Files
SukiSU-Ultra/kernel/core_hook.c
ShirkNeko 257f0ca6de ci: bump ddk to 20251104, fix android16-6.12 lkm
-kernel: Using macros to control manual su operations

Co-authored-by: Ylarod <me@ylarod.cn>
Co-authored-by: ShirkNeko <109797057+ShirkNeko@users.noreply.github.com>
2025-11-04 19:44:43 +08:00

889 lines
24 KiB
C

#include "linux/slab.h"
#include <linux/seccomp.h>
#include <linux/bpf.h>
#include <linux/capability.h>
#include <linux/cred.h>
#include <linux/dcache.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/mm.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/nsproxy.h>
#include <linux/path.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/security.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/uidgid.h>
#include <linux/version.h>
#include <linux/workqueue.h>
#include <linux/binfmts.h>
#include <linux/tty.h>
#include "allowlist.h"
#include "arch.h"
#include "core_hook.h"
#include "feature.h"
#include "klog.h" // IWYU pragma: keep
#include "ksu.h"
#include "ksud.h"
#include "manager.h"
#include "selinux/selinux.h"
#include "supercalls.h"
#include "sulog.h"
#ifdef __MANUAL_SU
#include "manual_su.h"
#endif
bool ksu_module_mounted = false;
#ifdef CONFIG_COMPAT
bool ksu_is_compat __read_mostly = false;
#endif
#ifndef DEVPTS_SUPER_MAGIC
#define DEVPTS_SUPER_MAGIC 0x1cd1
#endif
extern int __ksu_handle_devpts(struct inode *inode); // sucompat.c
#ifdef __MANUAL_SU
static void ksu_try_escalate_for_uid(uid_t uid)
{
if (!is_pending_root(uid))
return;
pr_info("pending_root: UID=%d temporarily allowed\n", uid);
remove_pending_root(uid);
}
#endif
static struct workqueue_struct *ksu_workqueue;
struct ksu_umount_work {
struct work_struct work;
struct mnt_namespace *mnt_ns;
};
static bool ksu_kernel_umount_enabled = true;
static int kernel_umount_feature_get(u64 *value)
{
*value = ksu_kernel_umount_enabled ? 1 : 0;
return 0;
}
static int kernel_umount_feature_set(u64 value)
{
bool enable = value != 0;
ksu_kernel_umount_enabled = enable;
pr_info("kernel_umount: set to %d\n", enable);
return 0;
}
static const struct ksu_feature_handler kernel_umount_handler = {
.feature_id = KSU_FEATURE_KERNEL_UMOUNT,
.name = "kernel_umount",
.get_handler = kernel_umount_feature_get,
.set_handler = kernel_umount_feature_set,
};
static inline bool is_allow_su()
{
if (is_manager()) {
// we are manager, allow!
return true;
}
return ksu_is_allow_uid(current_uid().val);
}
static inline bool is_unsupported_uid(uid_t uid)
{
#define LAST_APPLICATION_UID 19999
uid_t appid = uid % 100000;
return appid > LAST_APPLICATION_UID;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION (6, 7, 0)
static struct group_info root_groups = { .usage = REFCOUNT_INIT(2), };
#else
static struct group_info root_groups = { .usage = ATOMIC_INIT(2) };
#endif
static void setup_groups(struct root_profile *profile, struct cred *cred)
{
if (profile->groups_count > KSU_MAX_GROUPS) {
pr_warn("Failed to setgroups, too large group: %d!\n",
profile->uid);
return;
}
if (profile->groups_count == 1 && profile->groups[0] == 0) {
// setgroup to root and return early.
if (cred->group_info)
put_group_info(cred->group_info);
cred->group_info = get_group_info(&root_groups);
return;
}
u32 ngroups = profile->groups_count;
struct group_info *group_info = groups_alloc(ngroups);
if (!group_info) {
pr_warn("Failed to setgroups, ENOMEM for: %d\n", profile->uid);
return;
}
int i;
for (i = 0; i < ngroups; i++) {
gid_t gid = profile->groups[i];
kgid_t kgid = make_kgid(current_user_ns(), gid);
if (!gid_valid(kgid)) {
pr_warn("Failed to setgroups, invalid gid: %d\n", gid);
put_group_info(group_info);
return;
}
group_info->gid[i] = kgid;
}
groups_sort(group_info);
set_groups(cred, group_info);
put_group_info(group_info);
}
static void disable_seccomp()
{
assert_spin_locked(&current->sighand->siglock);
// disable seccomp
#if defined(CONFIG_GENERIC_ENTRY) && \
LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0)
clear_syscall_work(SECCOMP);
#else
clear_thread_flag(TIF_SECCOMP);
#endif
#ifdef CONFIG_SECCOMP
current->seccomp.mode = 0;
current->seccomp.filter = NULL;
#else
#endif
}
void escape_to_root(void)
{
struct cred *cred;
cred = prepare_creds();
if (!cred) {
pr_warn("prepare_creds failed!\n");
return;
}
if (cred->euid.val == 0) {
pr_warn("Already root, don't escape!\n");
#if __SULOG_GATE
ksu_sulog_report_su_grant(current_euid().val, NULL, "escape_to_root_failed");
#endif
abort_creds(cred);
return;
}
struct root_profile *profile = ksu_get_root_profile(cred->uid.val);
cred->uid.val = profile->uid;
cred->suid.val = profile->uid;
cred->euid.val = profile->uid;
cred->fsuid.val = profile->uid;
cred->gid.val = profile->gid;
cred->fsgid.val = profile->gid;
cred->sgid.val = profile->gid;
cred->egid.val = profile->gid;
cred->securebits = 0;
BUILD_BUG_ON(sizeof(profile->capabilities.effective) !=
sizeof(kernel_cap_t));
// setup capabilities
// we need CAP_DAC_READ_SEARCH becuase `/data/adb/ksud` is not accessible for non root process
// we add it here but don't add it to cap_inhertiable, it would be dropped automaticly after exec!
u64 cap_for_ksud =
profile->capabilities.effective | CAP_DAC_READ_SEARCH;
memcpy(&cred->cap_effective, &cap_for_ksud,
sizeof(cred->cap_effective));
memcpy(&cred->cap_permitted, &profile->capabilities.effective,
sizeof(cred->cap_permitted));
memcpy(&cred->cap_bset, &profile->capabilities.effective,
sizeof(cred->cap_bset));
setup_groups(profile, cred);
commit_creds(cred);
// Refer to kernel/seccomp.c: seccomp_set_mode_strict
// When disabling Seccomp, ensure that current->sighand->siglock is held during the operation.
spin_lock_irq(&current->sighand->siglock);
disable_seccomp();
spin_unlock_irq(&current->sighand->siglock);
setup_selinux(profile->selinux_domain);
#if __SULOG_GATE
ksu_sulog_report_su_grant(current_euid().val, NULL, "escape_to_root");
#endif
}
#ifdef __MANUAL_SU
static void disable_seccomp_for_task(struct task_struct *tsk)
{
if (!tsk->seccomp.filter && tsk->seccomp.mode == SECCOMP_MODE_DISABLED)
return;
if (WARN_ON(!spin_is_locked(&tsk->sighand->siglock)))
return;
#ifdef CONFIG_SECCOMP
tsk->seccomp.mode = 0;
if (tsk->seccomp.filter) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
seccomp_filter_release(tsk);
atomic_set(&tsk->seccomp.filter_count, 0);
#else
// for 6.11+ kernel support?
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0)
put_seccomp_filter(tsk);
#endif
tsk->seccomp.filter = NULL;
#endif
}
#endif
}
void escape_to_root_for_cmd_su(uid_t target_uid, pid_t target_pid)
{
struct cred *newcreds;
struct task_struct *target_task;
pr_info("cmd_su: escape_to_root_for_cmd_su called for UID: %d, PID: %d\n", target_uid, target_pid);
// Find target task by PID
rcu_read_lock();
target_task = pid_task(find_vpid(target_pid), PIDTYPE_PID);
if (!target_task) {
rcu_read_unlock();
pr_err("cmd_su: target task not found for PID: %d\n", target_pid);
#if __SULOG_GATE
ksu_sulog_report_su_grant(target_uid, "cmd_su", "target_not_found");
#endif
return;
}
get_task_struct(target_task);
rcu_read_unlock();
if (task_uid(target_task).val == 0) {
pr_warn("cmd_su: target task is already root, PID: %d\n", target_pid);
put_task_struct(target_task);
return;
}
newcreds = prepare_kernel_cred(target_task);
if (newcreds == NULL) {
pr_err("cmd_su: failed to allocate new cred for PID: %d\n", target_pid);
#if __SULOG_GATE
ksu_sulog_report_su_grant(target_uid, "cmd_su", "cred_alloc_failed");
#endif
put_task_struct(target_task);
return;
}
struct root_profile *profile = ksu_get_root_profile(target_uid);
newcreds->uid.val = profile->uid;
newcreds->suid.val = profile->uid;
newcreds->euid.val = profile->uid;
newcreds->fsuid.val = profile->uid;
newcreds->gid.val = profile->gid;
newcreds->fsgid.val = profile->gid;
newcreds->sgid.val = profile->gid;
newcreds->egid.val = profile->gid;
newcreds->securebits = 0;
u64 cap_for_cmd_su = profile->capabilities.effective | CAP_DAC_READ_SEARCH | CAP_SETUID | CAP_SETGID;
memcpy(&newcreds->cap_effective, &cap_for_cmd_su, sizeof(newcreds->cap_effective));
memcpy(&newcreds->cap_permitted, &profile->capabilities.effective, sizeof(newcreds->cap_permitted));
memcpy(&newcreds->cap_bset, &profile->capabilities.effective, sizeof(newcreds->cap_bset));
setup_groups(profile, newcreds);
task_lock(target_task);
const struct cred *old_creds = get_task_cred(target_task);
rcu_assign_pointer(target_task->real_cred, newcreds);
rcu_assign_pointer(target_task->cred, get_cred(newcreds));
task_unlock(target_task);
if (target_task->sighand) {
spin_lock_irq(&target_task->sighand->siglock);
disable_seccomp_for_task(target_task);
spin_unlock_irq(&target_task->sighand->siglock);
}
setup_selinux(profile->selinux_domain);
put_cred(old_creds);
wake_up_process(target_task);
if (target_task->signal->tty) {
struct inode *inode = target_task->signal->tty->driver_data;
if (inode && inode->i_sb->s_magic == DEVPTS_SUPER_MAGIC) {
__ksu_handle_devpts(inode);
}
}
put_task_struct(target_task);
#if __SULOG_GATE
ksu_sulog_report_su_grant(target_uid, "cmd_su", "manual_escalation");
#endif
pr_info("cmd_su: privilege escalation completed for UID: %d, PID: %d\n", target_uid, target_pid);
}
#endif
#ifdef CONFIG_EXT4_FS
void nuke_ext4_sysfs(void)
{
struct path path;
int err = kern_path("/data/adb/modules", 0, &path);
if (err) {
pr_err("nuke path err: %d\n", err);
return;
}
struct super_block *sb = path.dentry->d_inode->i_sb;
const char *name = sb->s_type->name;
if (strcmp(name, "ext4") != 0) {
pr_info("nuke but module aren't mounted\n");
return;
}
ext4_unregister_sysfs(sb);
path_put(&path);
}
#else
inline void nuke_ext4_sysfs(void)
{
}
#endif
bool is_system_uid(void)
{
if (!current->mm || current->in_execve) {
return 0;
}
uid_t caller_uid = current_uid().val;
return caller_uid <= 2000;
}
#if __SULOG_GATE
static void sulog_prctl_cmd(uid_t uid, unsigned long cmd)
{
const char *name = NULL;
switch (cmd) {
#ifdef __MANUAL_SU
case CMD_MANUAL_SU_REQUEST: name = "prctl_manual_su_request"; break;
#endif
default: name = "prctl_unknown"; break;
}
ksu_sulog_report_syscall(uid, NULL, name, NULL);
}
#endif
int ksu_handle_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
// if success, we modify the arg5 as result!
__maybe_unused u32 *result = (u32 *)arg5;
__maybe_unused u32 reply_ok = KERNEL_SU_OPTION;
if (likely(ksu_is_current_proc_umounted()))
return 0; // prevent side channel attack in ksu side
if (KERNEL_SU_OPTION != option)
return 0;
#if __SULOG_GATE
sulog_prctl_cmd(current_uid().val, arg2);
#endif
if (!is_system_uid()) {
return 0;
}
#ifdef CONFIG_KSU_DEBUG
pr_info("option: 0x%x, cmd: %ld\n", option, arg2);
#endif
#ifdef __MANUAL_SU
if (arg2 == CMD_MANUAL_SU_REQUEST) {
struct manual_su_request request;
int su_option = (int)arg3;
if (copy_from_user(&request, (void __user *)arg4, sizeof(request))) {
pr_err("manual_su: failed to copy request from user\n");
return 0;
}
int ret = ksu_handle_manual_su_request(su_option, &request);
// Copy back result for token generation
if (ret == 0 && su_option == MANUAL_SU_OP_GENERATE_TOKEN) {
if (copy_to_user((void __user *)arg4, &request, sizeof(request))) {
pr_err("manual_su: failed to copy request back to user\n");
return 0;
}
}
if (ret == 0) {
if (copy_to_user(result, &reply_ok, sizeof(reply_ok))) {
pr_err("manual_su: prctl reply error\n");
}
}
return 0;
}
#endif
return 0;
}
static bool is_appuid(kuid_t uid)
{
#define PER_USER_RANGE 100000
#define FIRST_APPLICATION_UID 10000
#define LAST_APPLICATION_UID 19999
uid_t appid = uid.val % PER_USER_RANGE;
return appid >= FIRST_APPLICATION_UID && appid <= LAST_APPLICATION_UID;
}
static bool should_umount(struct path *path)
{
if (!path) {
return false;
}
if (current->nsproxy->mnt_ns == init_nsproxy.mnt_ns) {
pr_info("ignore global mnt namespace process: %d\n",
current_uid().val);
return false;
}
if (path->mnt && path->mnt->mnt_sb && path->mnt->mnt_sb->s_type) {
const char *fstype = path->mnt->mnt_sb->s_type->name;
return strcmp(fstype, "overlay") == 0;
}
return false;
}
static void ksu_umount_mnt(struct path *path, int flags)
{
int err = path_umount(path, flags);
if (err) {
pr_info("umount %s failed: %d\n", path->dentry->d_iname, err);
}
}
static void try_umount(const char *mnt, bool check_mnt, int flags)
{
struct path path;
int err = kern_path(mnt, 0, &path);
if (err) {
return;
}
if (path.dentry != path.mnt->mnt_root) {
// it is not root mountpoint, maybe umounted by others already.
path_put(&path);
return;
}
// we are only interest in some specific mounts
if (check_mnt && !should_umount(&path)) {
path_put(&path);
return;
}
ksu_umount_mnt(&path, flags);
}
static void do_umount_work(struct work_struct *work)
{
struct ksu_umount_work *umount_work = container_of(work, struct ksu_umount_work, work);
struct mnt_namespace *old_mnt_ns = current->nsproxy->mnt_ns;
current->nsproxy->mnt_ns = umount_work->mnt_ns;
try_umount("/odm", true, 0);
try_umount("/system", true, 0);
try_umount("/vendor", true, 0);
try_umount("/product", true, 0);
try_umount("/system_ext", true, 0);
try_umount("/data/adb/modules", false, MNT_DETACH);
// try umount ksu temp path
try_umount("/debug_ramdisk", false, MNT_DETACH);
// fixme: dec refcount
current->nsproxy->mnt_ns = old_mnt_ns;
kfree(umount_work);
}
int ksu_handle_setuid(struct cred *new, const struct cred *old)
{
if (!new || !old) {
return 0;
}
kuid_t new_uid = new->uid;
kuid_t old_uid = old->uid;
// pr_info("handle_setuid from %d to %d\n", old_uid.val, new_uid.val);
if (0 != old_uid.val) {
// old process is not root, ignore it.
return 0;
}
if (!is_appuid(new_uid) || is_unsupported_uid(new_uid.val)) {
// pr_info("handle setuid ignore non application or isolated uid: %d\n", new_uid.val);
return 0;
}
// if on private space, see if its possibly the manager
if (new_uid.val > 100000 && new_uid.val % 100000 == ksu_get_manager_uid()) {
ksu_set_manager_uid(new_uid.val);
}
if (ksu_get_manager_uid() == new_uid.val) {
pr_info("install fd for: %d\n", new_uid.val);
ksu_install_fd();
spin_lock_irq(&current->sighand->siglock);
ksu_seccomp_allow_cache(current->seccomp.filter, __NR_reboot);
spin_unlock_irq(&current->sighand->siglock);
return 0;
}
if (ksu_is_allow_uid(new_uid.val)) {
if (current->seccomp.mode == SECCOMP_MODE_FILTER &&
current->seccomp.filter) {
spin_lock_irq(&current->sighand->siglock);
ksu_seccomp_allow_cache(current->seccomp.filter, __NR_reboot);
spin_unlock_irq(&current->sighand->siglock);
}
}
// this hook is used for umounting overlayfs for some uid, if there isn't any module mounted, just ignore it!
if (!ksu_module_mounted) {
return 0;
}
if (!ksu_kernel_umount_enabled) {
return 0;
}
if (!ksu_uid_should_umount(new_uid.val)) {
return 0;
} else {
#ifdef CONFIG_KSU_DEBUG
pr_info("uid: %d should not umount!\n", current_uid().val);
#endif
}
// check old process's selinux context, if it is not zygote, ignore it!
// because some su apps may setuid to untrusted_app but they are in global mount namespace
// when we umount for such process, that is a disaster!
bool is_zygote_child = is_zygote(old->security);
if (!is_zygote_child) {
pr_info("handle umount ignore non zygote child: %d\n", current->pid);
return 0;
}
#if __SULOG_GATE
ksu_sulog_report_syscall(new_uid.val, NULL, "setuid", NULL);
#endif
#ifdef CONFIG_KSU_DEBUG
// umount the target mnt
pr_info("handle umount for uid: %d, pid: %d\n", new_uid.val, current->pid);
#endif
// fixme: use `collect_mounts` and `iterate_mount` to iterate all mountpoint and
// filter the mountpoint whose target is `/data/adb`
struct ksu_umount_work *umount_work = kmalloc(sizeof(struct ksu_umount_work), GFP_ATOMIC);
if (!umount_work) {
pr_err("Failed to allocate umount_work\n");
return 0;
}
// fixme: inc refcount
umount_work->mnt_ns = current->nsproxy->mnt_ns;
INIT_WORK(&umount_work->work, do_umount_work);
queue_work(ksu_workqueue, &umount_work->work);
get_task_struct(current); // delay fix
ksu_set_current_proc_umounted();
put_task_struct(current);
return 0;
}
extern void ksu_handle_reboot(int magic1, int magic2, void __user * arg); // supercalls.c
// Init functons - kprobe hooks
// 1. Reboot hook for installing fd
static int reboot_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct pt_regs *real_regs = PT_REAL_REGS(regs);
int magic1 = (int)PT_REGS_PARM1(real_regs);
int magic2 = (int)PT_REGS_PARM2(real_regs);
unsigned long arg4;
// Check if this is a request to install KSU fd
arg4 = (unsigned long)PT_REGS_SYSCALL_PARM4(real_regs);
ksu_handle_reboot(magic1, magic2, (void __user *) arg4);
return 0;
}
static struct kprobe reboot_kp = {
.symbol_name = REBOOT_SYMBOL,
.pre_handler = reboot_handler_pre,
};
// 2. cap_task_fix_setuid hook for handling setuid
static int cap_task_fix_setuid_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct cred *new = (struct cred *)PT_REGS_PARM1(regs);
const struct cred *old = (const struct cred *)PT_REGS_PARM2(regs);
ksu_handle_setuid(new, old);
return 0;
}
static struct kprobe cap_task_fix_setuid_kp = {
.symbol_name = "cap_task_fix_setuid",
.pre_handler = cap_task_fix_setuid_handler_pre,
};
// 3. prctl hook for handling ksu prctl commands
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct pt_regs *real_regs = PT_REAL_REGS(regs);
int option = (int)PT_REGS_PARM1(real_regs);
unsigned long arg2 = (unsigned long)PT_REGS_PARM2(real_regs);
unsigned long arg3 = (unsigned long)PT_REGS_PARM3(real_regs);
// PRCTL_SYMBOL is the arch-specificed one, which receive raw pt_regs from syscall
unsigned long arg4 = (unsigned long)PT_REGS_SYSCALL_PARM4(real_regs);
unsigned long arg5 = (unsigned long)PT_REGS_PARM5(real_regs);
return ksu_handle_prctl(option, arg2, arg3, arg4, arg5);
}
static struct kprobe prctl_kp = {
.symbol_name = PRCTL_SYMBOL,
.pre_handler = handler_pre,
};
// 4.inode_permission hook for handling devpts
static int ksu_inode_permission_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct inode *inode = (struct inode *)PT_REGS_PARM1(regs);
if (inode && inode->i_sb && unlikely(inode->i_sb->s_magic == DEVPTS_SUPER_MAGIC)) {
// pr_info("%s: handling devpts for: %s \n", __func__, current->comm);
__ksu_handle_devpts(inode);
}
return 0;
}
static struct kprobe ksu_inode_permission_kp = {
.symbol_name = "security_inode_permission",
.pre_handler = ksu_inode_permission_handler_pre,
};
// 5. bprm_check_security hook for handling ksud compatibility
static int ksu_bprm_check_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct linux_binprm *bprm = (struct linux_binprm *)PT_REGS_PARM1(regs);
char *filename = (char *)bprm->filename;
if (likely(!ksu_execveat_hook))
return 0;
#ifdef CONFIG_COMPAT
static bool compat_check_done __read_mostly = false;
if (unlikely(!compat_check_done) && unlikely(!strcmp(filename, "/data/adb/ksud"))
&& !memcmp(bprm->buf, "\x7f\x45\x4c\x46", 4)) {
if (bprm->buf[4] == 0x01)
ksu_is_compat = true;
pr_info("%s: %s ELF magic found! ksu_is_compat: %d \n", __func__, filename, ksu_is_compat);
compat_check_done = true;
}
#endif
ksu_handle_pre_ksud(filename);
#ifdef __MANUAL_SU
ksu_try_escalate_for_uid(current_uid().val);
#endif
return 0;
}
static struct kprobe ksu_bprm_check_kp = {
.symbol_name = "security_bprm_check",
.pre_handler = ksu_bprm_check_handler_pre,
};
#ifdef __MANUAL_SU
// 6. task_alloc hook for handling manual su escalation
static int ksu_task_alloc_handler_pre(struct kprobe *p, struct pt_regs *regs)
{
struct task_struct *task = (struct task_struct *)PT_REGS_PARM1(regs);
ksu_try_escalate_for_uid(task_uid(task).val);
return 0;
}
static struct kprobe ksu_task_alloc_kp = {
.symbol_name = "security_task_alloc",
.pre_handler = ksu_task_alloc_handler_pre,
};
#endif
__maybe_unused int ksu_kprobe_init(void)
{
int rc = 0;
// Register reboot kprobe
rc = register_kprobe(&reboot_kp);
if (rc) {
pr_err("reboot kprobe failed: %d\n", rc);
} else {
pr_info("reboot kprobe registered successfully\n");
}
rc = register_kprobe(&cap_task_fix_setuid_kp);
if (rc) {
pr_err("cap_task_fix_setuid kprobe failed: %d\n", rc);
unregister_kprobe(&reboot_kp);
} else {
pr_info("cap_task_fix_setuid_kp kprobe registered successfully\n");
}
// Register prctl kprobe
rc = register_kprobe(&prctl_kp);
if (rc) {
pr_info("prctl kprobe failed: %d.\n", rc);
} else {
pr_info("prctl kprobe registered successfully.\n");
}
// Register inode_permission kprobe
rc = register_kprobe(&ksu_inode_permission_kp);
if (rc) {
pr_err("inode_permission kprobe failed: %d\n", rc);
} else {
pr_info("inode_permission kprobe registered successfully\n");
}
// Register bprm_check_security kprobe
rc = register_kprobe(&ksu_bprm_check_kp);
if (rc) {
pr_err("bprm_check_security kprobe failed: %d\n", rc);
} else {
pr_info("bprm_check_security kprobe registered successfully\n");
}
#ifdef __MANUAL_SU
// Register task_alloc kprobe
rc = register_kprobe(&ksu_task_alloc_kp);
if (rc) {
pr_err("task_alloc kprobe failed: %d\n", rc);
} else {
pr_info("task_alloc kprobe registered successfully\n");
}
#endif
return 0;
}
__maybe_unused int ksu_kprobe_exit(void)
{
unregister_kprobe(&reboot_kp);
unregister_kprobe(&cap_task_fix_setuid_kp);
unregister_kprobe(&prctl_kp);
unregister_kprobe(&ksu_inode_permission_kp);
unregister_kprobe(&ksu_bprm_check_kp);
#ifdef __MANUAL_SU
unregister_kprobe(&ksu_task_alloc_kp);
#endif
return 0;
}
void __init ksu_core_init(void)
{
if (ksu_register_feature_handler(&kernel_umount_handler)) {
pr_err("Failed to register kernel_umount feature handler\n");
}
ksu_workqueue = alloc_workqueue("ksu_umount", WQ_UNBOUND, 0);
if (!ksu_workqueue) {
pr_err("Failed to create ksu workqueue\n");
}
#ifdef CONFIG_KPROBES
int rc = ksu_kprobe_init();
if (rc) {
pr_err("ksu_kprobe_init failed: %d\n", rc);
}
#endif
}
void ksu_core_exit(void)
{
ksu_uid_exit();
ksu_throne_comm_exit();
#if __SULOG_GATE
ksu_sulog_exit();
#endif
#ifdef CONFIG_KPROBES
pr_info("ksu_core_exit\n");
ksu_kprobe_exit();
#endif
if (ksu_workqueue) {
flush_workqueue(ksu_workqueue);
destroy_workqueue(ksu_workqueue);
}
}