Files
clang-r547379/include/llvm/ADT/GenericCycleImpl.h
Ryan Prichard 6024e5c395 Update prebuilt Clang to r547379 (20.0.0).
clang 20.0.0 (based on r547379) from build 12806354.

Bug: http://b/379133546
Test: N/A
Change-Id: I2eb8938af55d809de674be63cb30cf27e801862b

Upstream-Commit: ad834e67b1105d15ef907f6255d4c96e8e733f57
2025-11-26 14:59:46 -05:00

619 lines
20 KiB
C++

//===- GenericCycleImpl.h -------------------------------------*- C++ -*---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This template implementation resides in a separate file so that it
/// does not get injected into every .cpp file that includes the
/// generic header.
///
/// DO NOT INCLUDE THIS FILE WHEN MERELY USING CYCLEINFO.
///
/// This file should only be included by files that implement a
/// specialization of the relevant templates. Currently these are:
/// - llvm/lib/IR/CycleInfo.cpp
/// - llvm/lib/CodeGen/MachineCycleAnalysis.cpp
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_GENERICCYCLEIMPL_H
#define LLVM_ADT_GENERICCYCLEIMPL_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GenericCycleInfo.h"
#include "llvm/ADT/StringExtras.h"
#define DEBUG_TYPE "generic-cycle-impl"
namespace llvm {
template <typename ContextT>
bool GenericCycle<ContextT>::contains(const GenericCycle *C) const {
if (!C)
return false;
if (Depth > C->Depth)
return false;
while (Depth < C->Depth)
C = C->ParentCycle;
return this == C;
}
template <typename ContextT>
void GenericCycle<ContextT>::getExitBlocks(
SmallVectorImpl<BlockT *> &TmpStorage) const {
TmpStorage.clear();
size_t NumExitBlocks = 0;
for (BlockT *Block : blocks()) {
llvm::append_range(TmpStorage, successors(Block));
for (size_t Idx = NumExitBlocks, End = TmpStorage.size(); Idx < End;
++Idx) {
BlockT *Succ = TmpStorage[Idx];
if (!contains(Succ)) {
auto ExitEndIt = TmpStorage.begin() + NumExitBlocks;
if (std::find(TmpStorage.begin(), ExitEndIt, Succ) == ExitEndIt)
TmpStorage[NumExitBlocks++] = Succ;
}
}
TmpStorage.resize(NumExitBlocks);
}
}
template <typename ContextT>
void GenericCycle<ContextT>::getExitingBlocks(
SmallVectorImpl<BlockT *> &TmpStorage) const {
TmpStorage.clear();
for (BlockT *Block : blocks()) {
for (BlockT *Succ : successors(Block)) {
if (!contains(Succ)) {
TmpStorage.push_back(Block);
break;
}
}
}
}
template <typename ContextT>
auto GenericCycle<ContextT>::getCyclePreheader() const -> BlockT * {
BlockT *Predecessor = getCyclePredecessor();
if (!Predecessor)
return nullptr;
assert(isReducible() && "Cycle Predecessor must be in a reducible cycle!");
if (succ_size(Predecessor) != 1)
return nullptr;
// Make sure we are allowed to hoist instructions into the predecessor.
if (!Predecessor->isLegalToHoistInto())
return nullptr;
return Predecessor;
}
template <typename ContextT>
auto GenericCycle<ContextT>::getCyclePredecessor() const -> BlockT * {
if (!isReducible())
return nullptr;
BlockT *Out = nullptr;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
for (const auto Pred : predecessors(Header)) {
if (!contains(Pred)) {
if (Out && Out != Pred)
return nullptr;
Out = Pred;
}
}
return Out;
}
/// \brief Verify that this is actually a well-formed cycle in the CFG.
template <typename ContextT> void GenericCycle<ContextT>::verifyCycle() const {
#ifndef NDEBUG
assert(!Blocks.empty() && "Cycle cannot be empty.");
DenseSet<BlockT *> Blocks;
for (BlockT *BB : blocks()) {
assert(Blocks.insert(BB).second); // duplicates in block list?
}
assert(!Entries.empty() && "Cycle must have one or more entries.");
DenseSet<BlockT *> Entries;
for (BlockT *Entry : entries()) {
assert(Entries.insert(Entry).second); // duplicate entry?
assert(contains(Entry));
}
// Setup for using a depth-first iterator to visit every block in the cycle.
SmallVector<BlockT *, 8> ExitBBs;
getExitBlocks(ExitBBs);
df_iterator_default_set<BlockT *> VisitSet;
VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
// Keep track of the BBs visited.
SmallPtrSet<BlockT *, 8> VisitedBBs;
// Check the individual blocks.
for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
assert(llvm::any_of(llvm::children<BlockT *>(BB),
[&](BlockT *B) { return contains(B); }) &&
"Cycle block has no in-cycle successors!");
assert(llvm::any_of(llvm::inverse_children<BlockT *>(BB),
[&](BlockT *B) { return contains(B); }) &&
"Cycle block has no in-cycle predecessors!");
DenseSet<BlockT *> OutsideCyclePreds;
for (BlockT *B : llvm::inverse_children<BlockT *>(BB))
if (!contains(B))
OutsideCyclePreds.insert(B);
if (Entries.contains(BB)) {
assert(!OutsideCyclePreds.empty() && "Entry is unreachable!");
} else if (!OutsideCyclePreds.empty()) {
// A non-entry block shouldn't be reachable from outside the cycle,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = &BB->getParent()->front();
for (BlockT *CB : depth_first(EntryBB))
assert(!OutsideCyclePreds.contains(CB) &&
"Non-entry block reachable from outside!");
}
assert(BB != &getHeader()->getParent()->front() &&
"Cycle contains function entry block!");
VisitedBBs.insert(BB);
}
if (VisitedBBs.size() != getNumBlocks()) {
dbgs() << "The following blocks are unreachable in the cycle:\n ";
ListSeparator LS;
for (auto *BB : Blocks) {
if (!VisitedBBs.count(BB)) {
dbgs() << LS;
BB->printAsOperand(dbgs());
}
}
dbgs() << "\n";
llvm_unreachable("Unreachable block in cycle");
}
verifyCycleNest();
#endif
}
/// \brief Verify the parent-child relations of this cycle.
///
/// Note that this does \em not check that cycle is really a cycle in the CFG.
template <typename ContextT>
void GenericCycle<ContextT>::verifyCycleNest() const {
#ifndef NDEBUG
// Check the subcycles.
for (GenericCycle *Child : children()) {
// Each block in each subcycle should be contained within this cycle.
for (BlockT *BB : Child->blocks()) {
assert(contains(BB) &&
"Cycle does not contain all the blocks of a subcycle!");
}
assert(Child->Depth == Depth + 1);
}
// Check the parent cycle pointer.
if (ParentCycle) {
assert(is_contained(ParentCycle->children(), this) &&
"Cycle is not a subcycle of its parent!");
}
#endif
}
/// \brief Helper class for computing cycle information.
template <typename ContextT> class GenericCycleInfoCompute {
using BlockT = typename ContextT::BlockT;
using CycleInfoT = GenericCycleInfo<ContextT>;
using CycleT = typename CycleInfoT::CycleT;
CycleInfoT &Info;
struct DFSInfo {
unsigned Start = 0; // DFS start; positive if block is found
unsigned End = 0; // DFS end
DFSInfo() = default;
explicit DFSInfo(unsigned Start) : Start(Start) {}
explicit operator bool() const { return Start; }
/// Whether this node is an ancestor (or equal to) the node \p Other
/// in the DFS tree.
bool isAncestorOf(const DFSInfo &Other) const {
return Start <= Other.Start && Other.End <= End;
}
};
DenseMap<BlockT *, DFSInfo> BlockDFSInfo;
SmallVector<BlockT *, 8> BlockPreorder;
GenericCycleInfoCompute(const GenericCycleInfoCompute &) = delete;
GenericCycleInfoCompute &operator=(const GenericCycleInfoCompute &) = delete;
public:
GenericCycleInfoCompute(CycleInfoT &Info) : Info(Info) {}
void run(BlockT *EntryBlock);
static void updateDepth(CycleT *SubTree);
private:
void dfs(BlockT *EntryBlock);
};
template <typename ContextT>
auto GenericCycleInfo<ContextT>::getTopLevelParentCycle(BlockT *Block)
-> CycleT * {
auto Cycle = BlockMapTopLevel.find(Block);
if (Cycle != BlockMapTopLevel.end())
return Cycle->second;
auto MapIt = BlockMap.find(Block);
if (MapIt == BlockMap.end())
return nullptr;
auto *C = MapIt->second;
while (C->ParentCycle)
C = C->ParentCycle;
BlockMapTopLevel.try_emplace(Block, C);
return C;
}
template <typename ContextT>
void GenericCycleInfo<ContextT>::moveTopLevelCycleToNewParent(CycleT *NewParent,
CycleT *Child) {
assert((!Child->ParentCycle && !NewParent->ParentCycle) &&
"NewParent and Child must be both top level cycle!\n");
auto &CurrentContainer =
Child->ParentCycle ? Child->ParentCycle->Children : TopLevelCycles;
auto Pos = llvm::find_if(CurrentContainer, [=](const auto &Ptr) -> bool {
return Child == Ptr.get();
});
assert(Pos != CurrentContainer.end());
NewParent->Children.push_back(std::move(*Pos));
*Pos = std::move(CurrentContainer.back());
CurrentContainer.pop_back();
Child->ParentCycle = NewParent;
NewParent->Blocks.insert(Child->block_begin(), Child->block_end());
for (auto &It : BlockMapTopLevel)
if (It.second == Child)
It.second = NewParent;
}
template <typename ContextT>
void GenericCycleInfo<ContextT>::addBlockToCycle(BlockT *Block, CycleT *Cycle) {
// FixMe: Appending NewBlock is fine as a set of blocks in a cycle. When
// printing, cycle NewBlock is at the end of list but it should be in the
// middle to represent actual traversal of a cycle.
Cycle->appendBlock(Block);
BlockMap.try_emplace(Block, Cycle);
CycleT *ParentCycle = Cycle->getParentCycle();
while (ParentCycle) {
Cycle = ParentCycle;
Cycle->appendBlock(Block);
ParentCycle = Cycle->getParentCycle();
}
BlockMapTopLevel.try_emplace(Block, Cycle);
}
/// \brief Main function of the cycle info computations.
template <typename ContextT>
void GenericCycleInfoCompute<ContextT>::run(BlockT *EntryBlock) {
LLVM_DEBUG(errs() << "Entry block: " << Info.Context.print(EntryBlock)
<< "\n");
dfs(EntryBlock);
SmallVector<BlockT *, 8> Worklist;
for (BlockT *HeaderCandidate : llvm::reverse(BlockPreorder)) {
const DFSInfo CandidateInfo = BlockDFSInfo.lookup(HeaderCandidate);
for (BlockT *Pred : predecessors(HeaderCandidate)) {
const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred);
// This automatically ignores unreachable predecessors since they have
// zeros in their DFSInfo.
if (CandidateInfo.isAncestorOf(PredDFSInfo))
Worklist.push_back(Pred);
}
if (Worklist.empty()) {
continue;
}
// Found a cycle with the candidate as its header.
LLVM_DEBUG(errs() << "Found cycle for header: "
<< Info.Context.print(HeaderCandidate) << "\n");
std::unique_ptr<CycleT> NewCycle = std::make_unique<CycleT>();
NewCycle->appendEntry(HeaderCandidate);
NewCycle->appendBlock(HeaderCandidate);
Info.BlockMap.try_emplace(HeaderCandidate, NewCycle.get());
// Helper function to process (non-back-edge) predecessors of a discovered
// block and either add them to the worklist or recognize that the given
// block is an additional cycle entry.
auto ProcessPredecessors = [&](BlockT *Block) {
LLVM_DEBUG(errs() << " block " << Info.Context.print(Block) << ": ");
bool IsEntry = false;
for (BlockT *Pred : predecessors(Block)) {
const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred);
if (CandidateInfo.isAncestorOf(PredDFSInfo)) {
Worklist.push_back(Pred);
} else if (!PredDFSInfo) {
// Ignore an unreachable predecessor. It will will incorrectly cause
// Block to be treated as a cycle entry.
LLVM_DEBUG(errs() << " skipped unreachable predecessor.\n");
} else {
IsEntry = true;
}
}
if (IsEntry) {
assert(!NewCycle->isEntry(Block));
LLVM_DEBUG(errs() << "append as entry\n");
NewCycle->appendEntry(Block);
} else {
LLVM_DEBUG(errs() << "append as child\n");
}
};
do {
BlockT *Block = Worklist.pop_back_val();
if (Block == HeaderCandidate)
continue;
// If the block has already been discovered by some cycle
// (possibly by ourself), then the outermost cycle containing it
// should become our child.
if (auto *BlockParent = Info.getTopLevelParentCycle(Block)) {
LLVM_DEBUG(errs() << " block " << Info.Context.print(Block) << ": ");
if (BlockParent != NewCycle.get()) {
LLVM_DEBUG(errs()
<< "discovered child cycle "
<< Info.Context.print(BlockParent->getHeader()) << "\n");
// Make BlockParent the child of NewCycle.
Info.moveTopLevelCycleToNewParent(NewCycle.get(), BlockParent);
for (auto *ChildEntry : BlockParent->entries())
ProcessPredecessors(ChildEntry);
} else {
LLVM_DEBUG(errs()
<< "known child cycle "
<< Info.Context.print(BlockParent->getHeader()) << "\n");
}
} else {
Info.BlockMap.try_emplace(Block, NewCycle.get());
assert(!is_contained(NewCycle->Blocks, Block));
NewCycle->Blocks.insert(Block);
ProcessPredecessors(Block);
Info.BlockMapTopLevel.try_emplace(Block, NewCycle.get());
}
} while (!Worklist.empty());
Info.TopLevelCycles.push_back(std::move(NewCycle));
}
// Fix top-level cycle links and compute cycle depths.
for (auto *TLC : Info.toplevel_cycles()) {
LLVM_DEBUG(errs() << "top-level cycle: "
<< Info.Context.print(TLC->getHeader()) << "\n");
TLC->ParentCycle = nullptr;
updateDepth(TLC);
}
}
/// \brief Recompute depth values of \p SubTree and all descendants.
template <typename ContextT>
void GenericCycleInfoCompute<ContextT>::updateDepth(CycleT *SubTree) {
for (CycleT *Cycle : depth_first(SubTree))
Cycle->Depth = Cycle->ParentCycle ? Cycle->ParentCycle->Depth + 1 : 1;
}
/// \brief Compute a DFS of basic blocks starting at the function entry.
///
/// Fills BlockDFSInfo with start/end counters and BlockPreorder.
template <typename ContextT>
void GenericCycleInfoCompute<ContextT>::dfs(BlockT *EntryBlock) {
SmallVector<unsigned, 8> DFSTreeStack;
SmallVector<BlockT *, 8> TraverseStack;
unsigned Counter = 0;
TraverseStack.emplace_back(EntryBlock);
do {
BlockT *Block = TraverseStack.back();
LLVM_DEBUG(errs() << "DFS visiting block: " << Info.Context.print(Block)
<< "\n");
if (!BlockDFSInfo.count(Block)) {
// We're visiting the block for the first time. Open its DFSInfo, add
// successors to the traversal stack, and remember the traversal stack
// depth at which the block was opened, so that we can correctly record
// its end time.
LLVM_DEBUG(errs() << " first encountered at depth "
<< TraverseStack.size() << "\n");
DFSTreeStack.emplace_back(TraverseStack.size());
llvm::append_range(TraverseStack, successors(Block));
bool Added = BlockDFSInfo.try_emplace(Block, ++Counter).second;
(void)Added;
assert(Added);
BlockPreorder.push_back(Block);
LLVM_DEBUG(errs() << " preorder number: " << Counter << "\n");
} else {
assert(!DFSTreeStack.empty());
if (DFSTreeStack.back() == TraverseStack.size()) {
LLVM_DEBUG(errs() << " ended at " << Counter << "\n");
BlockDFSInfo.find(Block)->second.End = Counter;
DFSTreeStack.pop_back();
} else {
LLVM_DEBUG(errs() << " already done\n");
}
TraverseStack.pop_back();
}
} while (!TraverseStack.empty());
assert(DFSTreeStack.empty());
LLVM_DEBUG(
errs() << "Preorder:\n";
for (int i = 0, e = BlockPreorder.size(); i != e; ++i) {
errs() << " " << Info.Context.print(BlockPreorder[i]) << ": " << i << "\n";
}
);
}
/// \brief Reset the object to its initial state.
template <typename ContextT> void GenericCycleInfo<ContextT>::clear() {
TopLevelCycles.clear();
BlockMap.clear();
BlockMapTopLevel.clear();
}
/// \brief Compute the cycle info for a function.
template <typename ContextT>
void GenericCycleInfo<ContextT>::compute(FunctionT &F) {
GenericCycleInfoCompute<ContextT> Compute(*this);
Context = ContextT(&F);
LLVM_DEBUG(errs() << "Computing cycles for function: " << F.getName()
<< "\n");
Compute.run(&F.front());
}
template <typename ContextT>
void GenericCycleInfo<ContextT>::splitCriticalEdge(BlockT *Pred, BlockT *Succ,
BlockT *NewBlock) {
// Edge Pred-Succ is replaced by edges Pred-NewBlock and NewBlock-Succ, all
// cycles that had blocks Pred and Succ also get NewBlock.
CycleT *Cycle = getSmallestCommonCycle(getCycle(Pred), getCycle(Succ));
if (!Cycle)
return;
addBlockToCycle(NewBlock, Cycle);
verifyCycleNest();
}
/// \brief Find the innermost cycle containing a given block.
///
/// \returns the innermost cycle containing \p Block or nullptr if
/// it is not contained in any cycle.
template <typename ContextT>
auto GenericCycleInfo<ContextT>::getCycle(const BlockT *Block) const
-> CycleT * {
return BlockMap.lookup(Block);
}
/// \brief Find the innermost cycle containing both given cycles.
///
/// \returns the innermost cycle containing both \p A and \p B
/// or nullptr if there is no such cycle.
template <typename ContextT>
auto GenericCycleInfo<ContextT>::getSmallestCommonCycle(CycleT *A,
CycleT *B) const
-> CycleT * {
if (!A || !B)
return nullptr;
// If cycles A and B have different depth replace them with parent cycle
// until they have the same depth.
while (A->getDepth() > B->getDepth())
A = A->getParentCycle();
while (B->getDepth() > A->getDepth())
B = B->getParentCycle();
// Cycles A and B are at same depth but may be disjoint, replace them with
// parent cycles until we find cycle that contains both or we run out of
// parent cycles.
while (A != B) {
A = A->getParentCycle();
B = B->getParentCycle();
}
return A;
}
/// \brief get the depth for the cycle which containing a given block.
///
/// \returns the depth for the innermost cycle containing \p Block or 0 if it is
/// not contained in any cycle.
template <typename ContextT>
unsigned GenericCycleInfo<ContextT>::getCycleDepth(const BlockT *Block) const {
CycleT *Cycle = getCycle(Block);
if (!Cycle)
return 0;
return Cycle->getDepth();
}
/// \brief Verify the internal consistency of the cycle tree.
///
/// Note that this does \em not check that cycles are really cycles in the CFG,
/// or that the right set of cycles in the CFG were found.
template <typename ContextT>
void GenericCycleInfo<ContextT>::verifyCycleNest(bool VerifyFull) const {
#ifndef NDEBUG
DenseSet<BlockT *> CycleHeaders;
for (CycleT *TopCycle : toplevel_cycles()) {
for (CycleT *Cycle : depth_first(TopCycle)) {
BlockT *Header = Cycle->getHeader();
assert(CycleHeaders.insert(Header).second);
if (VerifyFull)
Cycle->verifyCycle();
else
Cycle->verifyCycleNest();
// Check the block map entries for blocks contained in this cycle.
for (BlockT *BB : Cycle->blocks()) {
auto MapIt = BlockMap.find(BB);
assert(MapIt != BlockMap.end());
assert(Cycle->contains(MapIt->second));
}
}
}
#endif
}
/// \brief Verify that the entire cycle tree well-formed.
template <typename ContextT> void GenericCycleInfo<ContextT>::verify() const {
verifyCycleNest(/*VerifyFull=*/true);
}
/// \brief Print the cycle info.
template <typename ContextT>
void GenericCycleInfo<ContextT>::print(raw_ostream &Out) const {
for (const auto *TLC : toplevel_cycles()) {
for (const CycleT *Cycle : depth_first(TLC)) {
for (unsigned I = 0; I < Cycle->Depth; ++I)
Out << " ";
Out << Cycle->print(Context) << '\n';
}
}
}
} // namespace llvm
#undef DEBUG_TYPE
#endif // LLVM_ADT_GENERICCYCLEIMPL_H