clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1160 lines
43 KiB
C++
1160 lines
43 KiB
C++
////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file provides the interface for the sampled PGO profile loader base
|
|
/// implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
|
|
#define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/IntrusiveRefCntPtr.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PseudoProbe.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/ProfileData/SampleProfReader.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/SampleProfileInference.h"
|
|
#include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
|
|
|
|
namespace llvm {
|
|
using namespace sampleprof;
|
|
using namespace sampleprofutil;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
namespace vfs {
|
|
class FileSystem;
|
|
} // namespace vfs
|
|
|
|
#define DEBUG_TYPE "sample-profile-impl"
|
|
|
|
namespace afdo_detail {
|
|
|
|
template <typename BlockT> struct IRTraits;
|
|
template <> struct IRTraits<BasicBlock> {
|
|
using InstructionT = Instruction;
|
|
using BasicBlockT = BasicBlock;
|
|
using FunctionT = Function;
|
|
using BlockFrequencyInfoT = BlockFrequencyInfo;
|
|
using LoopT = Loop;
|
|
using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
|
|
using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
|
|
using PostDominatorTreeT = PostDominatorTree;
|
|
using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
|
|
using OptRemarkEmitterT = OptimizationRemarkEmitter;
|
|
using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
|
|
using PredRangeT = pred_range;
|
|
using SuccRangeT = succ_range;
|
|
static Function &getFunction(Function &F) { return F; }
|
|
static const BasicBlock *getEntryBB(const Function *F) {
|
|
return &F->getEntryBlock();
|
|
}
|
|
static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); }
|
|
static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
|
|
};
|
|
|
|
} // end namespace afdo_detail
|
|
|
|
// This class serves sample counts correlation for SampleProfileLoader by
|
|
// analyzing pseudo probes and their function descriptors injected by
|
|
// SampleProfileProber.
|
|
class PseudoProbeManager {
|
|
DenseMap<uint64_t, PseudoProbeDescriptor> GUIDToProbeDescMap;
|
|
|
|
public:
|
|
PseudoProbeManager(const Module &M) {
|
|
if (NamedMDNode *FuncInfo =
|
|
M.getNamedMetadata(PseudoProbeDescMetadataName)) {
|
|
for (const auto *Operand : FuncInfo->operands()) {
|
|
const auto *MD = cast<MDNode>(Operand);
|
|
auto GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))
|
|
->getZExtValue();
|
|
auto Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))
|
|
->getZExtValue();
|
|
GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
|
|
}
|
|
}
|
|
}
|
|
|
|
const PseudoProbeDescriptor *getDesc(uint64_t GUID) const {
|
|
auto I = GUIDToProbeDescMap.find(GUID);
|
|
return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
|
|
}
|
|
|
|
const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const {
|
|
return getDesc(Function::getGUID(FProfileName));
|
|
}
|
|
|
|
const PseudoProbeDescriptor *getDesc(const Function &F) const {
|
|
return getDesc(Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
|
|
}
|
|
|
|
bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc,
|
|
const FunctionSamples &Samples) const {
|
|
return FuncDesc.getFunctionHash() != Samples.getFunctionHash();
|
|
}
|
|
|
|
bool moduleIsProbed(const Module &M) const {
|
|
return M.getNamedMetadata(PseudoProbeDescMetadataName);
|
|
}
|
|
|
|
bool profileIsValid(const Function &F, const FunctionSamples &Samples) const {
|
|
const auto *Desc = getDesc(F);
|
|
bool IsAvailableExternallyLinkage =
|
|
GlobalValue::isAvailableExternallyLinkage(F.getLinkage());
|
|
// Always check the function attribute to determine checksum mismatch for
|
|
// `available_externally` functions even if their desc are available. This
|
|
// is because the desc is computed based on the original internal function
|
|
// and it's substituted by the `available_externally` function during link
|
|
// time. However, when unstable IR or ODR violation issue occurs, the
|
|
// definitions of the same function across different translation units could
|
|
// be different and result in different checksums. So we should use the
|
|
// state from the new (available_externally) function, which is saved in its
|
|
// attribute.
|
|
// TODO: If the function's profile only exists as nested inlinee profile in
|
|
// a different module, we don't have the attr mismatch state(unknown), we
|
|
// need to fix it later.
|
|
if (IsAvailableExternallyLinkage || !Desc)
|
|
return !F.hasFnAttribute("profile-checksum-mismatch");
|
|
|
|
return Desc && !profileIsHashMismatched(*Desc, Samples);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
extern cl::opt<bool> SampleProfileUseProfi;
|
|
|
|
static inline bool skipProfileForFunction(const Function &F) {
|
|
return F.isDeclaration() || !F.hasFnAttribute("use-sample-profile");
|
|
}
|
|
|
|
static inline void
|
|
buildTopDownFuncOrder(LazyCallGraph &CG,
|
|
std::vector<Function *> &FunctionOrderList) {
|
|
CG.buildRefSCCs();
|
|
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) {
|
|
for (LazyCallGraph::SCC &C : RC) {
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function &F = N.getFunction();
|
|
if (!skipProfileForFunction(F))
|
|
FunctionOrderList.push_back(&F);
|
|
}
|
|
}
|
|
}
|
|
std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
|
|
}
|
|
|
|
template <typename FT> class SampleProfileLoaderBaseImpl {
|
|
public:
|
|
SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName,
|
|
IntrusiveRefCntPtr<vfs::FileSystem> FS)
|
|
: Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {}
|
|
void dump() { Reader->dump(); }
|
|
|
|
using NodeRef = typename GraphTraits<FT *>::NodeRef;
|
|
using BT = std::remove_pointer_t<NodeRef>;
|
|
using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
|
|
using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
|
|
using BlockFrequencyInfoT =
|
|
typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
|
|
using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
|
|
using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
|
|
using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT;
|
|
using DominatorTreePtrT =
|
|
typename afdo_detail::IRTraits<BT>::DominatorTreePtrT;
|
|
using PostDominatorTreePtrT =
|
|
typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT;
|
|
using PostDominatorTreeT =
|
|
typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
|
|
using OptRemarkEmitterT =
|
|
typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
|
|
using OptRemarkAnalysisT =
|
|
typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
|
|
using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT;
|
|
using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT;
|
|
|
|
using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
|
|
using EquivalenceClassMap =
|
|
DenseMap<const BasicBlockT *, const BasicBlockT *>;
|
|
using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
|
|
using EdgeWeightMap = DenseMap<Edge, uint64_t>;
|
|
using BlockEdgeMap =
|
|
DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
|
|
|
|
protected:
|
|
~SampleProfileLoaderBaseImpl() = default;
|
|
friend class SampleCoverageTracker;
|
|
|
|
Function &getFunction(FunctionT &F) {
|
|
return afdo_detail::IRTraits<BT>::getFunction(F);
|
|
}
|
|
const BasicBlockT *getEntryBB(const FunctionT *F) {
|
|
return afdo_detail::IRTraits<BT>::getEntryBB(F);
|
|
}
|
|
PredRangeT getPredecessors(BasicBlockT *BB) {
|
|
return afdo_detail::IRTraits<BT>::getPredecessors(BB);
|
|
}
|
|
SuccRangeT getSuccessors(BasicBlockT *BB) {
|
|
return afdo_detail::IRTraits<BT>::getSuccessors(BB);
|
|
}
|
|
|
|
unsigned getFunctionLoc(FunctionT &Func);
|
|
virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
|
|
ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
|
|
virtual ErrorOr<uint64_t> getProbeWeight(const InstructionT &Inst);
|
|
ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
|
|
mutable DenseMap<const DILocation *, const FunctionSamples *>
|
|
DILocation2SampleMap;
|
|
virtual const FunctionSamples *
|
|
findFunctionSamples(const InstructionT &I) const;
|
|
void printEdgeWeight(raw_ostream &OS, Edge E);
|
|
void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
|
|
void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
|
|
bool computeBlockWeights(FunctionT &F);
|
|
void findEquivalenceClasses(FunctionT &F);
|
|
void findEquivalencesFor(BasicBlockT *BB1,
|
|
ArrayRef<BasicBlockT *> Descendants,
|
|
PostDominatorTreeT *DomTree);
|
|
void propagateWeights(FunctionT &F);
|
|
void applyProfi(FunctionT &F, BlockEdgeMap &Successors,
|
|
BlockWeightMap &SampleBlockWeights,
|
|
BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);
|
|
uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
|
|
void buildEdges(FunctionT &F);
|
|
bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
|
|
void clearFunctionData(bool ResetDT = true);
|
|
void computeDominanceAndLoopInfo(FunctionT &F);
|
|
bool
|
|
computeAndPropagateWeights(FunctionT &F,
|
|
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
|
void initWeightPropagation(FunctionT &F,
|
|
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
|
void
|
|
finalizeWeightPropagation(FunctionT &F,
|
|
const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
|
|
void emitCoverageRemarks(FunctionT &F);
|
|
|
|
/// Map basic blocks to their computed weights.
|
|
///
|
|
/// The weight of a basic block is defined to be the maximum
|
|
/// of all the instruction weights in that block.
|
|
BlockWeightMap BlockWeights;
|
|
|
|
/// Map edges to their computed weights.
|
|
///
|
|
/// Edge weights are computed by propagating basic block weights in
|
|
/// SampleProfile::propagateWeights.
|
|
EdgeWeightMap EdgeWeights;
|
|
|
|
/// Set of visited blocks during propagation.
|
|
SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
|
|
|
|
/// Set of visited edges during propagation.
|
|
SmallSet<Edge, 32> VisitedEdges;
|
|
|
|
/// Equivalence classes for block weights.
|
|
///
|
|
/// Two blocks BB1 and BB2 are in the same equivalence class if they
|
|
/// dominate and post-dominate each other, and they are in the same loop
|
|
/// nest. When this happens, the two blocks are guaranteed to execute
|
|
/// the same number of times.
|
|
EquivalenceClassMap EquivalenceClass;
|
|
|
|
/// Dominance, post-dominance and loop information.
|
|
DominatorTreePtrT DT;
|
|
PostDominatorTreePtrT PDT;
|
|
LoopInfoPtrT LI;
|
|
|
|
/// Predecessors for each basic block in the CFG.
|
|
BlockEdgeMap Predecessors;
|
|
|
|
/// Successors for each basic block in the CFG.
|
|
BlockEdgeMap Successors;
|
|
|
|
/// Profile coverage tracker.
|
|
SampleCoverageTracker CoverageTracker;
|
|
|
|
/// Profile reader object.
|
|
std::unique_ptr<SampleProfileReader> Reader;
|
|
|
|
/// Synthetic samples created by duplicating the samples of inlined functions
|
|
/// from the original profile as if they were top level sample profiles.
|
|
/// Use std::map because insertion may happen while its content is referenced.
|
|
std::map<SampleContext, FunctionSamples> OutlineFunctionSamples;
|
|
|
|
// A pseudo probe helper to correlate the imported sample counts.
|
|
std::unique_ptr<PseudoProbeManager> ProbeManager;
|
|
|
|
/// Samples collected for the body of this function.
|
|
FunctionSamples *Samples = nullptr;
|
|
|
|
/// Name of the profile file to load.
|
|
std::string Filename;
|
|
|
|
/// Name of the profile remapping file to load.
|
|
std::string RemappingFilename;
|
|
|
|
/// VirtualFileSystem to load profile files from.
|
|
IntrusiveRefCntPtr<vfs::FileSystem> FS;
|
|
|
|
/// Profile Summary Info computed from sample profile.
|
|
ProfileSummaryInfo *PSI = nullptr;
|
|
|
|
/// Optimization Remark Emitter used to emit diagnostic remarks.
|
|
OptRemarkEmitterT *ORE = nullptr;
|
|
};
|
|
|
|
/// Clear all the per-function data used to load samples and propagate weights.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) {
|
|
BlockWeights.clear();
|
|
EdgeWeights.clear();
|
|
VisitedBlocks.clear();
|
|
VisitedEdges.clear();
|
|
EquivalenceClass.clear();
|
|
if (ResetDT) {
|
|
DT = nullptr;
|
|
PDT = nullptr;
|
|
LI = nullptr;
|
|
}
|
|
Predecessors.clear();
|
|
Successors.clear();
|
|
CoverageTracker.clear();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Print the weight of edge \p E on stream \p OS.
|
|
///
|
|
/// \param OS Stream to emit the output to.
|
|
/// \param E Edge to print.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
|
|
OS << "weight[" << E.first->getName() << "->" << E.second->getName()
|
|
<< "]: " << EdgeWeights[E] << "\n";
|
|
}
|
|
|
|
/// Print the equivalence class of block \p BB on stream \p OS.
|
|
///
|
|
/// \param OS Stream to emit the output to.
|
|
/// \param BB Block to print.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
|
|
raw_ostream &OS, const BasicBlockT *BB) {
|
|
const BasicBlockT *Equiv = EquivalenceClass[BB];
|
|
OS << "equivalence[" << BB->getName()
|
|
<< "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
|
|
}
|
|
|
|
/// Print the weight of block \p BB on stream \p OS.
|
|
///
|
|
/// \param OS Stream to emit the output to.
|
|
/// \param BB Block to print.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
|
|
raw_ostream &OS, const BasicBlockT *BB) const {
|
|
const auto &I = BlockWeights.find(BB);
|
|
uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
|
|
OS << "weight[" << BB->getName() << "]: " << W << "\n";
|
|
}
|
|
#endif
|
|
|
|
/// Get the weight for an instruction.
|
|
///
|
|
/// The "weight" of an instruction \p Inst is the number of samples
|
|
/// collected on that instruction at runtime. To retrieve it, we
|
|
/// need to compute the line number of \p Inst relative to the start of its
|
|
/// function. We use HeaderLineno to compute the offset. We then
|
|
/// look up the samples collected for \p Inst using BodySamples.
|
|
///
|
|
/// \param Inst Instruction to query.
|
|
///
|
|
/// \returns the weight of \p Inst.
|
|
template <typename BT>
|
|
ErrorOr<uint64_t>
|
|
SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
|
|
if (FunctionSamples::ProfileIsProbeBased)
|
|
return getProbeWeight(Inst);
|
|
return getInstWeightImpl(Inst);
|
|
}
|
|
|
|
template <typename BT>
|
|
ErrorOr<uint64_t>
|
|
SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
|
|
const FunctionSamples *FS = findFunctionSamples(Inst);
|
|
if (!FS)
|
|
return std::error_code();
|
|
|
|
const DebugLoc &DLoc = Inst.getDebugLoc();
|
|
if (!DLoc)
|
|
return std::error_code();
|
|
|
|
const DILocation *DIL = DLoc;
|
|
uint32_t LineOffset = FunctionSamples::getOffset(DIL);
|
|
uint32_t Discriminator;
|
|
if (EnableFSDiscriminator)
|
|
Discriminator = DIL->getDiscriminator();
|
|
else
|
|
Discriminator = DIL->getBaseDiscriminator();
|
|
|
|
ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
|
|
if (R) {
|
|
bool FirstMark =
|
|
CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
|
|
if (FirstMark) {
|
|
ORE->emit([&]() {
|
|
OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
|
|
Remark << "Applied " << ore::NV("NumSamples", *R);
|
|
Remark << " samples from profile (offset: ";
|
|
Remark << ore::NV("LineOffset", LineOffset);
|
|
if (Discriminator) {
|
|
Remark << ".";
|
|
Remark << ore::NV("Discriminator", Discriminator);
|
|
}
|
|
Remark << ")";
|
|
return Remark;
|
|
});
|
|
}
|
|
LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":"
|
|
<< Inst << " (line offset: " << LineOffset << "."
|
|
<< Discriminator << " - weight: " << R.get() << ")\n");
|
|
}
|
|
return R;
|
|
}
|
|
|
|
template <typename BT>
|
|
ErrorOr<uint64_t>
|
|
SampleProfileLoaderBaseImpl<BT>::getProbeWeight(const InstructionT &Inst) {
|
|
assert(FunctionSamples::ProfileIsProbeBased &&
|
|
"Profile is not pseudo probe based");
|
|
std::optional<PseudoProbe> Probe = extractProbe(Inst);
|
|
// Ignore the non-probe instruction. If none of the instruction in the BB is
|
|
// probe, we choose to infer the BB's weight.
|
|
if (!Probe)
|
|
return std::error_code();
|
|
|
|
const FunctionSamples *FS = findFunctionSamples(Inst);
|
|
if (!FS) {
|
|
// If we can't find the function samples for a probe, it could be due to the
|
|
// probe is later optimized away or the inlining context is mismatced. We
|
|
// treat it as unknown, leaving it to profile inference instead of forcing a
|
|
// zero count.
|
|
return std::error_code();
|
|
}
|
|
|
|
auto R = FS->findSamplesAt(Probe->Id, Probe->Discriminator);
|
|
if (R) {
|
|
uint64_t Samples = R.get() * Probe->Factor;
|
|
bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
|
|
if (FirstMark) {
|
|
ORE->emit([&]() {
|
|
OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
|
|
Remark << "Applied " << ore::NV("NumSamples", Samples);
|
|
Remark << " samples from profile (ProbeId=";
|
|
Remark << ore::NV("ProbeId", Probe->Id);
|
|
if (Probe->Discriminator) {
|
|
Remark << ".";
|
|
Remark << ore::NV("Discriminator", Probe->Discriminator);
|
|
}
|
|
Remark << ", Factor=";
|
|
Remark << ore::NV("Factor", Probe->Factor);
|
|
Remark << ", OriginalSamples=";
|
|
Remark << ore::NV("OriginalSamples", R.get());
|
|
Remark << ")";
|
|
return Remark;
|
|
});
|
|
}
|
|
LLVM_DEBUG({dbgs() << " " << Probe->Id;
|
|
if (Probe->Discriminator)
|
|
dbgs() << "." << Probe->Discriminator;
|
|
dbgs() << ":" << Inst << " - weight: " << R.get()
|
|
<< " - factor: " << format("%0.2f", Probe->Factor) << ")\n";});
|
|
return Samples;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
/// Compute the weight of a basic block.
|
|
///
|
|
/// The weight of basic block \p BB is the maximum weight of all the
|
|
/// instructions in BB.
|
|
///
|
|
/// \param BB The basic block to query.
|
|
///
|
|
/// \returns the weight for \p BB.
|
|
template <typename BT>
|
|
ErrorOr<uint64_t>
|
|
SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
|
|
uint64_t Max = 0;
|
|
bool HasWeight = false;
|
|
for (auto &I : *BB) {
|
|
const ErrorOr<uint64_t> &R = getInstWeight(I);
|
|
if (R) {
|
|
Max = std::max(Max, R.get());
|
|
HasWeight = true;
|
|
}
|
|
}
|
|
return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
|
|
}
|
|
|
|
/// Compute and store the weights of every basic block.
|
|
///
|
|
/// This populates the BlockWeights map by computing
|
|
/// the weights of every basic block in the CFG.
|
|
///
|
|
/// \param F The function to query.
|
|
template <typename BT>
|
|
bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
|
|
bool Changed = false;
|
|
LLVM_DEBUG(dbgs() << "Block weights\n");
|
|
for (const auto &BB : F) {
|
|
ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
|
|
if (Weight) {
|
|
BlockWeights[&BB] = Weight.get();
|
|
VisitedBlocks.insert(&BB);
|
|
Changed = true;
|
|
}
|
|
LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Get the FunctionSamples for an instruction.
|
|
///
|
|
/// The FunctionSamples of an instruction \p Inst is the inlined instance
|
|
/// in which that instruction is coming from. We traverse the inline stack
|
|
/// of that instruction, and match it with the tree nodes in the profile.
|
|
///
|
|
/// \param Inst Instruction to query.
|
|
///
|
|
/// \returns the FunctionSamples pointer to the inlined instance.
|
|
template <typename BT>
|
|
const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
|
|
const InstructionT &Inst) const {
|
|
const DILocation *DIL = Inst.getDebugLoc();
|
|
if (!DIL)
|
|
return Samples;
|
|
|
|
auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
|
|
if (it.second) {
|
|
it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
|
|
}
|
|
return it.first->second;
|
|
}
|
|
|
|
/// Find equivalence classes for the given block.
|
|
///
|
|
/// This finds all the blocks that are guaranteed to execute the same
|
|
/// number of times as \p BB1. To do this, it traverses all the
|
|
/// descendants of \p BB1 in the dominator or post-dominator tree.
|
|
///
|
|
/// A block BB2 will be in the same equivalence class as \p BB1 if
|
|
/// the following holds:
|
|
///
|
|
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
|
|
/// is a descendant of \p BB1 in the dominator tree, then BB2 should
|
|
/// dominate BB1 in the post-dominator tree.
|
|
///
|
|
/// 2- Both BB2 and \p BB1 must be in the same loop.
|
|
///
|
|
/// For every block BB2 that meets those two requirements, we set BB2's
|
|
/// equivalence class to \p BB1.
|
|
///
|
|
/// \param BB1 Block to check.
|
|
/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
|
|
/// \param DomTree Opposite dominator tree. If \p Descendants is filled
|
|
/// with blocks from \p BB1's dominator tree, then
|
|
/// this is the post-dominator tree, and vice versa.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
|
|
BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
|
|
PostDominatorTreeT *DomTree) {
|
|
const BasicBlockT *EC = EquivalenceClass[BB1];
|
|
uint64_t Weight = BlockWeights[EC];
|
|
for (const auto *BB2 : Descendants) {
|
|
bool IsDomParent = DomTree->dominates(BB2, BB1);
|
|
bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
|
|
if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
|
|
EquivalenceClass[BB2] = EC;
|
|
// If BB2 is visited, then the entire EC should be marked as visited.
|
|
if (VisitedBlocks.count(BB2)) {
|
|
VisitedBlocks.insert(EC);
|
|
}
|
|
|
|
// If BB2 is heavier than BB1, make BB2 have the same weight
|
|
// as BB1.
|
|
//
|
|
// Note that we don't worry about the opposite situation here
|
|
// (when BB2 is lighter than BB1). We will deal with this
|
|
// during the propagation phase. Right now, we just want to
|
|
// make sure that BB1 has the largest weight of all the
|
|
// members of its equivalence set.
|
|
Weight = std::max(Weight, BlockWeights[BB2]);
|
|
}
|
|
}
|
|
const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
|
|
if (EC == EntryBB) {
|
|
BlockWeights[EC] = Samples->getHeadSamples() + 1;
|
|
} else {
|
|
BlockWeights[EC] = Weight;
|
|
}
|
|
}
|
|
|
|
/// Find equivalence classes.
|
|
///
|
|
/// Since samples may be missing from blocks, we can fill in the gaps by setting
|
|
/// the weights of all the blocks in the same equivalence class to the same
|
|
/// weight. To compute the concept of equivalence, we use dominance and loop
|
|
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
|
|
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
|
|
///
|
|
/// \param F The function to query.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
|
|
SmallVector<BasicBlockT *, 8> DominatedBBs;
|
|
LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
|
|
// Find equivalence sets based on dominance and post-dominance information.
|
|
for (auto &BB : F) {
|
|
BasicBlockT *BB1 = &BB;
|
|
|
|
// Compute BB1's equivalence class once.
|
|
if (EquivalenceClass.count(BB1)) {
|
|
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
|
|
continue;
|
|
}
|
|
|
|
// By default, blocks are in their own equivalence class.
|
|
EquivalenceClass[BB1] = BB1;
|
|
|
|
// Traverse all the blocks dominated by BB1. We are looking for
|
|
// every basic block BB2 such that:
|
|
//
|
|
// 1- BB1 dominates BB2.
|
|
// 2- BB2 post-dominates BB1.
|
|
// 3- BB1 and BB2 are in the same loop nest.
|
|
//
|
|
// If all those conditions hold, it means that BB2 is executed
|
|
// as many times as BB1, so they are placed in the same equivalence
|
|
// class by making BB2's equivalence class be BB1.
|
|
DominatedBBs.clear();
|
|
DT->getDescendants(BB1, DominatedBBs);
|
|
findEquivalencesFor(BB1, DominatedBBs, &*PDT);
|
|
|
|
LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
|
|
}
|
|
|
|
// Assign weights to equivalence classes.
|
|
//
|
|
// All the basic blocks in the same equivalence class will execute
|
|
// the same number of times. Since we know that the head block in
|
|
// each equivalence class has the largest weight, assign that weight
|
|
// to all the blocks in that equivalence class.
|
|
LLVM_DEBUG(
|
|
dbgs() << "\nAssign the same weight to all blocks in the same class\n");
|
|
for (auto &BI : F) {
|
|
const BasicBlockT *BB = &BI;
|
|
const BasicBlockT *EquivBB = EquivalenceClass[BB];
|
|
if (BB != EquivBB)
|
|
BlockWeights[BB] = BlockWeights[EquivBB];
|
|
LLVM_DEBUG(printBlockWeight(dbgs(), BB));
|
|
}
|
|
}
|
|
|
|
/// Visit the given edge to decide if it has a valid weight.
|
|
///
|
|
/// If \p E has not been visited before, we copy to \p UnknownEdge
|
|
/// and increment the count of unknown edges.
|
|
///
|
|
/// \param E Edge to visit.
|
|
/// \param NumUnknownEdges Current number of unknown edges.
|
|
/// \param UnknownEdge Set if E has not been visited before.
|
|
///
|
|
/// \returns E's weight, if known. Otherwise, return 0.
|
|
template <typename BT>
|
|
uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
|
|
unsigned *NumUnknownEdges,
|
|
Edge *UnknownEdge) {
|
|
if (!VisitedEdges.count(E)) {
|
|
(*NumUnknownEdges)++;
|
|
*UnknownEdge = E;
|
|
return 0;
|
|
}
|
|
|
|
return EdgeWeights[E];
|
|
}
|
|
|
|
/// Propagate weights through incoming/outgoing edges.
|
|
///
|
|
/// If the weight of a basic block is known, and there is only one edge
|
|
/// with an unknown weight, we can calculate the weight of that edge.
|
|
///
|
|
/// Similarly, if all the edges have a known count, we can calculate the
|
|
/// count of the basic block, if needed.
|
|
///
|
|
/// \param F Function to process.
|
|
/// \param UpdateBlockCount Whether we should update basic block counts that
|
|
/// has already been annotated.
|
|
///
|
|
/// \returns True if new weights were assigned to edges or blocks.
|
|
template <typename BT>
|
|
bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
|
|
FunctionT &F, bool UpdateBlockCount) {
|
|
bool Changed = false;
|
|
LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
|
|
for (const auto &BI : F) {
|
|
const BasicBlockT *BB = &BI;
|
|
const BasicBlockT *EC = EquivalenceClass[BB];
|
|
|
|
// Visit all the predecessor and successor edges to determine
|
|
// which ones have a weight assigned already. Note that it doesn't
|
|
// matter that we only keep track of a single unknown edge. The
|
|
// only case we are interested in handling is when only a single
|
|
// edge is unknown (see setEdgeOrBlockWeight).
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
uint64_t TotalWeight = 0;
|
|
unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
|
|
Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
|
|
|
|
if (i == 0) {
|
|
// First, visit all predecessor edges.
|
|
NumTotalEdges = Predecessors[BB].size();
|
|
for (auto *Pred : Predecessors[BB]) {
|
|
Edge E = std::make_pair(Pred, BB);
|
|
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
|
|
if (E.first == E.second)
|
|
SelfReferentialEdge = E;
|
|
}
|
|
if (NumTotalEdges == 1) {
|
|
SingleEdge = std::make_pair(Predecessors[BB][0], BB);
|
|
}
|
|
} else {
|
|
// On the second round, visit all successor edges.
|
|
NumTotalEdges = Successors[BB].size();
|
|
for (auto *Succ : Successors[BB]) {
|
|
Edge E = std::make_pair(BB, Succ);
|
|
TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
|
|
}
|
|
if (NumTotalEdges == 1) {
|
|
SingleEdge = std::make_pair(BB, Successors[BB][0]);
|
|
}
|
|
}
|
|
|
|
// After visiting all the edges, there are three cases that we
|
|
// can handle immediately:
|
|
//
|
|
// - All the edge weights are known (i.e., NumUnknownEdges == 0).
|
|
// In this case, we simply check that the sum of all the edges
|
|
// is the same as BB's weight. If not, we change BB's weight
|
|
// to match. Additionally, if BB had not been visited before,
|
|
// we mark it visited.
|
|
//
|
|
// - Only one edge is unknown and BB has already been visited.
|
|
// In this case, we can compute the weight of the edge by
|
|
// subtracting the total block weight from all the known
|
|
// edge weights. If the edges weight more than BB, then the
|
|
// edge of the last remaining edge is set to zero.
|
|
//
|
|
// - There exists a self-referential edge and the weight of BB is
|
|
// known. In this case, this edge can be based on BB's weight.
|
|
// We add up all the other known edges and set the weight on
|
|
// the self-referential edge as we did in the previous case.
|
|
//
|
|
// In any other case, we must continue iterating. Eventually,
|
|
// all edges will get a weight, or iteration will stop when
|
|
// it reaches SampleProfileMaxPropagateIterations.
|
|
if (NumUnknownEdges <= 1) {
|
|
uint64_t &BBWeight = BlockWeights[EC];
|
|
if (NumUnknownEdges == 0) {
|
|
if (!VisitedBlocks.count(EC)) {
|
|
// If we already know the weight of all edges, the weight of the
|
|
// basic block can be computed. It should be no larger than the sum
|
|
// of all edge weights.
|
|
if (TotalWeight > BBWeight) {
|
|
BBWeight = TotalWeight;
|
|
Changed = true;
|
|
LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
|
|
<< " known. Set weight for block: ";
|
|
printBlockWeight(dbgs(), BB););
|
|
}
|
|
} else if (NumTotalEdges == 1 &&
|
|
EdgeWeights[SingleEdge] < BlockWeights[EC]) {
|
|
// If there is only one edge for the visited basic block, use the
|
|
// block weight to adjust edge weight if edge weight is smaller.
|
|
EdgeWeights[SingleEdge] = BlockWeights[EC];
|
|
Changed = true;
|
|
}
|
|
} else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
|
|
// If there is a single unknown edge and the block has been
|
|
// visited, then we can compute E's weight.
|
|
if (BBWeight >= TotalWeight)
|
|
EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
|
|
else
|
|
EdgeWeights[UnknownEdge] = 0;
|
|
const BasicBlockT *OtherEC;
|
|
if (i == 0)
|
|
OtherEC = EquivalenceClass[UnknownEdge.first];
|
|
else
|
|
OtherEC = EquivalenceClass[UnknownEdge.second];
|
|
// Edge weights should never exceed the BB weights it connects.
|
|
if (VisitedBlocks.count(OtherEC) &&
|
|
EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
|
|
EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
|
|
VisitedEdges.insert(UnknownEdge);
|
|
Changed = true;
|
|
LLVM_DEBUG(dbgs() << "Set weight for edge: ";
|
|
printEdgeWeight(dbgs(), UnknownEdge));
|
|
}
|
|
} else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
|
|
// If a block Weights 0, all its in/out edges should weight 0.
|
|
if (i == 0) {
|
|
for (auto *Pred : Predecessors[BB]) {
|
|
Edge E = std::make_pair(Pred, BB);
|
|
EdgeWeights[E] = 0;
|
|
VisitedEdges.insert(E);
|
|
}
|
|
} else {
|
|
for (auto *Succ : Successors[BB]) {
|
|
Edge E = std::make_pair(BB, Succ);
|
|
EdgeWeights[E] = 0;
|
|
VisitedEdges.insert(E);
|
|
}
|
|
}
|
|
} else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
|
|
uint64_t &BBWeight = BlockWeights[BB];
|
|
// We have a self-referential edge and the weight of BB is known.
|
|
if (BBWeight >= TotalWeight)
|
|
EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
|
|
else
|
|
EdgeWeights[SelfReferentialEdge] = 0;
|
|
VisitedEdges.insert(SelfReferentialEdge);
|
|
Changed = true;
|
|
LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
|
|
printEdgeWeight(dbgs(), SelfReferentialEdge));
|
|
}
|
|
if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
|
|
BlockWeights[EC] = TotalWeight;
|
|
VisitedBlocks.insert(EC);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Build in/out edge lists for each basic block in the CFG.
|
|
///
|
|
/// We are interested in unique edges. If a block B1 has multiple
|
|
/// edges to another block B2, we only add a single B1->B2 edge.
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
|
|
for (auto &BI : F) {
|
|
BasicBlockT *B1 = &BI;
|
|
|
|
// Add predecessors for B1.
|
|
SmallPtrSet<BasicBlockT *, 16> Visited;
|
|
if (!Predecessors[B1].empty())
|
|
llvm_unreachable("Found a stale predecessors list in a basic block.");
|
|
for (auto *B2 : getPredecessors(B1))
|
|
if (Visited.insert(B2).second)
|
|
Predecessors[B1].push_back(B2);
|
|
|
|
// Add successors for B1.
|
|
Visited.clear();
|
|
if (!Successors[B1].empty())
|
|
llvm_unreachable("Found a stale successors list in a basic block.");
|
|
for (auto *B2 : getSuccessors(B1))
|
|
if (Visited.insert(B2).second)
|
|
Successors[B1].push_back(B2);
|
|
}
|
|
}
|
|
|
|
/// Propagate weights into edges
|
|
///
|
|
/// The following rules are applied to every block BB in the CFG:
|
|
///
|
|
/// - If BB has a single predecessor/successor, then the weight
|
|
/// of that edge is the weight of the block.
|
|
///
|
|
/// - If all incoming or outgoing edges are known except one, and the
|
|
/// weight of the block is already known, the weight of the unknown
|
|
/// edge will be the weight of the block minus the sum of all the known
|
|
/// edges. If the sum of all the known edges is larger than BB's weight,
|
|
/// we set the unknown edge weight to zero.
|
|
///
|
|
/// - If there is a self-referential edge, and the weight of the block is
|
|
/// known, the weight for that edge is set to the weight of the block
|
|
/// minus the weight of the other incoming edges to that block (if
|
|
/// known).
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
|
|
// Flow-based profile inference is only usable with BasicBlock instantiation
|
|
// of SampleProfileLoaderBaseImpl.
|
|
if (SampleProfileUseProfi) {
|
|
// Prepare block sample counts for inference.
|
|
BlockWeightMap SampleBlockWeights;
|
|
for (const auto &BI : F) {
|
|
ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
|
|
if (Weight)
|
|
SampleBlockWeights[&BI] = Weight.get();
|
|
}
|
|
// Fill in BlockWeights and EdgeWeights using an inference algorithm.
|
|
applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
|
|
} else {
|
|
bool Changed = true;
|
|
unsigned I = 0;
|
|
|
|
// If BB weight is larger than its corresponding loop's header BB weight,
|
|
// use the BB weight to replace the loop header BB weight.
|
|
for (auto &BI : F) {
|
|
BasicBlockT *BB = &BI;
|
|
LoopT *L = LI->getLoopFor(BB);
|
|
if (!L) {
|
|
continue;
|
|
}
|
|
BasicBlockT *Header = L->getHeader();
|
|
if (Header && BlockWeights[BB] > BlockWeights[Header]) {
|
|
BlockWeights[Header] = BlockWeights[BB];
|
|
}
|
|
}
|
|
|
|
// Propagate until we converge or we go past the iteration limit.
|
|
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
|
Changed = propagateThroughEdges(F, false);
|
|
}
|
|
|
|
// The first propagation propagates BB counts from annotated BBs to unknown
|
|
// BBs. The 2nd propagation pass resets edges weights, and use all BB
|
|
// weights to propagate edge weights.
|
|
VisitedEdges.clear();
|
|
Changed = true;
|
|
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
|
Changed = propagateThroughEdges(F, false);
|
|
}
|
|
|
|
// The 3rd propagation pass allows adjust annotated BB weights that are
|
|
// obviously wrong.
|
|
Changed = true;
|
|
while (Changed && I++ < SampleProfileMaxPropagateIterations) {
|
|
Changed = propagateThroughEdges(F, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename FT>
|
|
void SampleProfileLoaderBaseImpl<FT>::applyProfi(
|
|
FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
|
|
BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
|
|
auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights);
|
|
Infer.apply(BlockWeights, EdgeWeights);
|
|
}
|
|
|
|
/// Generate branch weight metadata for all branches in \p F.
|
|
///
|
|
/// Branch weights are computed out of instruction samples using a
|
|
/// propagation heuristic. Propagation proceeds in 3 phases:
|
|
///
|
|
/// 1- Assignment of block weights. All the basic blocks in the function
|
|
/// are initial assigned the same weight as their most frequently
|
|
/// executed instruction.
|
|
///
|
|
/// 2- Creation of equivalence classes. Since samples may be missing from
|
|
/// blocks, we can fill in the gaps by setting the weights of all the
|
|
/// blocks in the same equivalence class to the same weight. To compute
|
|
/// the concept of equivalence, we use dominance and loop information.
|
|
/// Two blocks B1 and B2 are in the same equivalence class if B1
|
|
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
|
|
///
|
|
/// 3- Propagation of block weights into edges. This uses a simple
|
|
/// propagation heuristic. The following rules are applied to every
|
|
/// block BB in the CFG:
|
|
///
|
|
/// - If BB has a single predecessor/successor, then the weight
|
|
/// of that edge is the weight of the block.
|
|
///
|
|
/// - If all the edges are known except one, and the weight of the
|
|
/// block is already known, the weight of the unknown edge will
|
|
/// be the weight of the block minus the sum of all the known
|
|
/// edges. If the sum of all the known edges is larger than BB's weight,
|
|
/// we set the unknown edge weight to zero.
|
|
///
|
|
/// - If there is a self-referential edge, and the weight of the block is
|
|
/// known, the weight for that edge is set to the weight of the block
|
|
/// minus the weight of the other incoming edges to that block (if
|
|
/// known).
|
|
///
|
|
/// Since this propagation is not guaranteed to finalize for every CFG, we
|
|
/// only allow it to proceed for a limited number of iterations (controlled
|
|
/// by -sample-profile-max-propagate-iterations).
|
|
///
|
|
/// FIXME: Try to replace this propagation heuristic with a scheme
|
|
/// that is guaranteed to finalize. A work-list approach similar to
|
|
/// the standard value propagation algorithm used by SSA-CCP might
|
|
/// work here.
|
|
///
|
|
/// \param F The function to query.
|
|
///
|
|
/// \returns true if \p F was modified. Returns false, otherwise.
|
|
template <typename BT>
|
|
bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
|
|
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
|
bool Changed = (InlinedGUIDs.size() != 0);
|
|
|
|
// Compute basic block weights.
|
|
Changed |= computeBlockWeights(F);
|
|
|
|
if (Changed) {
|
|
// Initialize propagation.
|
|
initWeightPropagation(F, InlinedGUIDs);
|
|
|
|
// Propagate weights to all edges.
|
|
propagateWeights(F);
|
|
|
|
// Post-process propagated weights.
|
|
finalizeWeightPropagation(F, InlinedGUIDs);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation(
|
|
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
|
// Add an entry count to the function using the samples gathered at the
|
|
// function entry.
|
|
// Sets the GUIDs that are inlined in the profiled binary. This is used
|
|
// for ThinLink to make correct liveness analysis, and also make the IR
|
|
// match the profiled binary before annotation.
|
|
getFunction(F).setEntryCount(
|
|
ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
|
|
&InlinedGUIDs);
|
|
|
|
if (!SampleProfileUseProfi) {
|
|
// Compute dominance and loop info needed for propagation.
|
|
computeDominanceAndLoopInfo(F);
|
|
|
|
// Find equivalence classes.
|
|
findEquivalenceClasses(F);
|
|
}
|
|
|
|
// Before propagation starts, build, for each block, a list of
|
|
// unique predecessors and successors. This is necessary to handle
|
|
// identical edges in multiway branches. Since we visit all blocks and all
|
|
// edges of the CFG, it is cleaner to build these lists once at the start
|
|
// of the pass.
|
|
buildEdges(F);
|
|
}
|
|
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation(
|
|
FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
|
|
// If we utilize a flow-based count inference, then we trust the computed
|
|
// counts and set the entry count as computed by the algorithm. This is
|
|
// primarily done to sync the counts produced by profi and BFI inference,
|
|
// which uses the entry count for mass propagation.
|
|
// If profi produces a zero-value for the entry count, we fallback to
|
|
// Samples->getHeadSamples() + 1 to avoid functions with zero count.
|
|
if (SampleProfileUseProfi) {
|
|
const BasicBlockT *EntryBB = getEntryBB(&F);
|
|
ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB);
|
|
if (BlockWeights[EntryBB] > 0) {
|
|
getFunction(F).setEntryCount(
|
|
ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
|
|
&InlinedGUIDs);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename BT>
|
|
void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
|
|
// If coverage checking was requested, compute it now.
|
|
const Function &Func = getFunction(F);
|
|
if (SampleProfileRecordCoverage) {
|
|
unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
|
|
unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
|
|
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
|
|
if (Coverage < SampleProfileRecordCoverage) {
|
|
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
|
|
Func.getSubprogram()->getFilename(), getFunctionLoc(F),
|
|
Twine(Used) + " of " + Twine(Total) + " available profile records (" +
|
|
Twine(Coverage) + "%) were applied",
|
|
DS_Warning));
|
|
}
|
|
}
|
|
|
|
if (SampleProfileSampleCoverage) {
|
|
uint64_t Used = CoverageTracker.getTotalUsedSamples();
|
|
uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
|
|
unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
|
|
if (Coverage < SampleProfileSampleCoverage) {
|
|
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
|
|
Func.getSubprogram()->getFilename(), getFunctionLoc(F),
|
|
Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
|
|
Twine(Coverage) + "%) were applied",
|
|
DS_Warning));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the line number for the function header.
|
|
///
|
|
/// This looks up function \p F in the current compilation unit and
|
|
/// retrieves the line number where the function is defined. This is
|
|
/// line 0 for all the samples read from the profile file. Every line
|
|
/// number is relative to this line.
|
|
///
|
|
/// \param F Function object to query.
|
|
///
|
|
/// \returns the line number where \p F is defined. If it returns 0,
|
|
/// it means that there is no debug information available for \p F.
|
|
template <typename BT>
|
|
unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
|
|
const Function &Func = getFunction(F);
|
|
if (DISubprogram *S = Func.getSubprogram())
|
|
return S->getLine();
|
|
|
|
if (NoWarnSampleUnused)
|
|
return 0;
|
|
|
|
// If the start of \p F is missing, emit a diagnostic to inform the user
|
|
// about the missed opportunity.
|
|
Func.getContext().diagnose(DiagnosticInfoSampleProfile(
|
|
"No debug information found in function " + Func.getName() +
|
|
": Function profile not used",
|
|
DS_Warning));
|
|
return 0;
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
} // namespace llvm
|
|
#endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
|