clang 20.0.0 (based on r547379) from build 12806354. Bug: http://b/379133546 Test: N/A Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
1592 lines
57 KiB
C++
1592 lines
57 KiB
C++
//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains common definitions used in the reading and writing of
|
|
// sample profile data.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
|
|
#define LLVM_PROFILEDATA_SAMPLEPROF_H
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/ProfileData/FunctionId.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ProfileData/HashKeyMap.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <list>
|
|
#include <map>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class DILocation;
|
|
class raw_ostream;
|
|
|
|
const std::error_category &sampleprof_category();
|
|
|
|
enum class sampleprof_error {
|
|
success = 0,
|
|
bad_magic,
|
|
unsupported_version,
|
|
too_large,
|
|
truncated,
|
|
malformed,
|
|
unrecognized_format,
|
|
unsupported_writing_format,
|
|
truncated_name_table,
|
|
not_implemented,
|
|
counter_overflow,
|
|
ostream_seek_unsupported,
|
|
uncompress_failed,
|
|
zlib_unavailable,
|
|
hash_mismatch
|
|
};
|
|
|
|
inline std::error_code make_error_code(sampleprof_error E) {
|
|
return std::error_code(static_cast<int>(E), sampleprof_category());
|
|
}
|
|
|
|
inline sampleprof_error mergeSampleProfErrors(sampleprof_error &Accumulator,
|
|
sampleprof_error Result) {
|
|
// Prefer first error encountered as later errors may be secondary effects of
|
|
// the initial problem.
|
|
if (Accumulator == sampleprof_error::success &&
|
|
Result != sampleprof_error::success)
|
|
Accumulator = Result;
|
|
return Accumulator;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
|
|
template <>
|
|
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
|
|
|
|
} // end namespace std
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
enum SampleProfileFormat {
|
|
SPF_None = 0,
|
|
SPF_Text = 0x1,
|
|
SPF_Compact_Binary = 0x2, // Deprecated
|
|
SPF_GCC = 0x3,
|
|
SPF_Ext_Binary = 0x4,
|
|
SPF_Binary = 0xff
|
|
};
|
|
|
|
enum SampleProfileLayout {
|
|
SPL_None = 0,
|
|
SPL_Nest = 0x1,
|
|
SPL_Flat = 0x2,
|
|
};
|
|
|
|
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
|
|
return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
|
|
uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
|
|
uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
|
|
uint64_t('2') << (64 - 56) | uint64_t(Format);
|
|
}
|
|
|
|
static inline uint64_t SPVersion() { return 103; }
|
|
|
|
// Section Type used by SampleProfileExtBinaryBaseReader and
|
|
// SampleProfileExtBinaryBaseWriter. Never change the existing
|
|
// value of enum. Only append new ones.
|
|
enum SecType {
|
|
SecInValid = 0,
|
|
SecProfSummary = 1,
|
|
SecNameTable = 2,
|
|
SecProfileSymbolList = 3,
|
|
SecFuncOffsetTable = 4,
|
|
SecFuncMetadata = 5,
|
|
SecCSNameTable = 6,
|
|
// marker for the first type of profile.
|
|
SecFuncProfileFirst = 32,
|
|
SecLBRProfile = SecFuncProfileFirst
|
|
};
|
|
|
|
static inline std::string getSecName(SecType Type) {
|
|
switch (static_cast<int>(Type)) { // Avoid -Wcovered-switch-default
|
|
case SecInValid:
|
|
return "InvalidSection";
|
|
case SecProfSummary:
|
|
return "ProfileSummarySection";
|
|
case SecNameTable:
|
|
return "NameTableSection";
|
|
case SecProfileSymbolList:
|
|
return "ProfileSymbolListSection";
|
|
case SecFuncOffsetTable:
|
|
return "FuncOffsetTableSection";
|
|
case SecFuncMetadata:
|
|
return "FunctionMetadata";
|
|
case SecCSNameTable:
|
|
return "CSNameTableSection";
|
|
case SecLBRProfile:
|
|
return "LBRProfileSection";
|
|
default:
|
|
return "UnknownSection";
|
|
}
|
|
}
|
|
|
|
// Entry type of section header table used by SampleProfileExtBinaryBaseReader
|
|
// and SampleProfileExtBinaryBaseWriter.
|
|
struct SecHdrTableEntry {
|
|
SecType Type;
|
|
uint64_t Flags;
|
|
uint64_t Offset;
|
|
uint64_t Size;
|
|
// The index indicating the location of the current entry in
|
|
// SectionHdrLayout table.
|
|
uint64_t LayoutIndex;
|
|
};
|
|
|
|
// Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
|
|
// common flags will be saved in the lower 32bits and section specific flags
|
|
// will be saved in the higher 32 bits.
|
|
enum class SecCommonFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
SecFlagCompress = (1 << 0),
|
|
// Indicate the section contains only profile without context.
|
|
SecFlagFlat = (1 << 1)
|
|
};
|
|
|
|
// Section specific flags are defined here.
|
|
// !!!Note: Everytime a new enum class is created here, please add
|
|
// a new check in verifySecFlag.
|
|
enum class SecNameTableFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
SecFlagMD5Name = (1 << 0),
|
|
// Store MD5 in fixed length instead of ULEB128 so NameTable can be
|
|
// accessed like an array.
|
|
SecFlagFixedLengthMD5 = (1 << 1),
|
|
// Profile contains ".__uniq." suffix name. Compiler shouldn't strip
|
|
// the suffix when doing profile matching when seeing the flag.
|
|
SecFlagUniqSuffix = (1 << 2)
|
|
};
|
|
enum class SecProfSummaryFlags : uint32_t {
|
|
SecFlagInValid = 0,
|
|
/// SecFlagPartial means the profile is for common/shared code.
|
|
/// The common profile is usually merged from profiles collected
|
|
/// from running other targets.
|
|
SecFlagPartial = (1 << 0),
|
|
/// SecFlagContext means this is context-sensitive flat profile for
|
|
/// CSSPGO
|
|
SecFlagFullContext = (1 << 1),
|
|
/// SecFlagFSDiscriminator means this profile uses flow-sensitive
|
|
/// discriminators.
|
|
SecFlagFSDiscriminator = (1 << 2),
|
|
/// SecFlagIsPreInlined means this profile contains ShouldBeInlined
|
|
/// contexts thus this is CS preinliner computed.
|
|
SecFlagIsPreInlined = (1 << 4),
|
|
};
|
|
|
|
enum class SecFuncMetadataFlags : uint32_t {
|
|
SecFlagInvalid = 0,
|
|
SecFlagIsProbeBased = (1 << 0),
|
|
SecFlagHasAttribute = (1 << 1),
|
|
};
|
|
|
|
enum class SecFuncOffsetFlags : uint32_t {
|
|
SecFlagInvalid = 0,
|
|
// Store function offsets in an order of contexts. The order ensures that
|
|
// callee contexts of a given context laid out next to it.
|
|
SecFlagOrdered = (1 << 0),
|
|
};
|
|
|
|
// Verify section specific flag is used for the correct section.
|
|
template <class SecFlagType>
|
|
static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
|
|
// No verification is needed for common flags.
|
|
if (std::is_same<SecCommonFlags, SecFlagType>())
|
|
return;
|
|
|
|
// Verification starts here for section specific flag.
|
|
bool IsFlagLegal = false;
|
|
switch (Type) {
|
|
case SecNameTable:
|
|
IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
|
|
break;
|
|
case SecProfSummary:
|
|
IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
|
|
break;
|
|
case SecFuncMetadata:
|
|
IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
|
|
break;
|
|
default:
|
|
case SecFuncOffsetTable:
|
|
IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
|
|
break;
|
|
}
|
|
if (!IsFlagLegal)
|
|
llvm_unreachable("Misuse of a flag in an incompatible section");
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
Entry.Flags |= IsCommon ? FVal : (FVal << 32);
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
|
|
}
|
|
|
|
template <class SecFlagType>
|
|
static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
|
|
verifySecFlag(Entry.Type, Flag);
|
|
auto FVal = static_cast<uint64_t>(Flag);
|
|
bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
|
|
return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
|
|
}
|
|
|
|
/// Represents the relative location of an instruction.
|
|
///
|
|
/// Instruction locations are specified by the line offset from the
|
|
/// beginning of the function (marked by the line where the function
|
|
/// header is) and the discriminator value within that line.
|
|
///
|
|
/// The discriminator value is useful to distinguish instructions
|
|
/// that are on the same line but belong to different basic blocks
|
|
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
|
|
struct LineLocation {
|
|
LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
|
|
bool operator<(const LineLocation &O) const {
|
|
return LineOffset < O.LineOffset ||
|
|
(LineOffset == O.LineOffset && Discriminator < O.Discriminator);
|
|
}
|
|
|
|
bool operator==(const LineLocation &O) const {
|
|
return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
|
|
}
|
|
|
|
bool operator!=(const LineLocation &O) const {
|
|
return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
|
|
}
|
|
|
|
uint64_t getHashCode() const {
|
|
return ((uint64_t) Discriminator << 32) | LineOffset;
|
|
}
|
|
|
|
uint32_t LineOffset;
|
|
uint32_t Discriminator;
|
|
};
|
|
|
|
struct LineLocationHash {
|
|
uint64_t operator()(const LineLocation &Loc) const {
|
|
return Loc.getHashCode();
|
|
}
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
|
|
|
|
/// Representation of a single sample record.
|
|
///
|
|
/// A sample record is represented by a positive integer value, which
|
|
/// indicates how frequently was the associated line location executed.
|
|
///
|
|
/// Additionally, if the associated location contains a function call,
|
|
/// the record will hold a list of all the possible called targets. For
|
|
/// direct calls, this will be the exact function being invoked. For
|
|
/// indirect calls (function pointers, virtual table dispatch), this
|
|
/// will be a list of one or more functions.
|
|
class SampleRecord {
|
|
public:
|
|
using CallTarget = std::pair<FunctionId, uint64_t>;
|
|
struct CallTargetComparator {
|
|
bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
|
|
if (LHS.second != RHS.second)
|
|
return LHS.second > RHS.second;
|
|
|
|
return LHS.first < RHS.first;
|
|
}
|
|
};
|
|
|
|
using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
|
|
using CallTargetMap = std::unordered_map<FunctionId, uint64_t>;
|
|
SampleRecord() = default;
|
|
|
|
/// Increment the number of samples for this record by \p S.
|
|
/// Optionally scale sample count \p S by \p Weight.
|
|
///
|
|
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
|
|
/// around unsigned integers.
|
|
sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
/// Decrease the number of samples for this record by \p S. Return the amout
|
|
/// of samples actually decreased.
|
|
uint64_t removeSamples(uint64_t S) {
|
|
if (S > NumSamples)
|
|
S = NumSamples;
|
|
NumSamples -= S;
|
|
return S;
|
|
}
|
|
|
|
/// Add called function \p F with samples \p S.
|
|
/// Optionally scale sample count \p S by \p Weight.
|
|
///
|
|
/// Sample counts accumulate using saturating arithmetic, to avoid wrapping
|
|
/// around unsigned integers.
|
|
sampleprof_error addCalledTarget(FunctionId F, uint64_t S,
|
|
uint64_t Weight = 1) {
|
|
uint64_t &TargetSamples = CallTargets[F];
|
|
bool Overflowed;
|
|
TargetSamples =
|
|
SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
/// Remove called function from the call target map. Return the target sample
|
|
/// count of the called function.
|
|
uint64_t removeCalledTarget(FunctionId F) {
|
|
uint64_t Count = 0;
|
|
auto I = CallTargets.find(F);
|
|
if (I != CallTargets.end()) {
|
|
Count = I->second;
|
|
CallTargets.erase(I);
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
/// Return true if this sample record contains function calls.
|
|
bool hasCalls() const { return !CallTargets.empty(); }
|
|
|
|
uint64_t getSamples() const { return NumSamples; }
|
|
const CallTargetMap &getCallTargets() const { return CallTargets; }
|
|
const SortedCallTargetSet getSortedCallTargets() const {
|
|
return sortCallTargets(CallTargets);
|
|
}
|
|
|
|
uint64_t getCallTargetSum() const {
|
|
uint64_t Sum = 0;
|
|
for (const auto &I : CallTargets)
|
|
Sum += I.second;
|
|
return Sum;
|
|
}
|
|
|
|
/// Sort call targets in descending order of call frequency.
|
|
static const SortedCallTargetSet
|
|
sortCallTargets(const CallTargetMap &Targets) {
|
|
SortedCallTargetSet SortedTargets;
|
|
for (const auto &[Target, Frequency] : Targets) {
|
|
SortedTargets.emplace(Target, Frequency);
|
|
}
|
|
return SortedTargets;
|
|
}
|
|
|
|
/// Prorate call targets by a distribution factor.
|
|
static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
|
|
float DistributionFactor) {
|
|
CallTargetMap AdjustedTargets;
|
|
for (const auto &[Target, Frequency] : Targets) {
|
|
AdjustedTargets[Target] = Frequency * DistributionFactor;
|
|
}
|
|
return AdjustedTargets;
|
|
}
|
|
|
|
/// Merge the samples in \p Other into this record.
|
|
/// Optionally scale sample counts by \p Weight.
|
|
sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
|
|
void print(raw_ostream &OS, unsigned Indent) const;
|
|
void dump() const;
|
|
|
|
bool operator==(const SampleRecord &Other) const {
|
|
return NumSamples == Other.NumSamples && CallTargets == Other.CallTargets;
|
|
}
|
|
|
|
bool operator!=(const SampleRecord &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
private:
|
|
uint64_t NumSamples = 0;
|
|
CallTargetMap CallTargets;
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
|
|
|
|
// State of context associated with FunctionSamples
|
|
enum ContextStateMask {
|
|
UnknownContext = 0x0, // Profile without context
|
|
RawContext = 0x1, // Full context profile from input profile
|
|
SyntheticContext = 0x2, // Synthetic context created for context promotion
|
|
InlinedContext = 0x4, // Profile for context that is inlined into caller
|
|
MergedContext = 0x8 // Profile for context merged into base profile
|
|
};
|
|
|
|
// Attribute of context associated with FunctionSamples
|
|
enum ContextAttributeMask {
|
|
ContextNone = 0x0,
|
|
ContextWasInlined = 0x1, // Leaf of context was inlined in previous build
|
|
ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
|
|
ContextDuplicatedIntoBase =
|
|
0x4, // Leaf of context is duplicated into the base profile
|
|
};
|
|
|
|
// Represents a context frame with profile function and line location
|
|
struct SampleContextFrame {
|
|
FunctionId Func;
|
|
LineLocation Location;
|
|
|
|
SampleContextFrame() : Location(0, 0) {}
|
|
|
|
SampleContextFrame(FunctionId Func, LineLocation Location)
|
|
: Func(Func), Location(Location) {}
|
|
|
|
bool operator==(const SampleContextFrame &That) const {
|
|
return Location == That.Location && Func == That.Func;
|
|
}
|
|
|
|
bool operator!=(const SampleContextFrame &That) const {
|
|
return !(*this == That);
|
|
}
|
|
|
|
std::string toString(bool OutputLineLocation) const {
|
|
std::ostringstream OContextStr;
|
|
OContextStr << Func.str();
|
|
if (OutputLineLocation) {
|
|
OContextStr << ":" << Location.LineOffset;
|
|
if (Location.Discriminator)
|
|
OContextStr << "." << Location.Discriminator;
|
|
}
|
|
return OContextStr.str();
|
|
}
|
|
|
|
uint64_t getHashCode() const {
|
|
uint64_t NameHash = Func.getHashCode();
|
|
uint64_t LocId = Location.getHashCode();
|
|
return NameHash + (LocId << 5) + LocId;
|
|
}
|
|
};
|
|
|
|
static inline hash_code hash_value(const SampleContextFrame &arg) {
|
|
return arg.getHashCode();
|
|
}
|
|
|
|
using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
|
|
using SampleContextFrames = ArrayRef<SampleContextFrame>;
|
|
|
|
struct SampleContextFrameHash {
|
|
uint64_t operator()(const SampleContextFrameVector &S) const {
|
|
return hash_combine_range(S.begin(), S.end());
|
|
}
|
|
};
|
|
|
|
// Sample context for FunctionSamples. It consists of the calling context,
|
|
// the function name and context state. Internally sample context is represented
|
|
// using ArrayRef, which is also the input for constructing a `SampleContext`.
|
|
// It can accept and represent both full context string as well as context-less
|
|
// function name.
|
|
// For a CS profile, a full context vector can look like:
|
|
// `main:3 _Z5funcAi:1 _Z8funcLeafi`
|
|
// For a base CS profile without calling context, the context vector should only
|
|
// contain the leaf frame name.
|
|
// For a non-CS profile, the context vector should be empty.
|
|
class SampleContext {
|
|
public:
|
|
SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
|
|
|
|
SampleContext(StringRef Name)
|
|
: Func(Name), State(UnknownContext), Attributes(ContextNone) {
|
|
assert(!Name.empty() && "Name is empty");
|
|
}
|
|
|
|
SampleContext(FunctionId Func)
|
|
: Func(Func), State(UnknownContext), Attributes(ContextNone) {}
|
|
|
|
SampleContext(SampleContextFrames Context,
|
|
ContextStateMask CState = RawContext)
|
|
: Attributes(ContextNone) {
|
|
assert(!Context.empty() && "Context is empty");
|
|
setContext(Context, CState);
|
|
}
|
|
|
|
// Give a context string, decode and populate internal states like
|
|
// Function name, Calling context and context state. Example of input
|
|
// `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
|
|
SampleContext(StringRef ContextStr,
|
|
std::list<SampleContextFrameVector> &CSNameTable,
|
|
ContextStateMask CState = RawContext)
|
|
: Attributes(ContextNone) {
|
|
assert(!ContextStr.empty());
|
|
// Note that `[]` wrapped input indicates a full context string, otherwise
|
|
// it's treated as context-less function name only.
|
|
bool HasContext = ContextStr.starts_with("[");
|
|
if (!HasContext) {
|
|
State = UnknownContext;
|
|
Func = FunctionId(ContextStr);
|
|
} else {
|
|
CSNameTable.emplace_back();
|
|
SampleContextFrameVector &Context = CSNameTable.back();
|
|
createCtxVectorFromStr(ContextStr, Context);
|
|
setContext(Context, CState);
|
|
}
|
|
}
|
|
|
|
/// Create a context vector from a given context string and save it in
|
|
/// `Context`.
|
|
static void createCtxVectorFromStr(StringRef ContextStr,
|
|
SampleContextFrameVector &Context) {
|
|
// Remove encapsulating '[' and ']' if any
|
|
ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
|
|
StringRef ContextRemain = ContextStr;
|
|
StringRef ChildContext;
|
|
FunctionId Callee;
|
|
while (!ContextRemain.empty()) {
|
|
auto ContextSplit = ContextRemain.split(" @ ");
|
|
ChildContext = ContextSplit.first;
|
|
ContextRemain = ContextSplit.second;
|
|
LineLocation CallSiteLoc(0, 0);
|
|
decodeContextString(ChildContext, Callee, CallSiteLoc);
|
|
Context.emplace_back(Callee, CallSiteLoc);
|
|
}
|
|
}
|
|
|
|
// Decode context string for a frame to get function name and location.
|
|
// `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
|
|
static void decodeContextString(StringRef ContextStr,
|
|
FunctionId &Func,
|
|
LineLocation &LineLoc) {
|
|
// Get function name
|
|
auto EntrySplit = ContextStr.split(':');
|
|
Func = FunctionId(EntrySplit.first);
|
|
|
|
LineLoc = {0, 0};
|
|
if (!EntrySplit.second.empty()) {
|
|
// Get line offset, use signed int for getAsInteger so string will
|
|
// be parsed as signed.
|
|
int LineOffset = 0;
|
|
auto LocSplit = EntrySplit.second.split('.');
|
|
LocSplit.first.getAsInteger(10, LineOffset);
|
|
LineLoc.LineOffset = LineOffset;
|
|
|
|
// Get discriminator
|
|
if (!LocSplit.second.empty())
|
|
LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
|
|
}
|
|
}
|
|
|
|
operator SampleContextFrames() const { return FullContext; }
|
|
bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
|
|
void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
|
|
uint32_t getAllAttributes() { return Attributes; }
|
|
void setAllAttributes(uint32_t A) { Attributes = A; }
|
|
bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
|
|
void setState(ContextStateMask S) { State |= (uint32_t)S; }
|
|
void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
|
|
bool hasContext() const { return State != UnknownContext; }
|
|
bool isBaseContext() const { return FullContext.size() == 1; }
|
|
FunctionId getFunction() const { return Func; }
|
|
SampleContextFrames getContextFrames() const { return FullContext; }
|
|
|
|
static std::string getContextString(SampleContextFrames Context,
|
|
bool IncludeLeafLineLocation = false) {
|
|
std::ostringstream OContextStr;
|
|
for (uint32_t I = 0; I < Context.size(); I++) {
|
|
if (OContextStr.str().size()) {
|
|
OContextStr << " @ ";
|
|
}
|
|
OContextStr << Context[I].toString(I != Context.size() - 1 ||
|
|
IncludeLeafLineLocation);
|
|
}
|
|
return OContextStr.str();
|
|
}
|
|
|
|
std::string toString() const {
|
|
if (!hasContext())
|
|
return Func.str();
|
|
return getContextString(FullContext, false);
|
|
}
|
|
|
|
uint64_t getHashCode() const {
|
|
if (hasContext())
|
|
return hash_value(getContextFrames());
|
|
return getFunction().getHashCode();
|
|
}
|
|
|
|
/// Set the name of the function and clear the current context.
|
|
void setFunction(FunctionId NewFunctionID) {
|
|
Func = NewFunctionID;
|
|
FullContext = SampleContextFrames();
|
|
State = UnknownContext;
|
|
}
|
|
|
|
void setContext(SampleContextFrames Context,
|
|
ContextStateMask CState = RawContext) {
|
|
assert(CState != UnknownContext);
|
|
FullContext = Context;
|
|
Func = Context.back().Func;
|
|
State = CState;
|
|
}
|
|
|
|
bool operator==(const SampleContext &That) const {
|
|
return State == That.State && Func == That.Func &&
|
|
FullContext == That.FullContext;
|
|
}
|
|
|
|
bool operator!=(const SampleContext &That) const { return !(*this == That); }
|
|
|
|
bool operator<(const SampleContext &That) const {
|
|
if (State != That.State)
|
|
return State < That.State;
|
|
|
|
if (!hasContext()) {
|
|
return Func < That.Func;
|
|
}
|
|
|
|
uint64_t I = 0;
|
|
while (I < std::min(FullContext.size(), That.FullContext.size())) {
|
|
auto &Context1 = FullContext[I];
|
|
auto &Context2 = That.FullContext[I];
|
|
auto V = Context1.Func.compare(Context2.Func);
|
|
if (V)
|
|
return V < 0;
|
|
if (Context1.Location != Context2.Location)
|
|
return Context1.Location < Context2.Location;
|
|
I++;
|
|
}
|
|
|
|
return FullContext.size() < That.FullContext.size();
|
|
}
|
|
|
|
struct Hash {
|
|
uint64_t operator()(const SampleContext &Context) const {
|
|
return Context.getHashCode();
|
|
}
|
|
};
|
|
|
|
bool isPrefixOf(const SampleContext &That) const {
|
|
auto ThisContext = FullContext;
|
|
auto ThatContext = That.FullContext;
|
|
if (ThatContext.size() < ThisContext.size())
|
|
return false;
|
|
ThatContext = ThatContext.take_front(ThisContext.size());
|
|
// Compare Leaf frame first
|
|
if (ThisContext.back().Func != ThatContext.back().Func)
|
|
return false;
|
|
// Compare leading context
|
|
return ThisContext.drop_back() == ThatContext.drop_back();
|
|
}
|
|
|
|
private:
|
|
// The function associated with this context. If CS profile, this is the leaf
|
|
// function.
|
|
FunctionId Func;
|
|
// Full context including calling context and leaf function name
|
|
SampleContextFrames FullContext;
|
|
// State of the associated sample profile
|
|
uint32_t State;
|
|
// Attribute of the associated sample profile
|
|
uint32_t Attributes;
|
|
};
|
|
|
|
static inline hash_code hash_value(const SampleContext &Context) {
|
|
return Context.getHashCode();
|
|
}
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const SampleContext &Context) {
|
|
return OS << Context.toString();
|
|
}
|
|
|
|
class FunctionSamples;
|
|
class SampleProfileReaderItaniumRemapper;
|
|
|
|
using BodySampleMap = std::map<LineLocation, SampleRecord>;
|
|
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
|
|
// memory, which is *very* significant for large profiles.
|
|
using FunctionSamplesMap = std::map<FunctionId, FunctionSamples>;
|
|
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
|
|
using LocToLocMap =
|
|
std::unordered_map<LineLocation, LineLocation, LineLocationHash>;
|
|
|
|
/// Representation of the samples collected for a function.
|
|
///
|
|
/// This data structure contains all the collected samples for the body
|
|
/// of a function. Each sample corresponds to a LineLocation instance
|
|
/// within the body of the function.
|
|
class FunctionSamples {
|
|
public:
|
|
FunctionSamples() = default;
|
|
|
|
void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
|
|
void dump() const;
|
|
|
|
sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
TotalSamples =
|
|
SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
void removeTotalSamples(uint64_t Num) {
|
|
if (TotalSamples < Num)
|
|
TotalSamples = 0;
|
|
else
|
|
TotalSamples -= Num;
|
|
}
|
|
|
|
void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
|
|
|
|
void setHeadSamples(uint64_t Num) { TotalHeadSamples = Num; }
|
|
|
|
sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
|
|
bool Overflowed;
|
|
TotalHeadSamples =
|
|
SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
|
|
return Overflowed ? sampleprof_error::counter_overflow
|
|
: sampleprof_error::success;
|
|
}
|
|
|
|
sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
|
|
uint64_t Num, uint64_t Weight = 1) {
|
|
return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
|
|
Num, Weight);
|
|
}
|
|
|
|
sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
|
|
uint32_t Discriminator,
|
|
FunctionId Func,
|
|
uint64_t Num,
|
|
uint64_t Weight = 1) {
|
|
return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
|
|
Func, Num, Weight);
|
|
}
|
|
|
|
sampleprof_error addSampleRecord(LineLocation Location,
|
|
const SampleRecord &SampleRecord,
|
|
uint64_t Weight = 1) {
|
|
return BodySamples[Location].merge(SampleRecord, Weight);
|
|
}
|
|
|
|
// Remove a call target and decrease the body sample correspondingly. Return
|
|
// the number of body samples actually decreased.
|
|
uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
|
|
uint32_t Discriminator,
|
|
FunctionId Func) {
|
|
uint64_t Count = 0;
|
|
auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
|
|
if (I != BodySamples.end()) {
|
|
Count = I->second.removeCalledTarget(Func);
|
|
Count = I->second.removeSamples(Count);
|
|
if (!I->second.getSamples())
|
|
BodySamples.erase(I);
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
// Remove all call site samples for inlinees. This is needed when flattening
|
|
// a nested profile.
|
|
void removeAllCallsiteSamples() {
|
|
CallsiteSamples.clear();
|
|
}
|
|
|
|
// Accumulate all call target samples to update the body samples.
|
|
void updateCallsiteSamples() {
|
|
for (auto &I : BodySamples) {
|
|
uint64_t TargetSamples = I.second.getCallTargetSum();
|
|
// It's possible that the body sample count can be greater than the call
|
|
// target sum. E.g, if some call targets are external targets, they won't
|
|
// be considered valid call targets, but the body sample count which is
|
|
// from lbr ranges can actually include them.
|
|
if (TargetSamples > I.second.getSamples())
|
|
I.second.addSamples(TargetSamples - I.second.getSamples());
|
|
}
|
|
}
|
|
|
|
// Accumulate all body samples to set total samples.
|
|
void updateTotalSamples() {
|
|
setTotalSamples(0);
|
|
for (const auto &I : BodySamples)
|
|
addTotalSamples(I.second.getSamples());
|
|
|
|
for (auto &I : CallsiteSamples) {
|
|
for (auto &CS : I.second) {
|
|
CS.second.updateTotalSamples();
|
|
addTotalSamples(CS.second.getTotalSamples());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set current context and all callee contexts to be synthetic.
|
|
void setContextSynthetic() {
|
|
Context.setState(SyntheticContext);
|
|
for (auto &I : CallsiteSamples) {
|
|
for (auto &CS : I.second) {
|
|
CS.second.setContextSynthetic();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Query the stale profile matching results and remap the location.
|
|
const LineLocation &mapIRLocToProfileLoc(const LineLocation &IRLoc) const {
|
|
// There is no remapping if the profile is not stale or the matching gives
|
|
// the same location.
|
|
if (!IRToProfileLocationMap)
|
|
return IRLoc;
|
|
const auto &ProfileLoc = IRToProfileLocationMap->find(IRLoc);
|
|
if (ProfileLoc != IRToProfileLocationMap->end())
|
|
return ProfileLoc->second;
|
|
return IRLoc;
|
|
}
|
|
|
|
/// Return the number of samples collected at the given location.
|
|
/// Each location is specified by \p LineOffset and \p Discriminator.
|
|
/// If the location is not found in profile, return error.
|
|
ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
|
|
uint32_t Discriminator) const {
|
|
const auto &Ret = BodySamples.find(
|
|
mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
|
|
if (Ret == BodySamples.end())
|
|
return std::error_code();
|
|
return Ret->second.getSamples();
|
|
}
|
|
|
|
/// Returns the call target map collected at a given location.
|
|
/// Each location is specified by \p LineOffset and \p Discriminator.
|
|
/// If the location is not found in profile, return error.
|
|
ErrorOr<const SampleRecord::CallTargetMap &>
|
|
findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
|
|
const auto &Ret = BodySamples.find(
|
|
mapIRLocToProfileLoc(LineLocation(LineOffset, Discriminator)));
|
|
if (Ret == BodySamples.end())
|
|
return std::error_code();
|
|
return Ret->second.getCallTargets();
|
|
}
|
|
|
|
/// Returns the call target map collected at a given location specified by \p
|
|
/// CallSite. If the location is not found in profile, return error.
|
|
ErrorOr<const SampleRecord::CallTargetMap &>
|
|
findCallTargetMapAt(const LineLocation &CallSite) const {
|
|
const auto &Ret = BodySamples.find(mapIRLocToProfileLoc(CallSite));
|
|
if (Ret == BodySamples.end())
|
|
return std::error_code();
|
|
return Ret->second.getCallTargets();
|
|
}
|
|
|
|
/// Return the function samples at the given callsite location.
|
|
FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
|
|
return CallsiteSamples[mapIRLocToProfileLoc(Loc)];
|
|
}
|
|
|
|
/// Returns the FunctionSamplesMap at the given \p Loc.
|
|
const FunctionSamplesMap *
|
|
findFunctionSamplesMapAt(const LineLocation &Loc) const {
|
|
auto Iter = CallsiteSamples.find(mapIRLocToProfileLoc(Loc));
|
|
if (Iter == CallsiteSamples.end())
|
|
return nullptr;
|
|
return &Iter->second;
|
|
}
|
|
|
|
/// Returns a pointer to FunctionSamples at the given callsite location
|
|
/// \p Loc with callee \p CalleeName. If no callsite can be found, relax
|
|
/// the restriction to return the FunctionSamples at callsite location
|
|
/// \p Loc with the maximum total sample count. If \p Remapper or \p
|
|
/// FuncNameToProfNameMap is not nullptr, use them to find FunctionSamples
|
|
/// with equivalent name as \p CalleeName.
|
|
const FunctionSamples *findFunctionSamplesAt(
|
|
const LineLocation &Loc, StringRef CalleeName,
|
|
SampleProfileReaderItaniumRemapper *Remapper,
|
|
const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
|
|
*FuncNameToProfNameMap = nullptr) const;
|
|
|
|
bool empty() const { return TotalSamples == 0; }
|
|
|
|
/// Return the total number of samples collected inside the function.
|
|
uint64_t getTotalSamples() const { return TotalSamples; }
|
|
|
|
/// For top-level functions, return the total number of branch samples that
|
|
/// have the function as the branch target (or 0 otherwise). This is the raw
|
|
/// data fetched from the profile. This should be equivalent to the sample of
|
|
/// the first instruction of the symbol. But as we directly get this info for
|
|
/// raw profile without referring to potentially inaccurate debug info, this
|
|
/// gives more accurate profile data and is preferred for standalone symbols.
|
|
uint64_t getHeadSamples() const { return TotalHeadSamples; }
|
|
|
|
/// Return an estimate of the sample count of the function entry basic block.
|
|
/// The function can be either a standalone symbol or an inlined function.
|
|
/// For Context-Sensitive profiles, this will prefer returning the head
|
|
/// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
|
|
/// the function body's samples or callsite samples.
|
|
uint64_t getHeadSamplesEstimate() const {
|
|
if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
|
|
// For CS profile, if we already have more accurate head samples
|
|
// counted by branch sample from caller, use them as entry samples.
|
|
return getHeadSamples();
|
|
}
|
|
uint64_t Count = 0;
|
|
// Use either BodySamples or CallsiteSamples which ever has the smaller
|
|
// lineno.
|
|
if (!BodySamples.empty() &&
|
|
(CallsiteSamples.empty() ||
|
|
BodySamples.begin()->first < CallsiteSamples.begin()->first))
|
|
Count = BodySamples.begin()->second.getSamples();
|
|
else if (!CallsiteSamples.empty()) {
|
|
// An indirect callsite may be promoted to several inlined direct calls.
|
|
// We need to get the sum of them.
|
|
for (const auto &FuncSamples : CallsiteSamples.begin()->second)
|
|
Count += FuncSamples.second.getHeadSamplesEstimate();
|
|
}
|
|
// Return at least 1 if total sample is not 0.
|
|
return Count ? Count : TotalSamples > 0;
|
|
}
|
|
|
|
/// Return all the samples collected in the body of the function.
|
|
const BodySampleMap &getBodySamples() const { return BodySamples; }
|
|
|
|
/// Return all the callsite samples collected in the body of the function.
|
|
const CallsiteSampleMap &getCallsiteSamples() const {
|
|
return CallsiteSamples;
|
|
}
|
|
|
|
/// Return the maximum of sample counts in a function body. When SkipCallSite
|
|
/// is false, which is the default, the return count includes samples in the
|
|
/// inlined functions. When SkipCallSite is true, the return count only
|
|
/// considers the body samples.
|
|
uint64_t getMaxCountInside(bool SkipCallSite = false) const {
|
|
uint64_t MaxCount = 0;
|
|
for (const auto &L : getBodySamples())
|
|
MaxCount = std::max(MaxCount, L.second.getSamples());
|
|
if (SkipCallSite)
|
|
return MaxCount;
|
|
for (const auto &C : getCallsiteSamples())
|
|
for (const FunctionSamplesMap::value_type &F : C.second)
|
|
MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
|
|
return MaxCount;
|
|
}
|
|
|
|
/// Merge the samples in \p Other into this one.
|
|
/// Optionally scale samples by \p Weight.
|
|
sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
|
|
sampleprof_error Result = sampleprof_error::success;
|
|
if (!GUIDToFuncNameMap)
|
|
GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
|
|
if (Context.getFunction().empty())
|
|
Context = Other.getContext();
|
|
if (FunctionHash == 0) {
|
|
// Set the function hash code for the target profile.
|
|
FunctionHash = Other.getFunctionHash();
|
|
} else if (FunctionHash != Other.getFunctionHash()) {
|
|
// The two profiles coming with different valid hash codes indicates
|
|
// either:
|
|
// 1. They are same-named static functions from different compilation
|
|
// units (without using -unique-internal-linkage-names), or
|
|
// 2. They are really the same function but from different compilations.
|
|
// Let's bail out in either case for now, which means one profile is
|
|
// dropped.
|
|
return sampleprof_error::hash_mismatch;
|
|
}
|
|
|
|
mergeSampleProfErrors(Result,
|
|
addTotalSamples(Other.getTotalSamples(), Weight));
|
|
mergeSampleProfErrors(Result,
|
|
addHeadSamples(Other.getHeadSamples(), Weight));
|
|
for (const auto &I : Other.getBodySamples()) {
|
|
const LineLocation &Loc = I.first;
|
|
const SampleRecord &Rec = I.second;
|
|
mergeSampleProfErrors(Result, BodySamples[Loc].merge(Rec, Weight));
|
|
}
|
|
for (const auto &I : Other.getCallsiteSamples()) {
|
|
const LineLocation &Loc = I.first;
|
|
FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
|
|
for (const auto &Rec : I.second)
|
|
mergeSampleProfErrors(Result,
|
|
FSMap[Rec.first].merge(Rec.second, Weight));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Recursively traverses all children, if the total sample count of the
|
|
/// corresponding function is no less than \p Threshold, add its corresponding
|
|
/// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
|
|
/// to \p S.
|
|
void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
|
|
const HashKeyMap<std::unordered_map, FunctionId,
|
|
Function *> &SymbolMap,
|
|
uint64_t Threshold) const {
|
|
if (TotalSamples <= Threshold)
|
|
return;
|
|
auto IsDeclaration = [](const Function *F) {
|
|
return !F || F->isDeclaration();
|
|
};
|
|
if (IsDeclaration(SymbolMap.lookup(getFunction()))) {
|
|
// Add to the import list only when it's defined out of module.
|
|
S.insert(getGUID());
|
|
}
|
|
// Import hot CallTargets, which may not be available in IR because full
|
|
// profile annotation cannot be done until backend compilation in ThinLTO.
|
|
for (const auto &BS : BodySamples)
|
|
for (const auto &TS : BS.second.getCallTargets())
|
|
if (TS.second > Threshold) {
|
|
const Function *Callee = SymbolMap.lookup(TS.first);
|
|
if (IsDeclaration(Callee))
|
|
S.insert(TS.first.getHashCode());
|
|
}
|
|
for (const auto &CS : CallsiteSamples)
|
|
for (const auto &NameFS : CS.second)
|
|
NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
|
|
}
|
|
|
|
/// Set the name of the function.
|
|
void setFunction(FunctionId NewFunctionID) {
|
|
Context.setFunction(NewFunctionID);
|
|
}
|
|
|
|
/// Return the function name.
|
|
FunctionId getFunction() const { return Context.getFunction(); }
|
|
|
|
/// Return the original function name.
|
|
StringRef getFuncName() const { return getFuncName(getFunction()); }
|
|
|
|
void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
|
|
|
|
uint64_t getFunctionHash() const { return FunctionHash; }
|
|
|
|
void setIRToProfileLocationMap(const LocToLocMap *LTLM) {
|
|
assert(IRToProfileLocationMap == nullptr && "this should be set only once");
|
|
IRToProfileLocationMap = LTLM;
|
|
}
|
|
|
|
/// Return the canonical name for a function, taking into account
|
|
/// suffix elision policy attributes.
|
|
static StringRef getCanonicalFnName(const Function &F) {
|
|
const char *AttrName = "sample-profile-suffix-elision-policy";
|
|
auto Attr = F.getFnAttribute(AttrName).getValueAsString();
|
|
return getCanonicalFnName(F.getName(), Attr);
|
|
}
|
|
|
|
/// Name suffixes which canonicalization should handle to avoid
|
|
/// profile mismatch.
|
|
static constexpr const char *LLVMSuffix = ".llvm.";
|
|
static constexpr const char *PartSuffix = ".part.";
|
|
static constexpr const char *UniqSuffix = ".__uniq.";
|
|
|
|
static StringRef getCanonicalFnName(StringRef FnName,
|
|
StringRef Attr = "selected") {
|
|
// Note the sequence of the suffixes in the knownSuffixes array matters.
|
|
// If suffix "A" is appended after the suffix "B", "A" should be in front
|
|
// of "B" in knownSuffixes.
|
|
const char *KnownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
|
|
if (Attr == "" || Attr == "all")
|
|
return FnName.split('.').first;
|
|
if (Attr == "selected") {
|
|
StringRef Cand(FnName);
|
|
for (const auto &Suf : KnownSuffixes) {
|
|
StringRef Suffix(Suf);
|
|
// If the profile contains ".__uniq." suffix, don't strip the
|
|
// suffix for names in the IR.
|
|
if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
|
|
continue;
|
|
auto It = Cand.rfind(Suffix);
|
|
if (It == StringRef::npos)
|
|
continue;
|
|
auto Dit = Cand.rfind('.');
|
|
if (Dit == It + Suffix.size() - 1)
|
|
Cand = Cand.substr(0, It);
|
|
}
|
|
return Cand;
|
|
}
|
|
if (Attr == "none")
|
|
return FnName;
|
|
assert(false && "internal error: unknown suffix elision policy");
|
|
return FnName;
|
|
}
|
|
|
|
/// Translate \p Func into its original name.
|
|
/// When profile doesn't use MD5, \p Func needs no translation.
|
|
/// When profile uses MD5, \p Func in current FunctionSamples
|
|
/// is actually GUID of the original function name. getFuncName will
|
|
/// translate \p Func in current FunctionSamples into its original name
|
|
/// by looking up in the function map GUIDToFuncNameMap.
|
|
/// If the original name doesn't exist in the map, return empty StringRef.
|
|
StringRef getFuncName(FunctionId Func) const {
|
|
if (!UseMD5)
|
|
return Func.stringRef();
|
|
|
|
assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
|
|
return GUIDToFuncNameMap->lookup(Func.getHashCode());
|
|
}
|
|
|
|
/// Returns the line offset to the start line of the subprogram.
|
|
/// We assume that a single function will not exceed 65535 LOC.
|
|
static unsigned getOffset(const DILocation *DIL);
|
|
|
|
/// Returns a unique call site identifier for a given debug location of a call
|
|
/// instruction. This is wrapper of two scenarios, the probe-based profile and
|
|
/// regular profile, to hide implementation details from the sample loader and
|
|
/// the context tracker.
|
|
static LineLocation getCallSiteIdentifier(const DILocation *DIL,
|
|
bool ProfileIsFS = false);
|
|
|
|
/// Returns a unique hash code for a combination of a callsite location and
|
|
/// the callee function name.
|
|
/// Guarantee MD5 and non-MD5 representation of the same function results in
|
|
/// the same hash.
|
|
static uint64_t getCallSiteHash(FunctionId Callee,
|
|
const LineLocation &Callsite) {
|
|
return SampleContextFrame(Callee, Callsite).getHashCode();
|
|
}
|
|
|
|
/// Get the FunctionSamples of the inline instance where DIL originates
|
|
/// from.
|
|
///
|
|
/// The FunctionSamples of the instruction (Machine or IR) associated to
|
|
/// \p DIL is the inlined instance in which that instruction is coming from.
|
|
/// We traverse the inline stack of that instruction, and match it with the
|
|
/// tree nodes in the profile.
|
|
///
|
|
/// \returns the FunctionSamples pointer to the inlined instance.
|
|
/// If \p Remapper or \p FuncNameToProfNameMap is not nullptr, it will be used
|
|
/// to find matching FunctionSamples with not exactly the same but equivalent
|
|
/// name.
|
|
const FunctionSamples *findFunctionSamples(
|
|
const DILocation *DIL,
|
|
SampleProfileReaderItaniumRemapper *Remapper = nullptr,
|
|
const HashKeyMap<std::unordered_map, FunctionId, FunctionId>
|
|
*FuncNameToProfNameMap = nullptr) const;
|
|
|
|
static bool ProfileIsProbeBased;
|
|
|
|
static bool ProfileIsCS;
|
|
|
|
static bool ProfileIsPreInlined;
|
|
|
|
SampleContext &getContext() const { return Context; }
|
|
|
|
void setContext(const SampleContext &FContext) { Context = FContext; }
|
|
|
|
/// Whether the profile uses MD5 to represent string.
|
|
static bool UseMD5;
|
|
|
|
/// Whether the profile contains any ".__uniq." suffix in a name.
|
|
static bool HasUniqSuffix;
|
|
|
|
/// If this profile uses flow sensitive discriminators.
|
|
static bool ProfileIsFS;
|
|
|
|
/// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
|
|
/// all the function symbols defined or declared in current module.
|
|
DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
|
|
|
|
/// Return the GUID of the context's name. If the context is already using
|
|
/// MD5, don't hash it again.
|
|
uint64_t getGUID() const {
|
|
return getFunction().getHashCode();
|
|
}
|
|
|
|
// Find all the names in the current FunctionSamples including names in
|
|
// all the inline instances and names of call targets.
|
|
void findAllNames(DenseSet<FunctionId> &NameSet) const;
|
|
|
|
bool operator==(const FunctionSamples &Other) const {
|
|
return (GUIDToFuncNameMap == Other.GUIDToFuncNameMap ||
|
|
(GUIDToFuncNameMap && Other.GUIDToFuncNameMap &&
|
|
*GUIDToFuncNameMap == *Other.GUIDToFuncNameMap)) &&
|
|
FunctionHash == Other.FunctionHash && Context == Other.Context &&
|
|
TotalSamples == Other.TotalSamples &&
|
|
TotalHeadSamples == Other.TotalHeadSamples &&
|
|
BodySamples == Other.BodySamples &&
|
|
CallsiteSamples == Other.CallsiteSamples;
|
|
}
|
|
|
|
bool operator!=(const FunctionSamples &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
private:
|
|
/// CFG hash value for the function.
|
|
uint64_t FunctionHash = 0;
|
|
|
|
/// Calling context for function profile
|
|
mutable SampleContext Context;
|
|
|
|
/// Total number of samples collected inside this function.
|
|
///
|
|
/// Samples are cumulative, they include all the samples collected
|
|
/// inside this function and all its inlined callees.
|
|
uint64_t TotalSamples = 0;
|
|
|
|
/// Total number of samples collected at the head of the function.
|
|
/// This is an approximation of the number of calls made to this function
|
|
/// at runtime.
|
|
uint64_t TotalHeadSamples = 0;
|
|
|
|
/// Map instruction locations to collected samples.
|
|
///
|
|
/// Each entry in this map contains the number of samples
|
|
/// collected at the corresponding line offset. All line locations
|
|
/// are an offset from the start of the function.
|
|
BodySampleMap BodySamples;
|
|
|
|
/// Map call sites to collected samples for the called function.
|
|
///
|
|
/// Each entry in this map corresponds to all the samples
|
|
/// collected for the inlined function call at the given
|
|
/// location. For example, given:
|
|
///
|
|
/// void foo() {
|
|
/// 1 bar();
|
|
/// ...
|
|
/// 8 baz();
|
|
/// }
|
|
///
|
|
/// If the bar() and baz() calls were inlined inside foo(), this
|
|
/// map will contain two entries. One for all the samples collected
|
|
/// in the call to bar() at line offset 1, the other for all the samples
|
|
/// collected in the call to baz() at line offset 8.
|
|
CallsiteSampleMap CallsiteSamples;
|
|
|
|
/// IR to profile location map generated by stale profile matching.
|
|
///
|
|
/// Each entry is a mapping from the location on current build to the matched
|
|
/// location in the "stale" profile. For example:
|
|
/// Profiled source code:
|
|
/// void foo() {
|
|
/// 1 bar();
|
|
/// }
|
|
///
|
|
/// Current source code:
|
|
/// void foo() {
|
|
/// 1 // Code change
|
|
/// 2 bar();
|
|
/// }
|
|
/// Supposing the stale profile matching algorithm generated the mapping [2 ->
|
|
/// 1], the profile query using the location of bar on the IR which is 2 will
|
|
/// be remapped to 1 and find the location of bar in the profile.
|
|
const LocToLocMap *IRToProfileLocationMap = nullptr;
|
|
};
|
|
|
|
/// Get the proper representation of a string according to whether the
|
|
/// current Format uses MD5 to represent the string.
|
|
static inline FunctionId getRepInFormat(StringRef Name) {
|
|
if (Name.empty() || !FunctionSamples::UseMD5)
|
|
return FunctionId(Name);
|
|
return FunctionId(Function::getGUID(Name));
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
|
|
|
|
/// This class provides operator overloads to the map container using MD5 as the
|
|
/// key type, so that existing code can still work in most cases using
|
|
/// SampleContext as key.
|
|
/// Note: when populating container, make sure to assign the SampleContext to
|
|
/// the mapped value immediately because the key no longer holds it.
|
|
class SampleProfileMap
|
|
: public HashKeyMap<std::unordered_map, SampleContext, FunctionSamples> {
|
|
public:
|
|
// Convenience method because this is being used in many places. Set the
|
|
// FunctionSamples' context if its newly inserted.
|
|
mapped_type &create(const SampleContext &Ctx) {
|
|
auto Ret = try_emplace(Ctx, FunctionSamples());
|
|
if (Ret.second)
|
|
Ret.first->second.setContext(Ctx);
|
|
return Ret.first->second;
|
|
}
|
|
|
|
iterator find(const SampleContext &Ctx) {
|
|
return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
|
|
Ctx);
|
|
}
|
|
|
|
const_iterator find(const SampleContext &Ctx) const {
|
|
return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::find(
|
|
Ctx);
|
|
}
|
|
|
|
size_t erase(const SampleContext &Ctx) {
|
|
return HashKeyMap<std::unordered_map, SampleContext, FunctionSamples>::
|
|
erase(Ctx);
|
|
}
|
|
|
|
size_t erase(const key_type &Key) { return base_type::erase(Key); }
|
|
|
|
iterator erase(iterator It) { return base_type::erase(It); }
|
|
};
|
|
|
|
using NameFunctionSamples = std::pair<hash_code, const FunctionSamples *>;
|
|
|
|
void sortFuncProfiles(const SampleProfileMap &ProfileMap,
|
|
std::vector<NameFunctionSamples> &SortedProfiles);
|
|
|
|
/// Sort a LocationT->SampleT map by LocationT.
|
|
///
|
|
/// It produces a sorted list of <LocationT, SampleT> records by ascending
|
|
/// order of LocationT.
|
|
template <class LocationT, class SampleT> class SampleSorter {
|
|
public:
|
|
using SamplesWithLoc = std::pair<const LocationT, SampleT>;
|
|
using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
|
|
|
|
SampleSorter(const std::map<LocationT, SampleT> &Samples) {
|
|
for (const auto &I : Samples)
|
|
V.push_back(&I);
|
|
llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
|
|
return A->first < B->first;
|
|
});
|
|
}
|
|
|
|
const SamplesWithLocList &get() const { return V; }
|
|
|
|
private:
|
|
SamplesWithLocList V;
|
|
};
|
|
|
|
/// SampleContextTrimmer impelements helper functions to trim, merge cold
|
|
/// context profiles. It also supports context profile canonicalization to make
|
|
/// sure ProfileMap's key is consistent with FunctionSample's name/context.
|
|
class SampleContextTrimmer {
|
|
public:
|
|
SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
|
|
// Trim and merge cold context profile when requested. TrimBaseProfileOnly
|
|
// should only be effective when TrimColdContext is true. On top of
|
|
// TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
|
|
// cold profiles or only cold base profiles. Trimming base profiles only is
|
|
// mainly to honor the preinliner decsion. Note that when MergeColdContext is
|
|
// true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
|
|
// be ignored.
|
|
void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
|
|
bool TrimColdContext,
|
|
bool MergeColdContext,
|
|
uint32_t ColdContextFrameLength,
|
|
bool TrimBaseProfileOnly);
|
|
|
|
private:
|
|
SampleProfileMap &ProfileMap;
|
|
};
|
|
|
|
/// Helper class for profile conversion.
|
|
///
|
|
/// It supports full context-sensitive profile to nested profile conversion,
|
|
/// nested profile to flatten profile conversion, etc.
|
|
class ProfileConverter {
|
|
public:
|
|
ProfileConverter(SampleProfileMap &Profiles);
|
|
// Convert a full context-sensitive flat sample profile into a nested sample
|
|
// profile.
|
|
void convertCSProfiles();
|
|
struct FrameNode {
|
|
FrameNode(FunctionId FName = FunctionId(),
|
|
FunctionSamples *FSamples = nullptr,
|
|
LineLocation CallLoc = {0, 0})
|
|
: FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
|
|
|
|
// Map line+discriminator location to child frame
|
|
std::map<uint64_t, FrameNode> AllChildFrames;
|
|
// Function name for current frame
|
|
FunctionId FuncName;
|
|
// Function Samples for current frame
|
|
FunctionSamples *FuncSamples;
|
|
// Callsite location in parent context
|
|
LineLocation CallSiteLoc;
|
|
|
|
FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
|
|
FunctionId CalleeName);
|
|
};
|
|
|
|
static void flattenProfile(SampleProfileMap &ProfileMap,
|
|
bool ProfileIsCS = false) {
|
|
SampleProfileMap TmpProfiles;
|
|
flattenProfile(ProfileMap, TmpProfiles, ProfileIsCS);
|
|
ProfileMap = std::move(TmpProfiles);
|
|
}
|
|
|
|
static void flattenProfile(const SampleProfileMap &InputProfiles,
|
|
SampleProfileMap &OutputProfiles,
|
|
bool ProfileIsCS = false) {
|
|
if (ProfileIsCS) {
|
|
for (const auto &I : InputProfiles) {
|
|
// Retain the profile name and clear the full context for each function
|
|
// profile.
|
|
FunctionSamples &FS = OutputProfiles.create(I.second.getFunction());
|
|
FS.merge(I.second);
|
|
}
|
|
} else {
|
|
for (const auto &I : InputProfiles)
|
|
flattenNestedProfile(OutputProfiles, I.second);
|
|
}
|
|
}
|
|
|
|
private:
|
|
static void flattenNestedProfile(SampleProfileMap &OutputProfiles,
|
|
const FunctionSamples &FS) {
|
|
// To retain the context, checksum, attributes of the original profile, make
|
|
// a copy of it if no profile is found.
|
|
SampleContext &Context = FS.getContext();
|
|
auto Ret = OutputProfiles.try_emplace(Context, FS);
|
|
FunctionSamples &Profile = Ret.first->second;
|
|
if (Ret.second) {
|
|
// Clear nested inlinees' samples for the flattened copy. These inlinees
|
|
// will have their own top-level entries after flattening.
|
|
Profile.removeAllCallsiteSamples();
|
|
// We recompute TotalSamples later, so here set to zero.
|
|
Profile.setTotalSamples(0);
|
|
} else {
|
|
for (const auto &[LineLocation, SampleRecord] : FS.getBodySamples()) {
|
|
Profile.addSampleRecord(LineLocation, SampleRecord);
|
|
}
|
|
}
|
|
|
|
assert(Profile.getCallsiteSamples().empty() &&
|
|
"There should be no inlinees' profiles after flattening.");
|
|
|
|
// TotalSamples might not be equal to the sum of all samples from
|
|
// BodySamples and CallsiteSamples. So here we use "TotalSamples =
|
|
// Original_TotalSamples - All_of_Callsite_TotalSamples +
|
|
// All_of_Callsite_HeadSamples" to compute the new TotalSamples.
|
|
uint64_t TotalSamples = FS.getTotalSamples();
|
|
|
|
for (const auto &I : FS.getCallsiteSamples()) {
|
|
for (const auto &Callee : I.second) {
|
|
const auto &CalleeProfile = Callee.second;
|
|
// Add body sample.
|
|
Profile.addBodySamples(I.first.LineOffset, I.first.Discriminator,
|
|
CalleeProfile.getHeadSamplesEstimate());
|
|
// Add callsite sample.
|
|
Profile.addCalledTargetSamples(
|
|
I.first.LineOffset, I.first.Discriminator,
|
|
CalleeProfile.getFunction(),
|
|
CalleeProfile.getHeadSamplesEstimate());
|
|
// Update total samples.
|
|
TotalSamples = TotalSamples >= CalleeProfile.getTotalSamples()
|
|
? TotalSamples - CalleeProfile.getTotalSamples()
|
|
: 0;
|
|
TotalSamples += CalleeProfile.getHeadSamplesEstimate();
|
|
// Recursively convert callee profile.
|
|
flattenNestedProfile(OutputProfiles, CalleeProfile);
|
|
}
|
|
}
|
|
Profile.addTotalSamples(TotalSamples);
|
|
|
|
Profile.setHeadSamples(Profile.getHeadSamplesEstimate());
|
|
}
|
|
|
|
// Nest all children profiles into the profile of Node.
|
|
void convertCSProfiles(FrameNode &Node);
|
|
FrameNode *getOrCreateContextPath(const SampleContext &Context);
|
|
|
|
SampleProfileMap &ProfileMap;
|
|
FrameNode RootFrame;
|
|
};
|
|
|
|
/// ProfileSymbolList records the list of function symbols shown up
|
|
/// in the binary used to generate the profile. It is useful to
|
|
/// to discriminate a function being so cold as not to shown up
|
|
/// in the profile and a function newly added.
|
|
class ProfileSymbolList {
|
|
public:
|
|
/// copy indicates whether we need to copy the underlying memory
|
|
/// for the input Name.
|
|
void add(StringRef Name, bool Copy = false) {
|
|
if (!Copy) {
|
|
Syms.insert(Name);
|
|
return;
|
|
}
|
|
Syms.insert(Name.copy(Allocator));
|
|
}
|
|
|
|
bool contains(StringRef Name) { return Syms.count(Name); }
|
|
|
|
void merge(const ProfileSymbolList &List) {
|
|
for (auto Sym : List.Syms)
|
|
add(Sym, true);
|
|
}
|
|
|
|
unsigned size() { return Syms.size(); }
|
|
|
|
void setToCompress(bool TC) { ToCompress = TC; }
|
|
bool toCompress() { return ToCompress; }
|
|
|
|
std::error_code read(const uint8_t *Data, uint64_t ListSize);
|
|
std::error_code write(raw_ostream &OS);
|
|
void dump(raw_ostream &OS = dbgs()) const;
|
|
|
|
private:
|
|
// Determine whether or not to compress the symbol list when
|
|
// writing it into profile. The variable is unused when the symbol
|
|
// list is read from an existing profile.
|
|
bool ToCompress = false;
|
|
DenseSet<StringRef> Syms;
|
|
BumpPtrAllocator Allocator;
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
|
|
using namespace sampleprof;
|
|
// Provide DenseMapInfo for SampleContext.
|
|
template <> struct DenseMapInfo<SampleContext> {
|
|
static inline SampleContext getEmptyKey() { return SampleContext(); }
|
|
|
|
static inline SampleContext getTombstoneKey() {
|
|
return SampleContext(FunctionId(~1ULL));
|
|
}
|
|
|
|
static unsigned getHashValue(const SampleContext &Val) {
|
|
return Val.getHashCode();
|
|
}
|
|
|
|
static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
// Prepend "__uniq" before the hash for tools like profilers to understand
|
|
// that this symbol is of internal linkage type. The "__uniq" is the
|
|
// pre-determined prefix that is used to tell tools that this symbol was
|
|
// created with -funique-internal-linkage-symbols and the tools can strip or
|
|
// keep the prefix as needed.
|
|
inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
|
|
llvm::MD5 Md5;
|
|
Md5.update(FName);
|
|
llvm::MD5::MD5Result R;
|
|
Md5.final(R);
|
|
SmallString<32> Str;
|
|
llvm::MD5::stringifyResult(R, Str);
|
|
// Convert MD5hash to Decimal. Demangler suffixes can either contain
|
|
// numbers or characters but not both.
|
|
llvm::APInt IntHash(128, Str.str(), 16);
|
|
return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
|
|
.insert(0, FunctionSamples::UniqSuffix);
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H
|