#include "linux/slab.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "allowlist.h" #include "arch.h" #include "core_hook.h" #include "feature.h" #include "klog.h" // IWYU pragma: keep #include "ksu.h" #include "ksud.h" #include "manager.h" #include "selinux/selinux.h" #include "kernel_compat.h" #include "supercalls.h" #include "sulog.h" #ifdef CONFIG_KSU_MANUAL_SU #include "manual_su.h" #endif #ifdef CONFIG_KPM #include "kpm/kpm.h" #endif bool ksu_module_mounted = false; #ifdef CONFIG_COMPAT bool ksu_is_compat __read_mostly = false; #endif #ifndef DEVPTS_SUPER_MAGIC #define DEVPTS_SUPER_MAGIC 0x1cd1 #endif extern int __ksu_handle_devpts(struct inode *inode); // sucompat.c #ifdef CONFIG_KSU_MANUAL_SU static void ksu_try_escalate_for_uid(uid_t uid) { if (!is_pending_root(uid)) return; pr_info("pending_root: UID=%d temporarily allowed\n", uid); remove_pending_root(uid); } #endif static struct workqueue_struct *ksu_workqueue; struct ksu_umount_work { struct work_struct work; struct mnt_namespace *mnt_ns; }; static bool ksu_kernel_umount_enabled = true; static int kernel_umount_feature_get(u64 *value) { *value = ksu_kernel_umount_enabled ? 1 : 0; return 0; } static int kernel_umount_feature_set(u64 value) { bool enable = value != 0; ksu_kernel_umount_enabled = enable; pr_info("kernel_umount: set to %d\n", enable); return 0; } static const struct ksu_feature_handler kernel_umount_handler = { .feature_id = KSU_FEATURE_KERNEL_UMOUNT, .name = "kernel_umount", .get_handler = kernel_umount_feature_get, .set_handler = kernel_umount_feature_set, }; static inline bool is_allow_su() { if (is_manager()) { // we are manager, allow! return true; } return ksu_is_allow_uid(current_uid().val); } static inline bool is_unsupported_uid(uid_t uid) { #define LAST_APPLICATION_UID 19999 uid_t appid = uid % 100000; return appid > LAST_APPLICATION_UID; } #if LINUX_VERSION_CODE >= KERNEL_VERSION (6, 7, 0) static struct group_info root_groups = { .usage = REFCOUNT_INIT(2), }; #else static struct group_info root_groups = { .usage = ATOMIC_INIT(2) }; #endif static void setup_groups(struct root_profile *profile, struct cred *cred) { if (profile->groups_count > KSU_MAX_GROUPS) { pr_warn("Failed to setgroups, too large group: %d!\n", profile->uid); return; } if (profile->groups_count == 1 && profile->groups[0] == 0) { // setgroup to root and return early. if (cred->group_info) put_group_info(cred->group_info); cred->group_info = get_group_info(&root_groups); return; } u32 ngroups = profile->groups_count; struct group_info *group_info = groups_alloc(ngroups); if (!group_info) { pr_warn("Failed to setgroups, ENOMEM for: %d\n", profile->uid); return; } int i; for (i = 0; i < ngroups; i++) { gid_t gid = profile->groups[i]; kgid_t kgid = make_kgid(current_user_ns(), gid); if (!gid_valid(kgid)) { pr_warn("Failed to setgroups, invalid gid: %d\n", gid); put_group_info(group_info); return; } group_info->gid[i] = kgid; } groups_sort(group_info); set_groups(cred, group_info); put_group_info(group_info); } static void disable_seccomp() { assert_spin_locked(¤t->sighand->siglock); // disable seccomp #if defined(CONFIG_GENERIC_ENTRY) && \ LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0) clear_syscall_work(SECCOMP); #else clear_thread_flag(TIF_SECCOMP); #endif #ifdef CONFIG_SECCOMP current->seccomp.mode = 0; current->seccomp.filter = NULL; #else #endif } void escape_to_root(void) { struct cred *cred; cred = prepare_creds(); if (!cred) { pr_warn("prepare_creds failed!\n"); return; } if (cred->euid.val == 0) { pr_warn("Already root, don't escape!\n"); #if __SULOG_GATE ksu_sulog_report_su_grant(current_euid().val, NULL, "escape_to_root_failed"); #endif abort_creds(cred); return; } struct root_profile *profile = ksu_get_root_profile(cred->uid.val); cred->uid.val = profile->uid; cred->suid.val = profile->uid; cred->euid.val = profile->uid; cred->fsuid.val = profile->uid; cred->gid.val = profile->gid; cred->fsgid.val = profile->gid; cred->sgid.val = profile->gid; cred->egid.val = profile->gid; cred->securebits = 0; BUILD_BUG_ON(sizeof(profile->capabilities.effective) != sizeof(kernel_cap_t)); // setup capabilities // we need CAP_DAC_READ_SEARCH becuase `/data/adb/ksud` is not accessible for non root process // we add it here but don't add it to cap_inhertiable, it would be dropped automaticly after exec! u64 cap_for_ksud = profile->capabilities.effective | CAP_DAC_READ_SEARCH; memcpy(&cred->cap_effective, &cap_for_ksud, sizeof(cred->cap_effective)); memcpy(&cred->cap_permitted, &profile->capabilities.effective, sizeof(cred->cap_permitted)); memcpy(&cred->cap_bset, &profile->capabilities.effective, sizeof(cred->cap_bset)); setup_groups(profile, cred); commit_creds(cred); // Refer to kernel/seccomp.c: seccomp_set_mode_strict // When disabling Seccomp, ensure that current->sighand->siglock is held during the operation. spin_lock_irq(¤t->sighand->siglock); disable_seccomp(); spin_unlock_irq(¤t->sighand->siglock); setup_selinux(profile->selinux_domain); #if __SULOG_GATE ksu_sulog_report_su_grant(current_euid().val, NULL, "escape_to_root"); #endif } #ifdef CONFIG_KSU_MANUAL_SU static void disable_seccomp_for_task(struct task_struct *tsk) { if (!tsk->seccomp.filter && tsk->seccomp.mode == SECCOMP_MODE_DISABLED) return; if (WARN_ON(!spin_is_locked(&tsk->sighand->siglock))) return; #ifdef CONFIG_SECCOMP tsk->seccomp.mode = 0; if (tsk->seccomp.filter) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0) seccomp_filter_release(tsk); atomic_set(&tsk->seccomp.filter_count, 0); #else // for 6.11+ kernel support? #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0) put_seccomp_filter(tsk); #endif tsk->seccomp.filter = NULL; #endif } #endif } void escape_to_root_for_cmd_su(uid_t target_uid, pid_t target_pid) { struct cred *newcreds; struct task_struct *target_task; pr_info("cmd_su: escape_to_root_for_cmd_su called for UID: %d, PID: %d\n", target_uid, target_pid); // Find target task by PID rcu_read_lock(); target_task = pid_task(find_vpid(target_pid), PIDTYPE_PID); if (!target_task) { rcu_read_unlock(); pr_err("cmd_su: target task not found for PID: %d\n", target_pid); #if __SULOG_GATE ksu_sulog_report_su_grant(target_uid, "cmd_su", "target_not_found"); #endif return; } get_task_struct(target_task); rcu_read_unlock(); if (task_uid(target_task).val == 0) { pr_warn("cmd_su: target task is already root, PID: %d\n", target_pid); put_task_struct(target_task); return; } newcreds = prepare_kernel_cred(target_task); if (newcreds == NULL) { pr_err("cmd_su: failed to allocate new cred for PID: %d\n", target_pid); #if __SULOG_GATE ksu_sulog_report_su_grant(target_uid, "cmd_su", "cred_alloc_failed"); #endif put_task_struct(target_task); return; } struct root_profile *profile = ksu_get_root_profile(target_uid); newcreds->uid.val = profile->uid; newcreds->suid.val = profile->uid; newcreds->euid.val = profile->uid; newcreds->fsuid.val = profile->uid; newcreds->gid.val = profile->gid; newcreds->fsgid.val = profile->gid; newcreds->sgid.val = profile->gid; newcreds->egid.val = profile->gid; newcreds->securebits = 0; u64 cap_for_cmd_su = profile->capabilities.effective | CAP_DAC_READ_SEARCH | CAP_SETUID | CAP_SETGID; memcpy(&newcreds->cap_effective, &cap_for_cmd_su, sizeof(newcreds->cap_effective)); memcpy(&newcreds->cap_permitted, &profile->capabilities.effective, sizeof(newcreds->cap_permitted)); memcpy(&newcreds->cap_bset, &profile->capabilities.effective, sizeof(newcreds->cap_bset)); setup_groups(profile, newcreds); task_lock(target_task); const struct cred *old_creds = get_task_cred(target_task); rcu_assign_pointer(target_task->real_cred, newcreds); rcu_assign_pointer(target_task->cred, get_cred(newcreds)); task_unlock(target_task); if (target_task->sighand) { spin_lock_irq(&target_task->sighand->siglock); disable_seccomp_for_task(target_task); spin_unlock_irq(&target_task->sighand->siglock); } setup_selinux(profile->selinux_domain); put_cred(old_creds); wake_up_process(target_task); if (target_task->signal->tty) { struct inode *inode = target_task->signal->tty->driver_data; if (inode && inode->i_sb->s_magic == DEVPTS_SUPER_MAGIC) { __ksu_handle_devpts(inode); } } put_task_struct(target_task); #if __SULOG_GATE ksu_sulog_report_su_grant(target_uid, "cmd_su", "manual_escalation"); #endif pr_info("cmd_su: privilege escalation completed for UID: %d, PID: %d\n", target_uid, target_pid); } #endif #ifdef CONFIG_EXT4_FS void nuke_ext4_sysfs(void) { struct path path; int err = kern_path("/data/adb/modules", 0, &path); if (err) { pr_err("nuke path err: %d\n", err); return; } struct super_block *sb = path.dentry->d_inode->i_sb; const char *name = sb->s_type->name; if (strcmp(name, "ext4") != 0) { pr_info("nuke but module aren't mounted\n"); return; } ext4_unregister_sysfs(sb); path_put(&path); } #else inline void nuke_ext4_sysfs(void) { } #endif bool is_system_uid(void) { if (!current->mm || current->in_execve) { return 0; } uid_t caller_uid = current_uid().val; return caller_uid <= 2000; } #if __SULOG_GATE static void sulog_prctl_cmd(uid_t uid, unsigned long cmd) { const char *name = NULL; switch (cmd) { #ifdef CONFIG_KSU_MANUAL_SU case CMD_MANUAL_SU_REQUEST: name = "prctl_manual_su_request"; break; #endif default: name = "prctl_unknown"; break; } ksu_sulog_report_syscall(uid, NULL, name, NULL); } #endif int ksu_handle_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { // if success, we modify the arg5 as result! __maybe_unused u32 *result = (u32 *)arg5; __maybe_unused u32 reply_ok = KERNEL_SU_OPTION; if (likely(ksu_is_current_proc_umounted())) return 0; // prevent side channel attack in ksu side if (KERNEL_SU_OPTION != option) return 0; #if __SULOG_GATE sulog_prctl_cmd(current_uid().val, arg2); #endif if (!is_system_uid()) { return 0; } #ifdef CONFIG_KSU_DEBUG pr_info("option: 0x%x, cmd: %ld\n", option, arg2); #endif #ifdef CONFIG_KPM if(sukisu_is_kpm_control_code(arg2)) { int res; pr_info("KPM: calling before arg2=%d\n", (int) arg2); res = sukisu_handle_kpm(arg2, arg3, arg4, arg5); return 0; } #endif #ifdef CONFIG_KSU_MANUAL_SU if (arg2 == CMD_MANUAL_SU_REQUEST) { struct manual_su_request request; int su_option = (int)arg3; if (copy_from_user(&request, (void __user *)arg4, sizeof(request))) { pr_err("manual_su: failed to copy request from user\n"); return 0; } int ret = ksu_handle_manual_su_request(su_option, &request); // Copy back result for token generation if (ret == 0 && su_option == MANUAL_SU_OP_GENERATE_TOKEN) { if (copy_to_user((void __user *)arg4, &request, sizeof(request))) { pr_err("manual_su: failed to copy request back to user\n"); return 0; } } if (ret == 0) { if (copy_to_user(result, &reply_ok, sizeof(reply_ok))) { pr_err("manual_su: prctl reply error\n"); } } return 0; } #endif return 0; } static bool is_appuid(kuid_t uid) { #define PER_USER_RANGE 100000 #define FIRST_APPLICATION_UID 10000 #define LAST_APPLICATION_UID 19999 uid_t appid = uid.val % PER_USER_RANGE; return appid >= FIRST_APPLICATION_UID && appid <= LAST_APPLICATION_UID; } static bool should_umount(struct path *path) { if (!path) { return false; } if (current->nsproxy->mnt_ns == init_nsproxy.mnt_ns) { pr_info("ignore global mnt namespace process: %d\n", current_uid().val); return false; } if (path->mnt && path->mnt->mnt_sb && path->mnt->mnt_sb->s_type) { const char *fstype = path->mnt->mnt_sb->s_type->name; return strcmp(fstype, "overlay") == 0; } return false; } static void ksu_umount_mnt(struct path *path, int flags) { int err = path_umount(path, flags); if (err) { pr_info("umount %s failed: %d\n", path->dentry->d_iname, err); } } static void try_umount(const char *mnt, bool check_mnt, int flags) { struct path path; int err = kern_path(mnt, 0, &path); if (err) { return; } if (path.dentry != path.mnt->mnt_root) { // it is not root mountpoint, maybe umounted by others already. path_put(&path); return; } // we are only interest in some specific mounts if (check_mnt && !should_umount(&path)) { path_put(&path); return; } ksu_umount_mnt(&path, flags); } static void do_umount_work(struct work_struct *work) { struct ksu_umount_work *umount_work = container_of(work, struct ksu_umount_work, work); struct mnt_namespace *old_mnt_ns = current->nsproxy->mnt_ns; current->nsproxy->mnt_ns = umount_work->mnt_ns; try_umount("/odm", true, 0); try_umount("/system", true, 0); try_umount("/vendor", true, 0); try_umount("/product", true, 0); try_umount("/system_ext", true, 0); try_umount("/data/adb/modules", false, MNT_DETACH); // try umount ksu temp path try_umount("/debug_ramdisk", false, MNT_DETACH); // fixme: dec refcount current->nsproxy->mnt_ns = old_mnt_ns; kfree(umount_work); } int ksu_handle_setuid(struct cred *new, const struct cred *old) { if (!new || !old) { return 0; } kuid_t new_uid = new->uid; kuid_t old_uid = old->uid; pr_info("handle_setuid from %d to %d\n", old_uid.val, new_uid.val); if (0 != old_uid.val) { // old process is not root, ignore it. return 0; } if (!is_appuid(new_uid) || is_unsupported_uid(new_uid.val)) { pr_info("handle setuid ignore non application or isolated uid: %d\n", new_uid.val); return 0; } if (ksu_get_manager_uid() == new_uid.val) { pr_info("install fd for: %d\n", new_uid.val); ksu_install_fd(); spin_lock_irq(¤t->sighand->siglock); ksu_seccomp_allow_cache(current->seccomp.filter, __NR_reboot); spin_unlock_irq(¤t->sighand->siglock); return 0; } if (ksu_is_allow_uid(new_uid.val)) { if (current->seccomp.mode == SECCOMP_MODE_FILTER && current->seccomp.filter) { spin_lock_irq(¤t->sighand->siglock); ksu_seccomp_allow_cache(current->seccomp.filter, __NR_reboot); spin_unlock_irq(¤t->sighand->siglock); } } // this hook is used for umounting overlayfs for some uid, if there isn't any module mounted, just ignore it! if (!ksu_module_mounted) { return 0; } if (!ksu_kernel_umount_enabled) { return 0; } if (!ksu_uid_should_umount(new_uid.val)) { return 0; } else { #ifdef CONFIG_KSU_DEBUG pr_info("uid: %d should not umount!\n", current_uid().val); #endif } // check old process's selinux context, if it is not zygote, ignore it! // because some su apps may setuid to untrusted_app but they are in global mount namespace // when we umount for such process, that is a disaster! bool is_zygote_child = is_zygote(old->security); if (!is_zygote_child) { pr_info("handle umount ignore non zygote child: %d\n", current->pid); return 0; } #if __SULOG_GATE ksu_sulog_report_syscall(new_uid.val, NULL, "setuid", NULL); #endif #ifdef CONFIG_KSU_DEBUG // umount the target mnt pr_info("handle umount for uid: %d, pid: %d\n", new_uid.val, current->pid); #endif // fixme: use `collect_mounts` and `iterate_mount` to iterate all mountpoint and // filter the mountpoint whose target is `/data/adb` struct ksu_umount_work *umount_work = kmalloc(sizeof(struct ksu_umount_work), GFP_ATOMIC); if (!umount_work) { pr_err("Failed to allocate umount_work\n"); return 0; } // fixme: inc refcount umount_work->mnt_ns = current->nsproxy->mnt_ns; INIT_WORK(&umount_work->work, do_umount_work); queue_work(ksu_workqueue, &umount_work->work); get_task_struct(current); // delay fix ksu_set_current_proc_umounted(); put_task_struct(current); return 0; } // Init functons - kprobe hooks // 1. Reboot hook for installing fd static int reboot_handler_pre(struct kprobe *p, struct pt_regs *regs) { struct pt_regs *real_regs = PT_REAL_REGS(regs); int magic1 = (int)PT_REGS_PARM1(real_regs); int magic2 = (int)PT_REGS_PARM2(real_regs); unsigned long arg4; // Check if this is a request to install KSU fd if (magic1 == KSU_INSTALL_MAGIC1 && magic2 == KSU_INSTALL_MAGIC2) { int fd = ksu_install_fd(); pr_info("[%d] install ksu fd: %d\n", current->pid, fd); arg4 = (unsigned long)PT_REGS_SYSCALL_PARM4(real_regs); if (copy_to_user((int *)arg4, &fd, sizeof(fd))) { pr_err("install ksu fd reply err\n"); } } return 0; } static struct kprobe reboot_kp = { .symbol_name = REBOOT_SYMBOL, .pre_handler = reboot_handler_pre, }; // 2. cap_task_fix_setuid hook for handling setuid static int cap_task_fix_setuid_handler_pre(struct kprobe *p, struct pt_regs *regs) { struct cred *new = (struct cred *)PT_REGS_PARM1(regs); const struct cred *old = (const struct cred *)PT_REGS_PARM2(regs); ksu_handle_setuid(new, old); return 0; } static struct kprobe cap_task_fix_setuid_kp = { .symbol_name = "cap_task_fix_setuid", .pre_handler = cap_task_fix_setuid_handler_pre, }; // 3. prctl hook for handling ksu prctl commands static int handler_pre(struct kprobe *p, struct pt_regs *regs) { struct pt_regs *real_regs = PT_REAL_REGS(regs); int option = (int)PT_REGS_PARM1(real_regs); unsigned long arg2 = (unsigned long)PT_REGS_PARM2(real_regs); unsigned long arg3 = (unsigned long)PT_REGS_PARM3(real_regs); // PRCTL_SYMBOL is the arch-specificed one, which receive raw pt_regs from syscall unsigned long arg4 = (unsigned long)PT_REGS_SYSCALL_PARM4(real_regs); unsigned long arg5 = (unsigned long)PT_REGS_PARM5(real_regs); return ksu_handle_prctl(option, arg2, arg3, arg4, arg5); } static struct kprobe prctl_kp = { .symbol_name = PRCTL_SYMBOL, .pre_handler = handler_pre, }; // 4.inode_permission hook for handling devpts static int ksu_inode_permission_handler_pre(struct kprobe *p, struct pt_regs *regs) { struct inode *inode = (struct inode *)PT_REGS_PARM1(regs); if (inode && inode->i_sb && unlikely(inode->i_sb->s_magic == DEVPTS_SUPER_MAGIC)) { // pr_info("%s: handling devpts for: %s \n", __func__, current->comm); __ksu_handle_devpts(inode); } return 0; } static struct kprobe ksu_inode_permission_kp = { .symbol_name = "security_inode_permission", .pre_handler = ksu_inode_permission_handler_pre, }; // 5. bprm_check_security hook for handling ksud compatibility static int ksu_bprm_check_handler_pre(struct kprobe *p, struct pt_regs *regs) { struct linux_binprm *bprm = (struct linux_binprm *)PT_REGS_PARM1(regs); char *filename = (char *)bprm->filename; if (likely(!ksu_execveat_hook)) return 0; #ifdef CONFIG_COMPAT static bool compat_check_done __read_mostly = false; if (unlikely(!compat_check_done) && unlikely(!strcmp(filename, "/data/adb/ksud")) && !memcmp(bprm->buf, "\x7f\x45\x4c\x46", 4)) { if (bprm->buf[4] == 0x01) ksu_is_compat = true; pr_info("%s: %s ELF magic found! ksu_is_compat: %d \n", __func__, filename, ksu_is_compat); compat_check_done = true; } #endif ksu_handle_pre_ksud(filename); #ifdef CONFIG_KSU_MANUAL_SU ksu_try_escalate_for_uid(current_uid().val); #endif return 0; } static struct kprobe ksu_bprm_check_kp = { .symbol_name = "security_bprm_check", .pre_handler = ksu_bprm_check_handler_pre, }; #ifdef CONFIG_KSU_MANUAL_SU // 6. task_alloc hook for handling manual su escalation static int ksu_task_alloc_handler_pre(struct kprobe *p, struct pt_regs *regs) { struct task_struct *task = (struct task_struct *)PT_REGS_PARM1(regs); ksu_try_escalate_for_uid(task_uid(task).val); return 0; } static struct kprobe ksu_task_alloc_kp = { .symbol_name = "security_task_alloc", .pre_handler = ksu_task_alloc_handler_pre, }; #endif __maybe_unused int ksu_kprobe_init(void) { int rc = 0; // Register reboot kprobe rc = register_kprobe(&reboot_kp); if (rc) { pr_err("reboot kprobe failed: %d\n", rc); } else { pr_info("reboot kprobe registered successfully\n"); } rc = register_kprobe(&cap_task_fix_setuid_kp); if (rc) { pr_err("cap_task_fix_setuid kprobe failed: %d\n", rc); unregister_kprobe(&reboot_kp); } else { pr_info("cap_task_fix_setuid_kp kprobe registered successfully\n"); } // Register prctl kprobe rc = register_kprobe(&prctl_kp); if (rc) { pr_info("prctl kprobe failed: %d.\n", rc); } else { pr_info("prctl kprobe registered successfully.\n"); } // Register inode_permission kprobe rc = register_kprobe(&ksu_inode_permission_kp); if (rc) { pr_err("inode_permission kprobe failed: %d\n", rc); } else { pr_info("inode_permission kprobe registered successfully\n"); } // Register bprm_check_security kprobe rc = register_kprobe(&ksu_bprm_check_kp); if (rc) { pr_err("bprm_check_security kprobe failed: %d\n", rc); } else { pr_info("bprm_check_security kprobe registered successfully\n"); } #ifdef CONFIG_KSU_MANUAL_SU // Register task_alloc kprobe rc = register_kprobe(&ksu_task_alloc_kp); if (rc) { pr_err("task_alloc kprobe failed: %d\n", rc); } else { pr_info("task_alloc kprobe registered successfully\n"); } #endif return 0; } __maybe_unused int ksu_kprobe_exit(void) { unregister_kprobe(&reboot_kp); unregister_kprobe(&cap_task_fix_setuid_kp); unregister_kprobe(&prctl_kp); unregister_kprobe(&ksu_inode_permission_kp); unregister_kprobe(&ksu_bprm_check_kp); #ifdef CONFIG_KSU_MANUAL_SU unregister_kprobe(&ksu_task_alloc_kp); #endif return 0; } void __init ksu_core_init(void) { if (ksu_register_feature_handler(&kernel_umount_handler)) { pr_err("Failed to register kernel_umount feature handler\n"); } ksu_workqueue = alloc_workqueue("ksu_umount", WQ_UNBOUND, 0); if (!ksu_workqueue) { pr_err("Failed to create ksu workqueue\n"); } #ifdef CONFIG_KPROBES int rc = ksu_kprobe_init(); if (rc) { pr_err("ksu_kprobe_init failed: %d\n", rc); } #endif } void ksu_core_exit(void) { ksu_uid_exit(); ksu_throne_comm_exit(); #if __SULOG_GATE ksu_sulog_exit(); #endif #ifdef CONFIG_KPROBES pr_info("ksu_core_exit\n"); ksu_kprobe_exit(); #endif if (ksu_workqueue) { flush_workqueue(ksu_workqueue); destroy_workqueue(ksu_workqueue); } }