Files
SukiSU-Ultra/kernel/ksud.c
ShirkNeko 49b01aad74 kernel: Introducing Tracepoint Hook Type Support
Tracepoint is a predefined hook point in the kernel, compared to Kprobe,
it is more stable and has lower performance overhead, although compatibility
is relatively poor, it is still worth trying

By the way, we have also included the config definitions related to hook types
in Kconfig, to enhance cleanliness

Improve and merge types that do not require hooks

Introducing the hook type prctl

These patches is based on https://github.com/backslashxx/KernelSU/issues/5

Co-authored-by: Cloud_Yun <1770669041@qq.com>
Co-authored-by: Prslc <prslc113@gmail.com>
Co-authored-by: ShirkNeko <109797057+ShirkNeko@users.noreply.github.com>

Signed-off-by: ShirkNeko <109797057+ShirkNeko@users.noreply.github.com>
2025-08-14 22:17:02 +08:00

619 lines
15 KiB
C

#include <asm/current.h>
#include <linux/compat.h>
#include <linux/cred.h>
#include <linux/dcache.h>
#include <linux/err.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/version.h>
#include <linux/input-event-codes.h>
#include <linux/kprobes.h>
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include "allowlist.h"
#include "arch.h"
#include "klog.h" // IWYU pragma: keep
#include "ksud.h"
#include "kernel_compat.h"
#include "selinux/selinux.h"
static const char KERNEL_SU_RC[] =
"\n"
"on post-fs-data\n"
" start logd\n"
// We should wait for the post-fs-data finish
" exec u:r:su:s0 root -- " KSUD_PATH " post-fs-data\n"
"\n"
"on nonencrypted\n"
" exec u:r:su:s0 root -- " KSUD_PATH " services\n"
"\n"
"on property:vold.decrypt=trigger_restart_framework\n"
" exec u:r:su:s0 root -- " KSUD_PATH " services\n"
"\n"
"on property:sys.boot_completed=1\n"
" exec u:r:su:s0 root -- " KSUD_PATH " boot-completed\n"
"\n"
"\n";
static void stop_vfs_read_hook();
static void stop_execve_hook();
static void stop_input_hook();
#ifdef CONFIG_KSU_KPROBES_HOOK
static struct work_struct stop_vfs_read_work;
static struct work_struct stop_execve_hook_work;
static struct work_struct stop_input_hook_work;
#else
bool ksu_vfs_read_hook __read_mostly = true;
bool ksu_execveat_hook __read_mostly = true;
bool ksu_input_hook __read_mostly = true;
#endif
u32 ksu_devpts_sid;
// Detect whether it is on or not
static bool is_boot_phase = true;
#ifdef CONFIG_COMPAT
bool ksu_is_compat __read_mostly = false;
#endif
void on_post_fs_data(void)
{
static bool done = false;
if (done) {
pr_info("on_post_fs_data already done\n");
return;
}
done = true;
pr_info("on_post_fs_data!\n");
ksu_load_allow_list();
// sanity check, this may influence the performance
stop_input_hook();
ksu_devpts_sid = ksu_get_devpts_sid();
pr_info("devpts sid: %d\n", ksu_devpts_sid);
// End of boot state
is_boot_phase = false;
}
#define MAX_ARG_STRINGS 0x7FFFFFFF
struct user_arg_ptr {
#ifdef CONFIG_COMPAT
bool is_compat;
#endif
union {
const char __user *const __user *native;
#ifdef CONFIG_COMPAT
const compat_uptr_t __user *compat;
#endif
} ptr;
};
static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
{
const char __user *native;
#ifdef CONFIG_COMPAT
if (unlikely(argv.is_compat)) {
compat_uptr_t compat;
if (get_user(compat, argv.ptr.compat + nr))
return ERR_PTR(-EFAULT);
ksu_is_compat = true;
return compat_ptr(compat);
}
#endif
if (get_user(native, argv.ptr.native + nr))
return ERR_PTR(-EFAULT);
return native;
}
/*
* count() counts the number of strings in array ARGV.
*/
/*
* Make sure old GCC compiler can use __maybe_unused,
* Test passed in 4.4.x ~ 4.9.x when use GCC.
*/
static int __maybe_unused count(struct user_arg_ptr argv, int max)
{
int i = 0;
if (argv.ptr.native != NULL) {
for (;;) {
const char __user *p = get_user_arg_ptr(argv, i);
if (!p)
break;
if (IS_ERR(p))
return -EFAULT;
if (i >= max)
return -E2BIG;
++i;
if (fatal_signal_pending(current))
return -ERESTARTNOHAND;
cond_resched();
}
}
return i;
}
// IMPORTANT NOTE: the call from execve_handler_pre WON'T provided correct value for envp and flags in GKI version
int ksu_handle_execveat_ksud(int *fd, struct filename **filename_ptr,
struct user_arg_ptr *argv,
struct user_arg_ptr *envp, int *flags)
{
#ifndef CONFIG_KSU_KPROBES_HOOK
if (!ksu_execveat_hook) {
return 0;
}
#endif
struct filename *filename;
static const char app_process[] = "/system/bin/app_process";
static bool first_app_process = true;
/* This applies to versions Android 10+ */
static const char system_bin_init[] = "/system/bin/init";
/* This applies to versions between Android 6 ~ 9 */
static const char old_system_init[] = "/init";
static bool init_second_stage_executed = false;
if (!filename_ptr)
return 0;
filename = *filename_ptr;
if (IS_ERR(filename)) {
return 0;
}
if (unlikely(!memcmp(filename->name, system_bin_init,
sizeof(system_bin_init) - 1) &&
argv)) {
// /system/bin/init executed
int argc = count(*argv, MAX_ARG_STRINGS);
pr_info("/system/bin/init argc: %d\n", argc);
if (argc > 1 && !init_second_stage_executed) {
const char __user *p = get_user_arg_ptr(*argv, 1);
if (p && !IS_ERR(p)) {
char first_arg[16];
ksu_strncpy_from_user_nofault(
first_arg, p, sizeof(first_arg));
pr_info("/system/bin/init first arg: %s\n",
first_arg);
if (!strcmp(first_arg, "second_stage")) {
pr_info("/system/bin/init second_stage executed\n");
apply_kernelsu_rules();
init_second_stage_executed = true;
ksu_android_ns_fs_check();
}
} else {
pr_err("/system/bin/init parse args err!\n");
}
}
} else if (unlikely(!memcmp(filename->name, old_system_init,
sizeof(old_system_init) - 1) &&
argv)) {
// /init executed
int argc = count(*argv, MAX_ARG_STRINGS);
pr_info("/init argc: %d\n", argc);
if (argc > 1 && !init_second_stage_executed) {
/* This applies to versions between Android 6 ~ 7 */
const char __user *p = get_user_arg_ptr(*argv, 1);
if (p && !IS_ERR(p)) {
char first_arg[16];
ksu_strncpy_from_user_nofault(
first_arg, p, sizeof(first_arg));
pr_info("/init first arg: %s\n", first_arg);
if (!strcmp(first_arg, "--second-stage")) {
pr_info("/init second_stage executed\n");
apply_kernelsu_rules();
init_second_stage_executed = true;
ksu_android_ns_fs_check();
}
} else {
pr_err("/init parse args err!\n");
}
} else if (argc == 1 && !init_second_stage_executed && envp) {
/* This applies to versions between Android 8 ~ 9 */
int envc = count(*envp, MAX_ARG_STRINGS);
if (envc > 0) {
int n;
for (n = 1; n <= envc; n++) {
const char __user *p =
get_user_arg_ptr(*envp, n);
if (!p || IS_ERR(p)) {
continue;
}
char env[256];
// Reading environment variable strings from user space
if (ksu_strncpy_from_user_nofault(
env, p, sizeof(env)) < 0)
continue;
// Parsing environment variable names and values
char *env_name = env;
char *env_value = strchr(env, '=');
if (env_value == NULL)
continue;
// Replace equal sign with string terminator
*env_value = '\0';
env_value++;
// Check if the environment variable name and value are matching
if (!strcmp(env_name,
"INIT_SECOND_STAGE") &&
(!strcmp(env_value, "1") ||
!strcmp(env_value, "true"))) {
pr_info("/init second_stage executed\n");
apply_kernelsu_rules();
init_second_stage_executed =
true;
ksu_android_ns_fs_check();
}
}
}
}
}
if (unlikely(first_app_process && !memcmp(filename->name, app_process,
sizeof(app_process) - 1))) {
first_app_process = false;
pr_info("exec app_process, /data prepared, second_stage: %d\n",
init_second_stage_executed);
on_post_fs_data(); // we keep this for old ksud
stop_execve_hook();
}
return 0;
}
static ssize_t (*orig_read)(struct file *, char __user *, size_t, loff_t *);
static ssize_t (*orig_read_iter)(struct kiocb *, struct iov_iter *);
static struct file_operations fops_proxy;
static ssize_t read_count_append = 0;
static ssize_t read_proxy(struct file *file, char __user *buf, size_t count,
loff_t *pos)
{
bool first_read = file->f_pos == 0;
ssize_t ret = orig_read(file, buf, count, pos);
if (first_read) {
pr_info("read_proxy append %ld + %ld\n", ret,
read_count_append);
ret += read_count_append;
}
return ret;
}
static ssize_t read_iter_proxy(struct kiocb *iocb, struct iov_iter *to)
{
bool first_read = iocb->ki_pos == 0;
ssize_t ret = orig_read_iter(iocb, to);
if (first_read) {
pr_info("read_iter_proxy append %ld + %ld\n", ret,
read_count_append);
ret += read_count_append;
}
return ret;
}
int ksu_handle_vfs_read(struct file **file_ptr, char __user **buf_ptr,
size_t *count_ptr, loff_t **pos)
{
#ifndef CONFIG_KSU_KPROBES_HOOK
if (!ksu_vfs_read_hook) {
return 0;
}
#endif
struct file *file;
char __user *buf;
size_t count;
if (strcmp(current->comm, "init")) {
// we are only interest in `init` process
return 0;
}
file = *file_ptr;
if (IS_ERR(file)) {
return 0;
}
if (!d_is_reg(file->f_path.dentry)) {
return 0;
}
const char *short_name = file->f_path.dentry->d_name.name;
if (strcmp(short_name, "atrace.rc")) {
// we are only interest `atrace.rc` file name file
return 0;
}
char path[256];
char *dpath = d_path(&file->f_path, path, sizeof(path));
if (IS_ERR(dpath)) {
return 0;
}
if (strcmp(dpath, "/system/etc/init/atrace.rc")) {
return 0;
}
// we only process the first read
static bool rc_inserted = false;
if (rc_inserted) {
// we don't need this kprobe, unregister it!
stop_vfs_read_hook();
return 0;
}
rc_inserted = true;
// now we can sure that the init process is reading
// `/system/etc/init/atrace.rc`
buf = *buf_ptr;
count = *count_ptr;
size_t rc_count = strlen(KERNEL_SU_RC);
pr_info("vfs_read: %s, comm: %s, count: %zu, rc_count: %zu\n", dpath,
current->comm, count, rc_count);
if (count < rc_count) {
pr_err("count: %zu < rc_count: %zu\n", count, rc_count);
return 0;
}
size_t ret = copy_to_user(buf, KERNEL_SU_RC, rc_count);
if (ret) {
pr_err("copy ksud.rc failed: %zu\n", ret);
return 0;
}
// we've succeed to insert ksud.rc, now we need to proxy the read and modify the result!
// But, we can not modify the file_operations directly, because it's in read-only memory.
// We just replace the whole file_operations with a proxy one.
memcpy(&fops_proxy, file->f_op, sizeof(struct file_operations));
orig_read = file->f_op->read;
if (orig_read) {
fops_proxy.read = read_proxy;
}
orig_read_iter = file->f_op->read_iter;
if (orig_read_iter) {
fops_proxy.read_iter = read_iter_proxy;
}
// replace the file_operations
file->f_op = &fops_proxy;
read_count_append = rc_count;
*buf_ptr = buf + rc_count;
*count_ptr = count - rc_count;
return 0;
}
int ksu_handle_sys_read(unsigned int fd, char __user **buf_ptr,
size_t *count_ptr)
{
struct file *file = fget(fd);
if (!file) {
return 0;
}
int result = ksu_handle_vfs_read(&file, buf_ptr, count_ptr, NULL);
fput(file);
return result;
}
static unsigned int volumedown_pressed_count = 0;
static bool is_volumedown_enough(unsigned int count)
{
return count >= 3;
}
int ksu_handle_input_handle_event(unsigned int *type, unsigned int *code,
int *value)
{
#ifndef CONFIG_KSU_KPROBES_HOOK
if (!ksu_input_hook) {
return 0;
}
#endif
if (*type == EV_KEY && *code == KEY_VOLUMEDOWN) {
int val = *value;
pr_info("KEY_VOLUMEDOWN val: %d\n", val);
if (val && is_boot_phase) {
// key pressed, count it
volumedown_pressed_count += 1;
if (is_volumedown_enough(volumedown_pressed_count)) {
stop_input_hook();
}
}
}
return 0;
}
bool ksu_is_safe_mode()
{
static bool safe_mode = false;
if (safe_mode) {
// don't need to check again, userspace may call multiple times
return true;
}
// stop hook first!
stop_input_hook();
pr_info("volumedown_pressed_count: %d\n", volumedown_pressed_count);
if (is_volumedown_enough(volumedown_pressed_count)) {
// pressed over 3 times
pr_info("KEY_VOLUMEDOWN pressed max times, safe mode detected!\n");
safe_mode = true;
return true;
}
return false;
}
#ifdef CONFIG_KSU_KPROBES_HOOK
static int sys_execve_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct pt_regs *real_regs = PT_REAL_REGS(regs);
const char __user **filename_user =
(const char **)&PT_REGS_PARM1(real_regs);
const char __user *const __user *__argv =
(const char __user *const __user *)PT_REGS_PARM2(real_regs);
struct user_arg_ptr argv = { .ptr.native = __argv };
struct filename filename_in, *filename_p;
char path[32];
if (!filename_user)
return 0;
memset(path, 0, sizeof(path));
ksu_strncpy_from_user_nofault(path, *filename_user, 32);
filename_in.name = path;
filename_p = &filename_in;
return ksu_handle_execveat_ksud(AT_FDCWD, &filename_p, &argv, NULL,
NULL);
}
static int sys_read_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct pt_regs *real_regs = PT_REAL_REGS(regs);
unsigned int fd = PT_REGS_PARM1(real_regs);
char __user **buf_ptr = (char __user **)&PT_REGS_PARM2(real_regs);
size_t count_ptr = (size_t *)&PT_REGS_PARM3(real_regs);
return ksu_handle_sys_read(fd, buf_ptr, count_ptr);
}
static int input_handle_event_handler_pre(struct kprobe *p,
struct pt_regs *regs)
{
unsigned int *type = (unsigned int *)&PT_REGS_PARM2(regs);
unsigned int *code = (unsigned int *)&PT_REGS_PARM3(regs);
int *value = (int *)&PT_REGS_CCALL_PARM4(regs);
return ksu_handle_input_handle_event(type, code, value);
}
static struct kprobe execve_kp = {
.symbol_name = SYS_EXECVE_SYMBOL,
.pre_handler = sys_execve_handler_pre,
};
static struct kprobe vfs_read_kp = {
.symbol_name = SYS_READ_SYMBOL,
.pre_handler = sys_read_handler_pre,
};
static struct kprobe input_event_kp = {
.symbol_name = "input_event",
.pre_handler = input_handle_event_handler_pre,
};
static void do_stop_vfs_read_hook(struct work_struct *work)
{
unregister_kprobe(&vfs_read_kp);
}
static void do_stop_execve_hook(struct work_struct *work)
{
unregister_kprobe(&execve_kp);
}
static void do_stop_input_hook(struct work_struct *work)
{
unregister_kprobe(&input_event_kp);
}
#endif
static void stop_vfs_read_hook()
{
#ifdef CONFIG_KSU_KPROBES_HOOK
bool ret = schedule_work(&stop_vfs_read_work);
pr_info("unregister vfs_read kprobe: %d!\n", ret);
#else
ksu_vfs_read_hook = false;
pr_info("stop vfs_read_hook\n");
#endif
}
static void stop_execve_hook()
{
#ifdef CONFIG_KSU_KPROBES_HOOK
bool ret = schedule_work(&stop_execve_hook_work);
pr_info("unregister execve kprobe: %d!\n", ret);
#else
ksu_execveat_hook = false;
pr_info("stop execve_hook\n");
#endif
}
static void stop_input_hook()
{
static bool input_hook_stopped = false;
if (input_hook_stopped) {
return;
}
input_hook_stopped = true;
#ifdef CONFIG_KSU_KPROBES_HOOK
bool ret = schedule_work(&stop_input_hook_work);
pr_info("unregister input kprobe: %d!\n", ret);
#else
ksu_input_hook = false;
pr_info("stop input_hook\n");
#endif
}
// ksud: module support
void ksu_ksud_init()
{
#ifdef CONFIG_KSU_KPROBES_HOOK
int ret;
ret = register_kprobe(&execve_kp);
pr_info("ksud: execve_kp: %d\n", ret);
ret = register_kprobe(&vfs_read_kp);
pr_info("ksud: vfs_read_kp: %d\n", ret);
ret = register_kprobe(&input_event_kp);
pr_info("ksud: input_event_kp: %d\n", ret);
INIT_WORK(&stop_vfs_read_work, do_stop_vfs_read_hook);
INIT_WORK(&stop_execve_hook_work, do_stop_execve_hook);
INIT_WORK(&stop_input_hook_work, do_stop_input_hook);
#endif
}
void ksu_ksud_exit()
{
#ifdef CONFIG_KSU_KPROBES_HOOK
unregister_kprobe(&execve_kp);
// this should be done before unregister vfs_read_kp
// unregister_kprobe(&vfs_read_kp);
unregister_kprobe(&input_event_kp);
#endif
is_boot_phase = false;
}