//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines classes mirroring those in llvm/Analysis/Dominators.h, // but for target-specific code rather than target-independent IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H #define LLVM_CODEGEN_MACHINEDOMINATORS_H #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundleIterator.h" #include "llvm/CodeGen/MachinePassManager.h" #include "llvm/Support/GenericDomTree.h" #include #include #include namespace llvm { class AnalysisUsage; class MachineFunction; class Module; class raw_ostream; template <> inline void DominatorTreeBase::addRoot( MachineBasicBlock *MBB) { this->Roots.push_back(MBB); } extern template class DomTreeNodeBase; extern template class DominatorTreeBase; // DomTree using MachineDomTreeNode = DomTreeNodeBase; namespace DomTreeBuilder { using MBBDomTree = DomTreeBase; using MBBUpdates = ArrayRef>; using MBBDomTreeGraphDiff = GraphDiff; extern template void Calculate(MBBDomTree &DT); extern template void CalculateWithUpdates(MBBDomTree &DT, MBBUpdates U); extern template void InsertEdge(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To); extern template void DeleteEdge(MBBDomTree &DT, MachineBasicBlock *From, MachineBasicBlock *To); extern template void ApplyUpdates(MBBDomTree &DT, MBBDomTreeGraphDiff &, MBBDomTreeGraphDiff *); extern template bool Verify(const MBBDomTree &DT, MBBDomTree::VerificationLevel VL); } // namespace DomTreeBuilder //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class MachineDominatorTree : public DomTreeBase { /// Helper structure used to hold all the basic blocks /// involved in the split of a critical edge. struct CriticalEdge { MachineBasicBlock *FromBB; MachineBasicBlock *ToBB; MachineBasicBlock *NewBB; }; /// Pile up all the critical edges to be split. /// The splitting of a critical edge is local and thus, it is possible /// to apply several of those changes at the same time. mutable SmallVector CriticalEdgesToSplit; /// Remember all the basic blocks that are inserted during /// edge splitting. /// Invariant: NewBBs == all the basic blocks contained in the NewBB /// field of all the elements of CriticalEdgesToSplit. /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs /// such as BB == elt.NewBB. mutable SmallSet NewBBs; /// Apply all the recorded critical edges to the DT. /// This updates the underlying DT information in a way that uses /// the fast query path of DT as much as possible. /// FIXME: This method should not be a const member! /// /// \post CriticalEdgesToSplit.empty(). void applySplitCriticalEdges() const; public: using Base = DomTreeBase; MachineDominatorTree() = default; explicit MachineDominatorTree(MachineFunction &MF) { calculate(MF); } /// Handle invalidation explicitly. bool invalidate(MachineFunction &, const PreservedAnalyses &PA, MachineFunctionAnalysisManager::Invalidator &); // FIXME: If there is an updater for MachineDominatorTree, // migrate to this updater and remove these wrappers. MachineDominatorTree &getBase() { applySplitCriticalEdges(); return *this; } MachineBasicBlock *getRoot() const { applySplitCriticalEdges(); return Base::getRoot(); } MachineDomTreeNode *getRootNode() const { applySplitCriticalEdges(); return const_cast(Base::getRootNode()); } void calculate(MachineFunction &F); bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return Base::dominates(A, B); } void getDescendants(MachineBasicBlock *A, SmallVectorImpl &Result) { applySplitCriticalEdges(); Base::getDescendants(A, Result); } bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return Base::dominates(A, B); } // dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(const MachineInstr *A, const MachineInstr *B) const { applySplitCriticalEdges(); const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return Base::dominates(BBA, BBB); // Loop through the basic block until we find A or B. MachineBasicBlock::const_iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/ ; return &*I == A; } bool properlyDominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return Base::properlyDominates(A, B); } bool properlyDominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return Base::properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B) { applySplitCriticalEdges(); return Base::findNearestCommonDominator(A, B); } MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { applySplitCriticalEdges(); return Base::getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { applySplitCriticalEdges(); return Base::getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB) { applySplitCriticalEdges(); return Base::addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock *NewIDom) { applySplitCriticalEdges(); Base::changeImmediateDominator(N, NewIDom); } void changeImmediateDominator(MachineDomTreeNode *N, MachineDomTreeNode *NewIDom) { applySplitCriticalEdges(); Base::changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(MachineBasicBlock *BB) { applySplitCriticalEdges(); Base::eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(MachineBasicBlock* NewBB) { applySplitCriticalEdges(); Base::splitBlock(NewBB); } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const MachineBasicBlock *A) { applySplitCriticalEdges(); return Base::isReachableFromEntry(A); } /// Record that the critical edge (FromBB, ToBB) has been /// split with NewBB. /// This is best to use this method instead of directly update the /// underlying information, because this helps mitigating the /// number of time the DT information is invalidated. /// /// \note Do not use this method with regular edges. /// /// \note To benefit from the compile time improvement incurred by this /// method, the users of this method have to limit the queries to the DT /// interface between two edges splitting. In other words, they have to /// pack the splitting of critical edges as much as possible. void recordSplitCriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, MachineBasicBlock *NewBB) { bool Inserted = NewBBs.insert(NewBB).second; (void)Inserted; assert(Inserted && "A basic block inserted via edge splitting cannot appear twice"); CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB}); } }; /// \brief Analysis pass which computes a \c MachineDominatorTree. class MachineDominatorTreeAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: using Result = MachineDominatorTree; Result run(MachineFunction &MF, MachineFunctionAnalysisManager &); }; /// \brief Machine function pass which print \c MachineDominatorTree. class MachineDominatorTreePrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit MachineDominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM); static bool isRequired() { return true; } }; /// \brief Analysis pass which computes a \c MachineDominatorTree. class MachineDominatorTreeWrapperPass : public MachineFunctionPass { // MachineFunctionPass may verify the analysis result without running pass, // e.g. when `F.hasAvailableExternallyLinkage` is true. std::optional DT; public: static char ID; MachineDominatorTreeWrapperPass(); MachineDominatorTree &getDomTree() { return *DT; } const MachineDominatorTree &getDomTree() const { return *DT; } bool runOnMachineFunction(MachineFunction &MF) override; void verifyAnalysis() const override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } void releaseMemory() override; void print(raw_ostream &OS, const Module *M = nullptr) const override; }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template struct MachineDomTreeGraphTraitsBase { using NodeRef = Node *; using ChildIteratorType = ChildIterator; static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; template struct GraphTraits; template <> struct GraphTraits : public MachineDomTreeGraphTraitsBase { }; template <> struct GraphTraits : public MachineDomTreeGraphTraitsBase { }; template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(MachineDominatorTree *DT) { return DT->getRootNode(); } }; } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H