|
|
/// the best viable function.
|
|
///
|
|
/// For an ambiguous overload resolution, indicates whether this candidate
|
|
/// was part of the ambiguity kernel: the minimal non-empty set of viable
|
|
/// candidates such that all elements of the ambiguity kernel are better
|
|
/// than all viable candidates not in the ambiguity kernel.
|
|
bool Best : 1;
|
|
|
|
/// IsSurrogate - True to indicate that this candidate is a
|
|
/// surrogate for a conversion to a function pointer or reference
|
|
/// (C++ [over.call.object]).
|
|
bool IsSurrogate : 1;
|
|
|
|
/// IgnoreObjectArgument - True to indicate that the first
|
|
/// argument's conversion, which for this function represents the
|
|
/// implicit object argument, should be ignored. This will be true
|
|
/// when the candidate is a static member function (where the
|
|
/// implicit object argument is just a placeholder) or a
|
|
/// non-static member function when the call doesn't have an
|
|
/// object argument.
|
|
bool IgnoreObjectArgument : 1;
|
|
|
|
bool TookAddressOfOverload : 1;
|
|
|
|
/// True if the candidate was found using ADL.
|
|
CallExpr::ADLCallKind IsADLCandidate : 1;
|
|
|
|
/// Whether this is a rewritten candidate, and if so, of what kind?
|
|
LLVM_PREFERRED_TYPE(OverloadCandidateRewriteKind)
|
|
unsigned RewriteKind : 2;
|
|
|
|
/// FailureKind - The reason why this candidate is not viable.
|
|
/// Actually an OverloadFailureKind.
|
|
unsigned char FailureKind;
|
|
|
|
/// The number of call arguments that were explicitly provided,
|
|
/// to be used while performing partial ordering of function templates.
|
|
unsigned ExplicitCallArguments;
|
|
|
|
union {
|
|
DeductionFailureInfo DeductionFailure;
|
|
|
|
/// FinalConversion - For a conversion function (where Function is
|
|
/// a CXXConversionDecl), the standard conversion that occurs
|
|
/// after the call to the overload candidate to convert the result
|
|
/// of calling the conversion function to the required type.
|
|
StandardConversionSequence FinalConversion;
|
|
};
|
|
|
|
/// Get RewriteKind value in OverloadCandidateRewriteKind type (This
|
|
/// function is to workaround the spurious GCC bitfield enum warning)
|
|
OverloadCandidateRewriteKind getRewriteKind() const {
|
|
return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
|
|
}
|
|
|
|
bool isReversed() const { return getRewriteKind() & CRK_Reversed; }
|
|
|
|
/// hasAmbiguousConversion - Returns whether this overload
|
|
/// candidate requires an ambiguous conversion or not.
|
|
bool hasAmbiguousConversion() const {
|
|
for (auto &C : Conversions) {
|
|
if (!C.isInitialized()) return false;
|
|
if (C.isAmbiguous()) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TryToFixBadConversion(unsigned Idx, Sema &S) {
|
|
bool CanFix = Fix.tryToFixConversion(
|
|
Conversions[Idx].Bad.FromExpr,
|
|
Conversions[Idx].Bad.getFromType(),
|
|
Conversions[Idx].Bad.getToType(), S);
|
|
|
|
// If at least one conversion fails, the candidate cannot be fixed.
|
|
if (!CanFix)
|
|
Fix.clear();
|
|
|
|
return CanFix;
|
|
}
|
|
|
|
unsigned getNumParams() const {
|
|
if (IsSurrogate) {
|
|
QualType STy = Surrogate->getConversionType();
|
|
while (STy->isPointerOrReferenceType())
|
|
STy = STy->getPointeeType();
|
|
return STy->castAs<FunctionProtoType>()->getNumParams();
|
|
}
|
|
if (Function)
|
|
return Function->getNumParams();
|
|
return ExplicitCallArguments;
|
|
}
|
|
|
|
bool NotValidBecauseConstraintExprHasError() const;
|
|
|
|
private:
|
|
friend class OverloadCandidateSet;
|
|
OverloadCandidate()
|
|
: IsSurrogate(false), IgnoreObjectArgument(false),
|
|
TookAddressOfOverload(false), IsADLCandidate(CallExpr::NotADL),
|
|
RewriteKind(CRK_None) {}
|
|
};
|
|
|
|
/// OverloadCandidateSet - A set of overload candidates, used in C++
|
|
/// overload resolution (C++ 13.3).
|
|
class OverloadCandidateSet {
|
|
public:
|
|
enum CandidateSetKind {
|
|
/// Normal lookup.
|
|
CSK_Normal,
|
|
|
|
/// C++ [over.match.oper]:
|
|
/// Lookup of operator function candidates in a call using operator
|
|
/// syntax. Candidates that have no parameters of class type will be
|
|
/// skipped unless there is a parameter of (reference to) enum type and
|
|
/// the corresponding argument is of the same enum type.
|
|
CSK_Operator,
|
|
|
|
/// C++ [over.match.copy]:
|
|
/// Copy-initialization of an object of class type by user-defined
|
|
/// conversion.
|
|
CSK_InitByUserDefinedConversion,
|
|
|
|
/// C++ [over.match.ctor], [over.match.list]
|
|
/// Initialization of an object of class type by constructor,
|
|
/// using either a parenthesized or braced list of arguments.
|
|
CSK_InitByConstructor,
|
|
|
|
/// C++ [over.match.call.general]
|
|
/// Resolve a call through the address of an overload set.
|
|
CSK_AddressOfOverloadSet,
|
|
};
|
|
|
|
/// Information about operator rewrites to consider when adding operator
|
|
/// functions to a candidate set.
|
|
struct OperatorRewriteInfo {
|
|
OperatorRewriteInfo()
|
|
: OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {}
|
|
OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc,
|
|
bool AllowRewritten)
|
|
: OriginalOperator(Op), OpLoc(OpLoc),
|
|
AllowRewrittenCandidates(AllowRewritten) {}
|
|
|
|
/// The original operator as written in the source.
|
|
OverloadedOperatorKind OriginalOperator;
|
|
/// The source location of the operator.
|
|
SourceLocation OpLoc;
|
|
/// Whether we should include rewritten candidates in the overload set.
|
|
bool AllowRewrittenCandidates;
|
|
|
|
/// Would use of this function result in a rewrite using a different
|
|
/// operator?
|
|
bool isRewrittenOperator(const FunctionDecl *FD) {
|
|
return OriginalOperator &&
|
|
FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
|
|
}
|
|
|
|
bool isAcceptableCandidate(const FunctionDecl *FD) {
|
|
if (!OriginalOperator)
|
|
return true;
|
|
|
|
// For an overloaded operator, we can have candidates with a different
|
|
// name in our unqualified lookup set. Make sure we only consider the
|
|
// ones we're supposed to.
|
|
OverloadedOperatorKind OO =
|
|
FD->getDeclName().getCXXOverloadedOperator();
|
|
return OO && (OO == OriginalOperator ||
|
|
(AllowRewrittenCandidates &&
|
|
OO == getRewrittenOverloadedOperator(OriginalOperator)));
|
|
}
|
|
|
|
/// Determine the kind of rewrite that should be performed for this
|
|
/// candidate.
|
|
OverloadCandidateRewriteKind
|
|
getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
|
|
OverloadCandidateRewriteKind CRK = CRK_None;
|
|
if (isRewrittenOperator(FD))
|
|
CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
|
|
if (PO == OverloadCandidateParamOrder::Reversed)
|
|
CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
|
|
return CRK;
|
|
}
|
|
/// Determines whether this operator could be implemented by a function
|
|
/// with reversed parameter order.
|
|
bool isReversible() {
|
|
return AllowRewrittenCandidates && OriginalOperator &&
|
|
(getRewrittenOverloadedOperator(OriginalOperator) != OO_None ||
|
|
allowsReversed(OriginalOperator));
|
|
}
|
|
|
|
/// Determine whether reversing parameter order is allowed for operator
|
|
/// Op.
|
|
bool allowsReversed(OverloadedOperatorKind Op);
|
|
|
|
/// Determine whether we should add a rewritten candidate for \p FD with
|
|
/// reversed parameter order.
|
|
/// \param OriginalArgs are the original non reversed arguments.
|
|
bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs,
|
|
FunctionDecl *FD);
|
|
};
|
|
|
|
private:
|
|
SmallVector<OverloadCandidate, 16> Candidates;
|
|
llvm::SmallPtrSet<uintptr_t, 16> Functions;
|
|
|
|
// Allocator for ConversionSequenceLists. We store the first few of these
|
|
// inline to avoid allocation for small sets.
|
|
llvm::BumpPtrAllocator SlabAllocator;
|
|
|
|
SourceLocation Loc;
|
|
CandidateSetKind Kind;
|
|
OperatorRewriteInfo RewriteInfo;
|
|
|
|
constexpr static unsigned NumInlineBytes =
|
|
24 * sizeof(ImplicitConversionSequence);
|
|
unsigned NumInlineBytesUsed = 0;
|
|
alignas(void *) char InlineSpace[NumInlineBytes];
|
|
|
|
// Address space of the object being constructed.
|
|
LangAS DestAS = LangAS::Default;
|
|
|
|
/// If we have space, allocates from inline storage. Otherwise, allocates
|
|
/// from the slab allocator.
|
|
/// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
|
|
/// instead.
|
|
/// FIXME: Now that this only allocates ImplicitConversionSequences, do we
|
|
/// want to un-generalize this?
|
|
template <typename T>
|
|
T *slabAllocate(unsigned N) {
|
|
// It's simpler if this doesn't need to consider alignment.
|
|
static_assert(alignof(T) == alignof(void *),
|
|
"Only works for pointer-aligned types.");
|
|
static_assert(std::is_trivial<T>::value ||
|
|
std::is_same<ImplicitConversionSequence, T>::value,
|
|
"Add destruction logic to OverloadCandidateSet::clear().");
|
|
|
|
unsigned NBytes = sizeof(T) * N;
|
|
if (NBytes > NumInlineBytes - NumInlineBytesUsed)
|
|
return SlabAllocator.Allocate<T>(N);
|
|
char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
|
|
assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
|
|
"Misaligned storage!");
|
|
|
|
NumInlineBytesUsed += NBytes;
|
|
return reinterpret_cast<T *>(FreeSpaceStart);
|
|
}
|
|
|
|
void destroyCandidates();
|
|
|
|
public:
|
|
OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
|
|
OperatorRewriteInfo RewriteInfo = {})
|
|
: Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
|
|
OverloadCandidateSet(const OverloadCandidateSet &) = delete;
|
|
OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
|
|
~OverloadCandidateSet() { destroyCandidates(); }
|
|
|
|
SourceLocation getLocation() const { return Loc; }
|
|
CandidateSetKind getKind() const { return Kind; }
|
|
OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
|
|
|
|
/// Whether diagnostics should be deferred.
|
|
bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc);
|
|
|
|
/// Determine when this overload candidate will be new to the
|
|
/// overload set.
|
|
bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
|
|
OverloadCandidateParamOrder::Normal) {
|
|
uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
|
|
Key |= static_cast<uintptr_t>(PO);
|
|
return Functions.insert(Key).second;
|
|
}
|
|
|
|
/// Exclude a function from being considered by overload resolution.
|
|
void exclude(Decl *F) {
|
|
isNewCandidate(F, OverloadCandidateParamOrder::Normal);
|
|
isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
|
|
}
|
|
|
|
/// Clear out all of the candidates.
|
|
void clear(CandidateSetKind CSK);
|
|
|
|
using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
|
|
|
|
iterator begin() { return Candidates.begin(); }
|
|
iterator end() { return Candidates.end(); }
|
|
|
|
size_t size() const { return Candidates.size(); }
|
|
bool empty() const { return Candidates.empty(); }
|
|
|
|
/// Allocate storage for conversion sequences for NumConversions
|
|
/// conversions.
|
|
ConversionSequenceList
|
|
allocateConversionSequences(unsigned NumConversions) {
|
|
ImplicitConversionSequence *Conversions =
|
|
slabAllocate<ImplicitConversionSequence>(NumConversions);
|
|
|
|
// Construct the new objects.
|
|
for (unsigned I = 0; I != NumConversions; ++I)
|
|
new (&Conversions[I]) ImplicitConversionSequence();
|
|
|
|
return ConversionSequenceList(Conversions, NumConversions);
|
|
}
|
|
|
|
/// Add a new candidate with NumConversions conversion sequence slots
|
|
/// to the overload set.
|
|
OverloadCandidate &
|
|
addCandidate(unsigned NumConversions = 0,
|
|
ConversionSequenceList Conversions = std::nullopt) {
|
|
assert((Conversions.empty() || Conversions.size() == NumConversions) &&
|
|
"preallocated conversion sequence has wrong length");
|
|
|
|
Candidates.push_back(OverloadCandidate());
|
|
OverloadCandidate &C = Candidates.back();
|
|
C.Conversions = Conversions.empty()
|
|
? allocateConversionSequences(NumConversions)
|
|
: Conversions;
|
|
return C;
|
|
}
|
|
|
|
/// Find the best viable function on this overload set, if it exists.
|
|
OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
|
|
OverloadCandidateSet::iterator& Best);
|
|
|
|
SmallVector<OverloadCandidate *, 32> CompleteCandidates(
|
|
Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
|
|
SourceLocation OpLoc = SourceLocation(),
|
|
llvm::function_ref<bool(OverloadCandidate &)> Filter =
|
|
[](OverloadCandidate &) { return true; });
|
|
|
|
void NoteCandidates(
|
|
PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
|
|
ArrayRef<Expr *> Args, StringRef Opc = "",
|
|
SourceLocation Loc = SourceLocation(),
|
|
llvm::function_ref<bool(OverloadCandidate &)> Filter =
|
|
[](OverloadCandidate &) { return true; });
|
|
|
|
void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
|
|
ArrayRef<OverloadCandidate *> Cands,
|
|
StringRef Opc = "",
|
|
SourceLocation OpLoc = SourceLocation());
|
|
|
|
LangAS getDestAS() { return DestAS; }
|
|
|
|
void setDestAS(LangAS AS) {
|
|
assert((Kind == CSK_InitByConstructor ||
|
|
Kind == CSK_InitByUserDefinedConversion) &&
|
|
"can't set the destination address space when not constructing an "
|
|
"object");
|
|
DestAS = AS;
|
|
}
|
|
|
|
};
|
|
|
|
bool isBetterOverloadCandidate(Sema &S,
|
|
const OverloadCandidate &Cand1,
|
|
const OverloadCandidate &Cand2,
|
|
SourceLocation Loc,
|
|
OverloadCandidateSet::CandidateSetKind Kind);
|
|
|
|
struct ConstructorInfo {
|
|
DeclAccessPair FoundDecl;
|
|
CXXConstructorDecl *Constructor;
|
|
FunctionTemplateDecl *ConstructorTmpl;
|
|
|
|
explicit operator bool() const { return Constructor; }
|
|
};
|
|
|
|
// FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
|
|
// that takes one of these.
|
|
inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
|
|
if (isa<UsingDecl>(ND))
|
|
return ConstructorInfo{};
|
|
|
|
// For constructors, the access check is performed against the underlying
|
|
// declaration, not the found declaration.
|
|
auto *D = ND->getUnderlyingDecl();
|
|
ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
|
|
nullptr};
|
|
Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
if (Info.ConstructorTmpl)
|
|
D = Info.ConstructorTmpl->getTemplatedDecl();
|
|
Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
|
|
return Info;
|
|
}
|
|
|
|
// Returns false if signature help is relevant despite number of arguments
|
|
// exceeding parameters. Specifically, it returns false when
|
|
// PartialOverloading is true and one of the following:
|
|
// * Function is variadic
|
|
// * Function is template variadic
|
|
// * Function is an instantiation of template variadic function
|
|
// The last case may seem strange. The idea is that if we added one more
|
|
// argument, we'd end up with a function similar to Function. Since, in the
|
|
// context of signature help and/or code completion, we do not know what the
|
|
// type of the next argument (that the user is typing) will be, this is as
|
|
// good candidate as we can get, despite the fact that it takes one less
|
|
// parameter.
|
|
bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function);
|
|
|
|
} // namespace clang
|
|
|
|
#endif // LLVM_CLANG_SEMA_OVERLOAD_H
|